Dynamics of Systems

CTB 2300

Dr. Karel N. van Dalen

Dr. Hayo Hendrikse Prof. Andrei V. Metrikine

Department: Engineering Structures Research group: Dynamics of Solids & Structures Room: 3.61 E-mail: <u>K.N.vanDalen@tudelft.nl</u> Web: www.tudelft.nl/knvandalen

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands Department: Hydraulic Engineering Research group: Offshore Engineering Room: 3.71 E-mail: <u>H.Hendrikse@tudelft.nl</u> Web: tinyurl.com/hhendrikse

1

Contents of Lecture 6

1. Free vibration of an SDOF with viscous damping:

- Viscous dampers: impression
- Derivation of the equation of motion
- The characteristic equation and motion types
- Super-critically damped motion
- Critically damped motion
- Sub-critically damped vibration
- Measurement of the damping ratio

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

2

Viscous damper in a building

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

3

т

Video: Dampers for earthquake protection

Viscous damper in a frame structure

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

4

Seismic fluid viscous dampers for large highway bridge, 1.5 million pounds output force (how large they can be!)

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

5

Viscous dampers at a cable anchorage for a cable-stayed bridge

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

6

Viscous dampers for the Millennium bridge in London

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

7

SDOF with viscous damping

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

8

Derivation of the equation of motion

Second admissible motion and corresponding forces

 $k u_{\text{ground}}$

ground

Resulting equation of motion:

$$m\ddot{u} = -k u + k u_{\text{ground}}$$
$$- c \dot{u} + c \dot{u}_{\text{ground}} + F_{wind}(t)$$

$$m \ddot{u} + c \dot{u} + k u = F(t),$$

$$F(t) = k u_{\text{ground}} + c \dot{u}_{\text{ground}} + F_{wind}(t)$$

mass \times acceleration = force

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

9

Damped SDOF: Generalized equation of motion and the set of governing equations

The governing equations

for damped SDOF systems: $m \ddot{u} + c \dot{u} + k u = F(t)$ \leftarrow Equation of motion

$$\begin{array}{c} u\left(0\right) = u_{0} \\ \dot{u}\left(0\right) = v_{0} \end{array}$$
 Initial conditions

Schematization of a generalized SDOF with viscous damping (the damped SDOF)

Lecture 6

CTB 2300 Dynamics of Systems **Faculty of Civil Engineering and Geosciences** 2022 Delft, The Netherlands

10

Free vibration of the damped SDOF: equation of motion

Equation of motion:

 $m \ddot{u} + c \dot{u} + k u = 0$

Canonical form of equation of motion:

$$\ddot{u}+2\zeta\,\omega_{0}\dot{u}+\omega_{0}^{2}\,u=0,$$

$$\omega_0 = \sqrt{k/m}$$
 is the natural frequency
 $\zeta = c/c_{\text{critical}}$ is the damping ratio
 $c_{\text{critical}} = 2\sqrt{km}$ is the critical damping

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

11

The characteristic equation and possible motion types

Equation of motion:

The general solution:

$$\ddot{u} + 2\zeta \omega_0 \dot{u} + \omega_0^2 u = 0, \quad u(t) = \sum_{n=1}^2 U_n \exp(s_n t)$$

Characteristic equation and its roots:

$$s_n^2 + 2\zeta \,\omega_0 s_n + \omega_0^2 = 0, \qquad s_{1,2} = \omega_0 \left(-\zeta \pm \sqrt{\zeta^2 - 1}\right)$$

Possible types of motion:

aperiodic motion:

vibration: $\zeta < 1$ (sub-critical

 $\begin{cases} \zeta > 1 \text{ (super-critically damped system, I)} \\ \zeta = 1 \text{ (critically damped system, II)} \end{cases}$

damped vibration: $\zeta < 1$ (sub-critically damped system, III)

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

12

I. The super-critically damped system (aperiodic motion)

The roots of the characteristic equation:

$$s_{1,2} = \omega_0 \left(-\zeta \pm \sqrt{\zeta^2 - 1} \right)$$
 are real and negative

The general solution to the equation of motion:

$$u(t) = \exp(-\zeta\omega_0 t) \left(A \exp(\omega_0 t \sqrt{\zeta^2 - 1}) + B \exp(-\omega_0 t \sqrt{\zeta^2 - 1})\right)$$

