Dynamics of Systems

CTB 2300

Dr. Karel N. van Dalen

Dr. Hayo Hendrikse Prof. Andrei V. Metrikine

Department: Engineering Structures Research group: Dynamics of Solids & Structures Room: 3.61 E-mail: <u>K.N.vanDalen@tudelft.nl</u> Web: www.tudelft.nl/knvandalen

Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands Department: Hydraulic Engineering Research group: Offshore Engineering Room: 3.71 E-mail: <u>H.Hendrikse@tudelft.nl</u> Web: tinyurl.com/hhendrikse

1

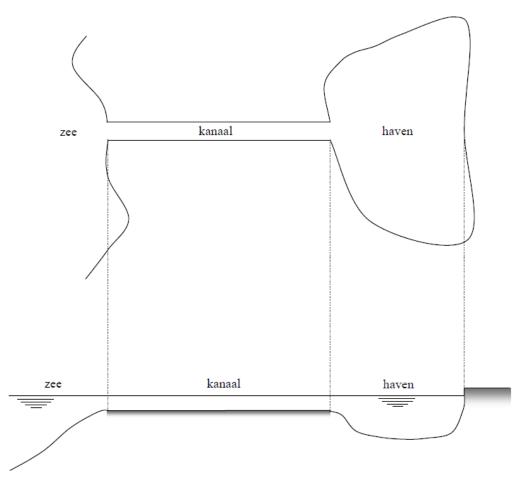
Contents of Lecture 12

- 1. Equation of motion for the water level in a harbour connected with Sea by a canal
- 2. Analogy with the mechanical oscillations
- **3.** Analysis of the hydraulic systems based on the solutions obtained for the mechanical systems
- 4. Other examples of oscillatory dynamical systems

Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

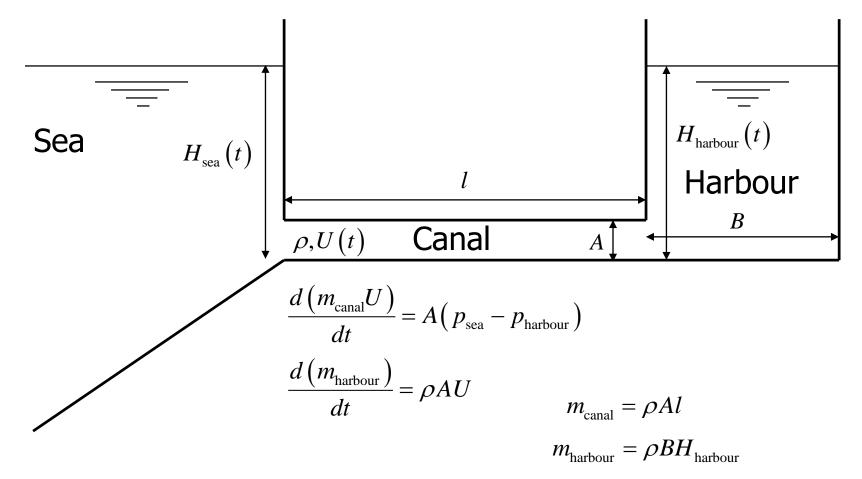
2



Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

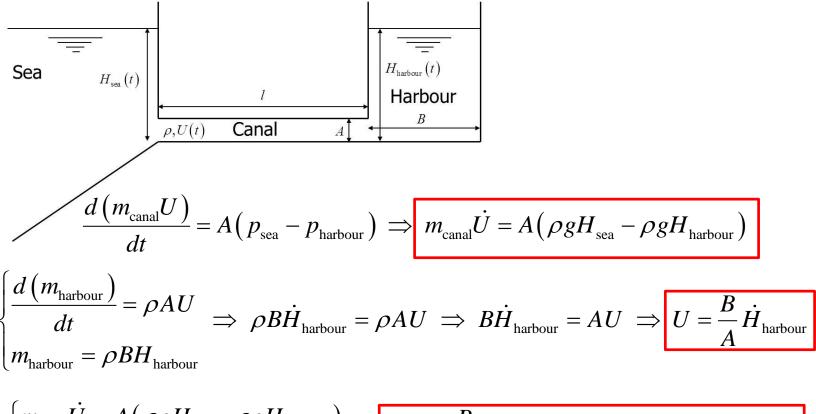
3



Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

4



$$m_{\text{canal}} U = A \left(\rho g H_{\text{sea}} - \rho g H_{\text{harbour}} \right) \implies \left(\rho A l \right) \frac{B}{A} \ddot{H}_{\text{harbour}} = A \left(\rho g H_{\text{sea}} - \rho g H_{\text{harbour}} \right)$$
$$m_{\text{canal}} = \rho A l$$

Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

5

$$(\rho Al)\frac{B}{A}\ddot{H}_{\text{harbour}} = A(\rho g H_{\text{sea}} - \rho g H_{\text{harbour}}) \implies \rho Bl\ddot{H}_{\text{harbour}} + \rho Ag H_{\text{harbour}} = \rho Ag H_{\text{sea}}$$

$$\rho B \ddot{H}_{\text{harbour}} + \rho A \frac{g}{l} H_{\text{harbour}} = \rho A \frac{g}{l} H_{\text{sea}}$$

 ρB - mass of water in the harbour per unit height

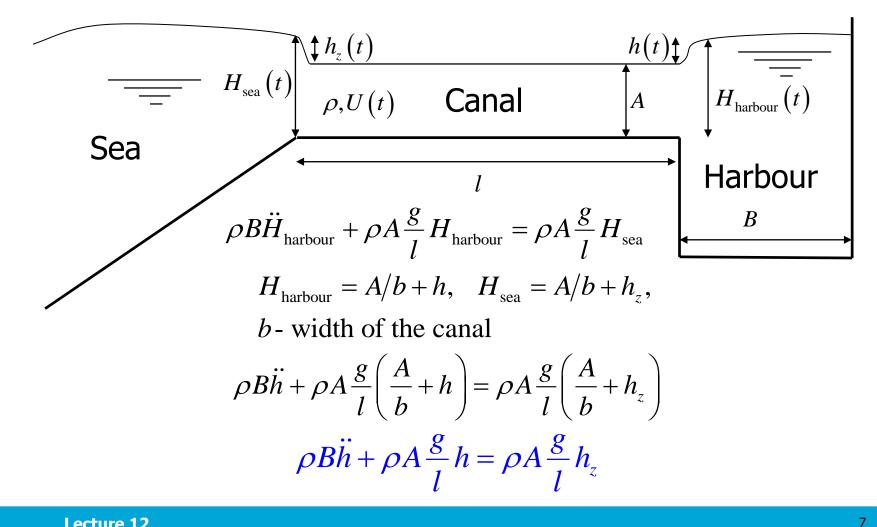
 $\rho A \frac{g}{l}$ - force from the harbour on the water in the canal per unit height (equivalent spring constant)

 $\rho A \frac{g}{l}$ - force from the sea on the water in the canal per unit height

Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

6



Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

Analogy with the mass-spring system subject to a force

$$\rho B\ddot{h} + \rho A \frac{g}{l}h = \rho A \frac{g}{l}h_z \quad \text{Equations of motion} \qquad m\ddot{u} + ku = F_u$$

$$\rho B \leftrightarrow m \quad (\text{mass per unit height} \leftrightarrow \text{mass})$$

$$\rho A \frac{g}{l} \leftrightarrow k \quad (\text{equivalent stiffness} \leftrightarrow \text{stiffness})$$

$$\rho A \frac{g}{l}h_z \leftrightarrow F_u \qquad (\text{force} \leftrightarrow \text{force})$$

