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11. CONCRETE STRUCTURES LOADED IN TORSION  
 
11.1.  Introduction 
 
In general, structural elements loaded in torsion can be divided into two categories. In 
this division boundary conditions play an important role. 
The first category consists of structural elements where the presence of torsional 
resistance is required to provide equilibrium of forces in the structural system. In this 
case it is denoted as equilibrium torsion (or primary torsion). Equilibrium torsion is 
required to have basic static equilibrium. 
The second category consists of structural elements where torsion occurs due to the fact 
that these elements follow the deformation of adjacent elements. If, in this case, there 
would be no torsional resistance, the structural element would still be in equilibrium. In 
this case, it is denoted as compatibility torsion (or secondary torsion). Statically 
indeterminate structures may have any of the two types of torsions. 
 
A practical example of equilibrium torsion is a traffic viaduct supported by centrically 
placed columns (Fig. 11.1). Traffic loads can create significant torsional moments in this 
structure, which need to be transferred to the columns or the abutments. Calculation 
needs to demonstrate that the torsional resistance is sufficient to pick up these torsional 
moments. Besides strength, also stiffness has to be checked: is the torsional stiffness 
sufficient to enable that the traffic is not hindered by too large torsional deformations.  
 

 
 
Fig. 11.1 Example of equilibrium torsion 
 
A practical example of compatibility torsion is a floor system where floors and beams are 
connected monolithically (Fig 11.2, top and bottom, right). When the distribution of forces 
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is calculated with the theory of elasticity, assuming that the structural elements are 
uncracked, the distribution of bending moments as drawn in figure 11.2 (top and bottom, 
right) will occur: in the floor a hogging moment will occur due to the torsional stiffness of 
the edge beam. 
 

 
 

 
 
Fig. 11.2 Examples of equilibrium and compatibility torsion 
 
As soon as the edge beams cracks, its torsional stiffness reduces dramatically. When 
performing calculations using the “cracked stiffness”, the hogging moments in the slab 
will be reduced and the mid-span bending moment increases. Even when the torsional 
stiffness of the edge beam would be reduced to zero, there would still be a system 
providing equilibrium: the reinforcement of the slab has to be based on the mid-span 
bending moment, assuming a simply supported beam. 
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In a case like this, the procedure is as follows: 
- When calculating the mid-span reinforcement one assumes that the torsional stiffness 

of the edge beams is equal to zero, i.e. the floor is modelled as being simply 
supported. As a consequence, the reinforcement of the edge beam does not need to 
be designed for torsion. 

- Because the torsional stiffness of the edge beam is small but not completely equal to 
zero, some limited hogging moments will occur at the edge of the floor. These 
bending moments are clamping moments that don’t result from the static scheme, but 
are the result of the “partial fixity”. If one doesn’t anticipate on these moments, severe 
cracking might occur in this area. To avoid this, additional reinforcement is applied to 
control cracking. For more information see the ‘Slabs’ chapter. 

- For end supports of floor slabs the amount of top reinforcement needs to be at least 
15% of the required bottom reinforcement in the adjacent span (EN 1992-1-1 cl. 
9.3.1.2 (2)). This reinforcement has to be applied over at least 20% of the adjacent 
floor span, starting at the face of the support. 

- When determining the loads on the columns these clamping moments must be taken 
into account. These moments increase the eccentricity of the normal force acting on 
the column and result in an increase of the amount of reinforcement required. 

 
The difference in torsional stiffness in the uncracked and cracked phase is illustrated in 
Fig. 11.3. The stiffness in the cracked phase, , is approximately only 10% of the 
stiffness in the uncracked phase, . 
 

 
 
Fig. 11.3 Behaviour under pure torsion 
 
In the case of equilibrium torsion, as opposed to compatibility torsion, one needs to 
consider the effect of torsional moments for both load bearing capacity (ultimate limit 
state) as well as deformations (serviceability limit state). The required load bearing 
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capacity can be provided by a load transfer mechanism with stresses that do not exceed 
the available strength. Like for structural elements loaded in shear, one can apply strut-
and-tie models to verify this. In this case these trusses are no longer two dimensional, 
but they become spatial, 3D trusses, like the ones shown in Figures 11.4 en 11.5. 
 
The dimensional aspects of a spatial truss are discussed in chapter 11.3. Note that for 
torsion, in contrast to shear, no arching effects can be considered: the structural element 
loaded in torsion is cracked all around, resulting in a “pure” strut-and-tie model (Fig. 
11.5). Measurements on the strain of stirrups show that the stresses in the stirrups 
(calculated as , after cracking, are close to the theoretical value based on the 
strut-and-tie model (Fig. 11.6). The deformation in the cracked phase is so large, that in 
case of equilibrium torsion, the torsional stiffness is in general governing for the design.  
 