The solution to the governing equations (with the initial conditions):

$$u(t) = \frac{\exp(-\zeta\omega_0 t)}{2\sqrt{\zeta^2 - 1}} \left\{ \left(u_0 \omega_0 \left(\sqrt{\zeta^2 - 1} + \zeta\right) + v_0 \right) \exp\left(\omega_0 t \sqrt{\zeta^2 - 1}\right) + \left(u_0 \omega_0 \left(\sqrt{\zeta^2 - 1} - \zeta\right) - v_0 \right) \exp\left(-\omega_0 t \sqrt{\zeta^2 - 1}\right) \right\}$$

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

13

I. The super-critically damped system (aperiodic motion)

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

II. The critically damped system (aperiodic motion)

The roots of the characteristic equation:

 $s_{1,2} = -\omega_0$ are the same (multiple); real and negative

The general solution to the equation of motion:

 $u(t) = \exp(-\omega_0 t)(A + Bt)$

The solution to the governing equations (with the initial conditions):

$$u(t) = \exp(-\omega_0 t) \{u_0 + (v_0 + \omega_0 u_0)t\}$$

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

Delft University of Technology

15

II. The critically damped system (aperiodic motion)

To understand the effect of the parameters on the motion, please use the MAPLE file to this lecture

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

16

III. The sub-critically damped system (damped vibration)

The roots of the characteristic equation:

 $s_{1,2} = \omega_0 \left(-\zeta \pm i \sqrt{1 - \zeta^2} \right)$ are complex-conjugate (real part is negative)

The general solution to the equation of motion:

$$u(t) = \exp(-\zeta\omega_0 t) \left(A\cos(\omega_1 t) + B\sin(\omega_1 t)\right), \quad \omega_1 = \omega_0 \sqrt{1-\zeta^2}$$

The solution to the governing equations (with the initial conditions):

$$u(t) = \exp\left(-\zeta\omega_0 t\right) \left(u_0 \cos\left(\omega_1 t\right) + \frac{v_0 + \zeta\omega_0 u_0}{\omega_1} \sin\left(\omega_1 t\right)\right)$$

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

Delft University of Technology

17

III. The sub-critically damped system (damped vibration)

To understand the effect of the parameters on the motion, please use the MAPLE file to this lecture

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

18

III. Damped vibration: a compact form of the solution

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

19

III. Damped vibration: the amplitude, damped frequency, period and phase angle

ī.

$$u(t) = U_0 \exp(-\zeta \omega_0 t) \cos(\omega_1 t + \varphi_0)$$

Amplitude: $U_0 \exp(-\zeta \omega_0 t)$
Period: $T_1 = 2\pi/\omega_1 = \frac{2\pi}{\omega_0\sqrt{1-\zeta^2}}$
Phase angle: φ_0

$$U_0 \qquad U_0 \exp(-\zeta \omega_0 t)$$

$$U_0 \qquad U_0 \exp(-\zeta \omega_0 t)$$

$$U_0 \qquad U_0 \exp(-\zeta \omega_0 t)$$

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

Delft University of Technology

20

III. Damped vibration: how can we measure the damping ratio?

Measurement of damping.

Let u_1 be a displacement at tand u_s a displacement after (s-1) cycles. Then

$$\frac{u_1}{u_s} = \exp\left((s-1)\zeta\omega_0 T_1\right)$$

or
$$\log\left(\frac{u_1}{u_s}\right) = (s-1)\zeta\omega_0 T_1$$
$$\zeta\omega_0 T_1 = \frac{2\pi\zeta}{\sqrt{1-\zeta^2}} - \text{logarithmic decrement}$$

$$u(t) = U_0 \exp(-\zeta \omega_0 t) \cos(\omega_1 t + \varphi_0)$$

The frequency of damped vibrations is normally approximated by the natural frequency of the undamped system The reason:

$$\omega_{1} = \omega_{0}\sqrt{1-\zeta^{2}} \approx \omega_{0}\left(1-\frac{1}{2}\zeta^{2}\right) \approx \omega_{0}$$

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

21

Exercise: compute the damping ratio from observation

We consider the free vibration of a subcritically damped SDOF system, as shown in the figure.

Suppose that the amplitude decay over 1 natural period is equal to α .

Q1: derive the damping ratio ζ in terms of α .

Q2: is the result influenced by the specific initial conditions that excited the motion?

$$u(t) = U_0 \exp(-\zeta \omega_0 t) \cos(\omega_1 t + \varphi_0)$$

Lecture 6

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

22