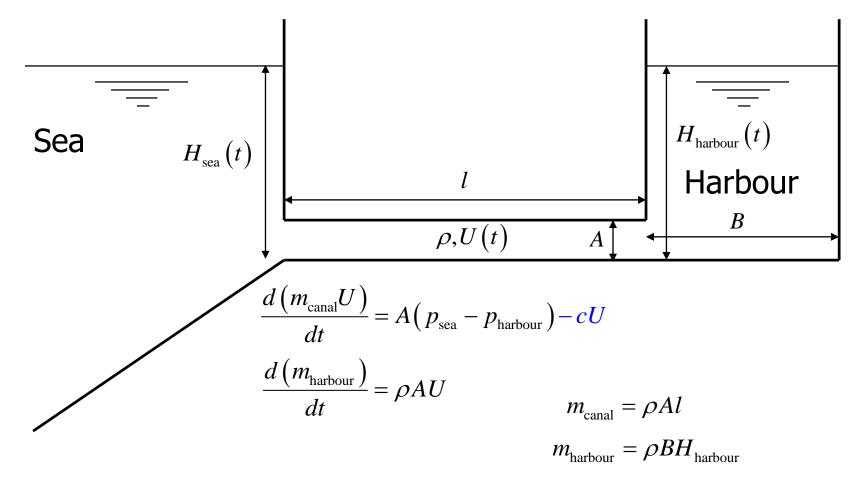
Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