By applying prestressing, the structure will remain uncracked to a higher load level. 
Prestressing in the longitudinal direction of the structure improves the torsional behaviour 
of a structure or structural element.  
 

                
 
Fig. 11.4 Forces in a cracked Fig. 11.5 Spatial strut-and-tie model 
  cross-section loaded   
  in pure torsion 
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Fig. 11.6 Steel stress in a stirrup in an element loaded in torsion 
 
To reduce torsional deformations, it is important to choose an adequate shape of the 
cross-section. Fig. 11.7 shows some cross-sections with increasing torsional stiffness. 
 

 
 
Fig. 11.7 Cross-sections with increasing torsional stiffness (from top to bottom) 
 
It is noted that applying a solid cross-section instead of a box cross-section has no 
advantage with regard to torsional resistance: As soon as cracking occurs, tension will be 
present in the stirrups and the strain in outer layer increases to such a level, that it is 
detached from the core of the cross-section (Fig. 11.8). 
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Fig. 11.8 Structurally active outer layer of a solid cross-section loaded in torsion, after 

cracking 
 
The contribution of the core to the torsional stiffness is relatively small and often 
neglected. Although a solid cross-section has a greater cracking moment than a box 
cross-section, it has little practical value: Once cracking occurs, there is hardly no 
difference between a solid and a box cross-section. Figure 11.9 shows the behaviour of 
a solid cross-section and a box cross-section. The reinforcement is in both cases 
identical. It is clear that with increasing load, the difference in behaviour diminishes.  
 

 
 
Fig. 11.9 Behaviour of a solid and a box cross-section loaded in torsion 
 
The torsional stiffness of a structural element can be increased by applying prestressing. 
Figure 11.10 illustrates this. The behaviour of two box girders is compared. In one of 
them, a part of the reinforcement is replaced by prestressing steel, keeping the overall 
yielding force the same. The prestressing can increase the cracking moment of the 
cross-section to a such a level that the cross-section is uncracked in the serviceability 
limit state (SLS). The deformation in SLS then is significantly lower for the prestressed 
cross section. Since for structures or structural elements loaded in torsion, both the 
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uncracked and the cracked phase are important, the behaviour in both phases will be 
discussed. 
 

 
 
Fig. 11.10 The effect of prestressing on the behaviour of elements loaded in torsion 
 

11.2. Torsion in the uncracked phase 
 
Since in certain situations one might aim at having an uncracked cross-section (instance 
by applying prestressing), it is important to know the stress distribution and deformation 
in the uncracked phase. Figure 11.11 shows an example of a symmetrical element 
(radius r) subjected to a torsional moment .  

 
 
Fig. 11.11 Shear stress τT and rotational deformation dθ/dx in a symmetrical element 
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Because of symmetry, the shear stresses are uniform over the full cross-section. The 
following applies: 
 

 
 
where: 
 
  is the thickness of the cross-sectional wall (t << r) 

 
by defining 

 
 
One finds 

 
  equation (11.1) 
 
Later on it will become clear that this expression (the so-called Bredt formula) is typical 
for closed cross-sections.  
 
The rotational deformation:  
 

 
 
or 

 
 
For the torsional stiffness in the uncracked phase it holds:  
 

 
 
where ν is cross contraction, Poisson’s coefficient (for concrete equal to 0,2).  
 
11.3.  Torsion and warping 
 
In the previous example it is assumed that “plain sections remain plain”. Warping is free 
to occur as it is not restrained by supports. As a result, there are no stresses 
perpendicular to the surface of the cross-section. This case is therefore denoted as St. 
Venant torsion or pure or uniform torsion. In St. Venant torsion the torque is balanced by 
shear stresses only. 
 



 

 
  11-9 
 

For cross-sections that are not thick-walled and closed, but thin-walled and open, 
another mode of torsion, the so-called warping occurs. A warping moment is the bending 
moment acting as a result of restrained warping. Equilibrium is then provided by bending 
stresses too, so the torque is balanced by axial stresses. In general, both torsional 
mechanisms occur simultaneously. The division between St. Venant torsion and warping 
depends on the properties of the specific cross-section. Figure 11.12 shows a situation 
where warping dominates.  
 