 $\rho A \frac{s}{l} h_z \leftrightarrow F_u$

Delft University of Technology

Effect of the friction with the canal bottom

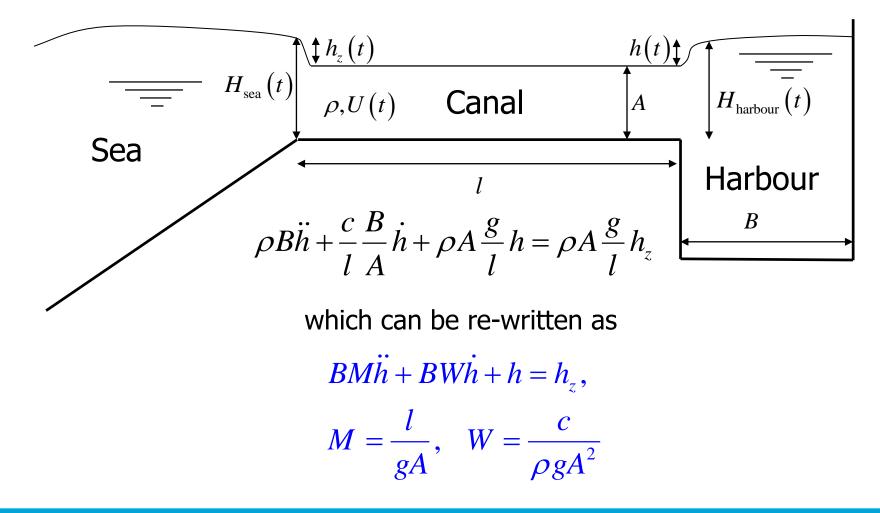


Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

9

Effect of the friction with the canal bottom

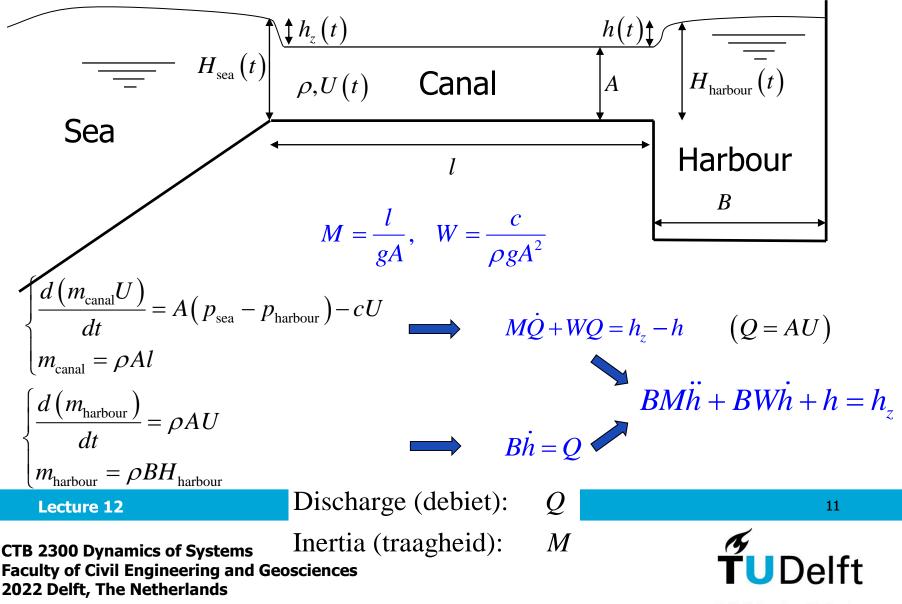


Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

10

Some specific hydraulic definitions



How to analyze?

$$BM\ddot{h} + BW\dot{h} + h = h_z$$

$$\downarrow$$

$$\ddot{h} + \frac{W}{M}\dot{h} + \frac{1}{BM}h = \frac{1}{BM}h_z$$

$$\downarrow$$

$$\ddot{h} + 2\zeta\omega_0\dot{h} + \omega_0^2h = f(t)$$

$$\omega_0^2 = \frac{1}{BM}, \ \zeta = \frac{W}{2}\sqrt{\frac{B}{M}}, \ f(t) = \frac{h_z(t)}{BM}$$

Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

Delft University of Technology

We can simply use all formulas obtained for the massspring-dashpot system

$$\ddot{h} + 2\zeta \omega_0 \dot{h} + \omega_0^2 h = f(t)$$
$$\omega_0^2 = \frac{1}{BM}$$
$$\zeta = \frac{W}{2} \sqrt{\frac{B}{M}}$$
$$f(t) = \frac{h_z(t)}{BM}$$
hydraulic system

$$\ddot{u} + 2\zeta \omega_0 \dot{u} + \omega_0^2 u = f(t)$$
$$\omega_0^2 = \frac{k}{m}$$
$$\zeta = \frac{c}{2\sqrt{km}}$$
$$f(t) = \frac{F(t)}{m}$$
mechanical system

Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

13

Example 1: free vibration of the hydraulic system

As derived in Lecture 6, slide 19, the sub-critically damped free vibration of a mechanical system is described by

$$u(t) = \exp(-\zeta\omega_0 t) \left(u_0 \cos(\omega_1 t) + \frac{v_0 + \zeta\omega_0 u_0}{\omega_1} \sin(\omega_1 t) \right)$$

Therefore, using the expressions given on the previous slide, we find the following expression for the hydraulic system

$$h(t) = \exp\left(-\zeta\omega_0 t\right) \left(h(0)\cos\left(\omega_1 t\right) + \frac{\dot{h}(0) + \zeta\omega_0 h(0)}{\omega_1}\sin\left(\omega_1 t\right)\right)$$
$$\omega_0^2 = \frac{1}{BM}, \ \zeta = \frac{W}{2}\sqrt{\frac{B}{M}}, \ \omega_1 = \omega_0\sqrt{1-\zeta^2} = \frac{1}{\sqrt{BM}}\sqrt{1-\frac{W^2}{4}\frac{B}{M}}$$

Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

14

Example 2: amplitude of the steady-state vibration of the hydraulic system caused by $h_z(t) = h_{z0} \cos(\omega t)$

As derived in Lecture 7, slide 11, the amplitude of the steady-state response of the corresponding mechanical system is given as

$$U_{\text{steady}} = \frac{u_{\text{static}}}{\sqrt{\left(1 - \omega^2 / \omega_0^2\right)^2 + 4\zeta^2 \, \omega^2 / \omega_0^2}}, \qquad u_{\text{static}} = \frac{F_0}{k} = \frac{f_0}{\omega_0^2}$$

Therefore, using the relevant expressions for the hydraulic system (slide 13 of the current lecture), we obtain

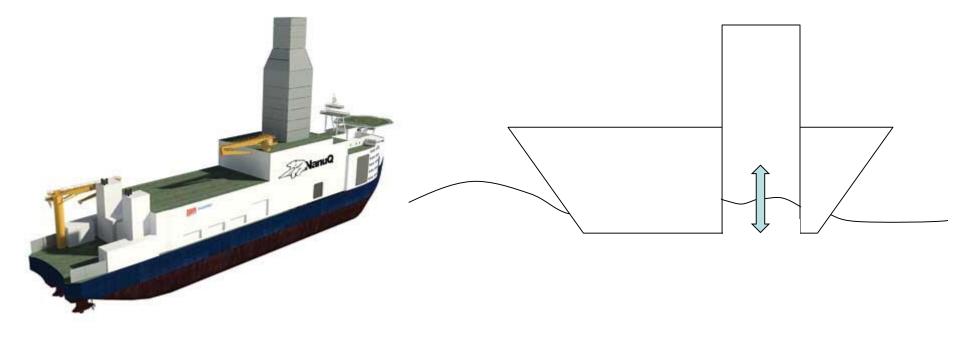
$$H_{\text{steady}} = \frac{f_0}{\omega_0^2} \frac{1}{\sqrt{\left(1 - \omega^2 / \omega_0^2\right)^2 + 4\zeta^2 \,\omega^2 / \omega_0^2}}$$
$$\omega_0^2 = \frac{1}{BM}, \ \zeta = \frac{W}{2} \sqrt{\frac{B}{M}}, \ f_0 = \frac{h_{z0}}{BM}$$

Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

15

Other examples of SDOF dynamical systems: pressure fluctuations in an enclosed moonpool of an arctic drillship



Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

Delft University of Technology

Other examples of SDOF dynamical systems: the Helmholtz resonator (sound trapper)

$\omega_0 = c_{\text{sound}} \sqrt{\frac{A}{V_0 L}}$

Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

17

Other examples of SDOF dynamical systems: a loudspeaker

Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

Delft University of Technology

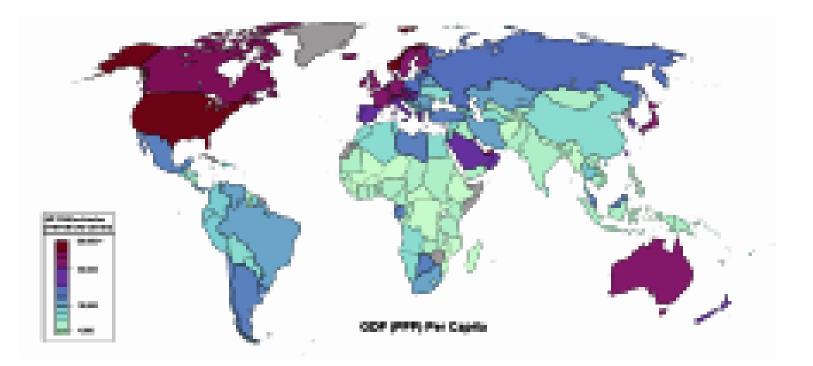
Other examples of SDOF dynamical systems: voice production

Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

Delft University of Technology

Other examples of SDOF dynamical systems: business cycle



Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

Delft University of Technology

Other examples of SDOF dynamical systems: predator-pray interaction

 $\dot{x} = bx - pxy \text{ (pray)}$

x(t) – Number of the prays (rabbits)

 $\dot{y} = -dy + rxy$ (predator) y(t) – Number of the predators (foxes)

Lecture 12

CTB 2300 Dynamics of Systems Faculty of Civil Engineering and Geosciences 2022 Delft, The Netherlands

Delft University of Technology