 
 

 
 
Fig. 11.12 St. Venant torsion (left) and warping (right) of an I-shaped cross section  
 
In a beam with a box cross-section (Figure 11.13, left) the torsional moment will be 
mainly transferred by St. Venant torsion even though warping will occur between 
stiffeners. In a beam with an U-shaped cross-section (Fig. 11.13, right) the torsional 
moment will be mainly transferred by warping, although the composing elements will also 
develop a certain level of St. Venant torsion. To which extend St. Venant torsion or 
warping occurs, depends on the specific cross section.  
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Fig. 11.13 Cross section with mainly St. Venant torsion (left) and warping (right)  
 
In most cases one defines the dominating torsional mechanism and designs the structure  
assuming that it is the only torsion mode.  
 
11.4.  Shear stresses from torsion 
 
For the deformation of a structural element subjected to pure torsion it holds:  
 

 
 
where It is the torsion constant of the cross-section.  
 
Concrete structures often have a rectangular or box-shaped cross-section. For a 
rectangular, solid cross-section it holds: 
 

 
 
where  is a function of the ratio  (Fig. 11.14).  
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 1,0 1,4 1,8 2,0 3,0 4,0 6,0 8,0 10,0 ∞ 

 0,141 0,187 0,217 0,229 0,263 0,281 0,299 0,307 0,313 0,333 
 
Fig. 11.14 Torsion constant for a solid, rectangular cross-section  
 
The shear stresses in a solid, rectangular cross-section are greatest along the long 
edges. In the centre of gravity the shear stresses are zero (Fig. 11.15). 
 

  

 
 
Fig. 11.15 Shear stresses in a solid, rectangular cross-section  
 
Box-shaped cross-sections are typically applied in bridge construction (Figs. 11.16 and 
11.17). The possible eccentricity in bridge structures due to traffic loads sets high 
standards for the torsional stiffness, which makes the choice for a box cross-section 
obvious. The torsion constant for these types of cross-sections is (see also Fig. 11.16): 
 

 
          equation (11.2) 
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Fig. 11.16. Box-shaped cross-section with notations from equation (11.2) 
 

 
 
Fig 11.17 Box girders under construction (Doha, Qatar) 
 
When determining the shear stresses one can assume a constant shear flow: 
 

 
 
Where  are the thicknesses of walls and flanges (Fig. 11.18). 
 
This illustrates that the highest shear stresses occur in the thinnest cross-section walls.  
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Fig. 11.18 Constant shear flow ( ) in box cross-section 
 
The torsional moment  is partly resisted up by the long planar elements (webs) 
( ) and partly by the vertical planar elements (webs) ( ). For the 
cross-section it holds: 
 

 
or: 

 
 
The shear force for the horizontal elements is: 
 

 
 
The shear force for the vertical elements is: 
 

 
          equation (11.3a) 
 
The maximum shear stress occurs in the thinnest cross-section wall:  
 

 
 
        equation (11.3b; Bredt formula) 
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Fig. 11.19 Cross-sections consisting of multiple rectangles  
 
Cross sections composed of multiple rectangular parts (Fig 11.19, left) can be designed 
assuming that the torsional moment is distributed over the composing, individual 
rectangles and proportional with the values , so: 
 

 
 
Where 
   is the part of the total torsional moment resisted by the ith rectangle 
   is the smallest size of the ith rectangle 
   is the greatest size of the ith rectangle 
 
Each rectangle can now be designed as a separate cross-section subjected to a 
torsional moment . If one of the composing rectangles has a significantly larger value 
of  compared to other rectangles, one can assume that the total torsional 
moment is carried by this single rectangle (Fig. 11.19, right). 
 

11.5. Torsion in the cracked phase  
 
When discussing the ultimate limit state (ULS) load bearing capacity of a cross-section 
loaded in torsion, the following assumptions are important:  
-   In compatibility torsion the torsional moments will diminish due to cracking. For 

structural elements that are exposed to compatibility torsion, the assumption is made 
that the torsional stiffness is zero: they are not designed for torsion (for instance edge 
beams of a slab)  

-  When there is equilibrium torsion, the structure or structural elements need to be 
designed for torsion (for instance box girders)  

 
Structures loaded in pure torsion are rare. In almost all cases a combination of torsion 
( ), shear ( ) and bending ( ) occurs. In prestressed structures there will also be 
a normal compression force present ( ). The consequences of these combinations of 
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forces are illustrated in Fig 11.20.  
 

 
 
Fig. 11.20 Forces on a box cross-section from torsion (a), shear (b), bending (c) and 

compression (d)  
 

- The torsional moment, , results in shear forces in the four planar 
elements of the box (Fig 11.20a). The values of these shear forces can be 
determined using equation 11.2a  

- The shear force, , results in shear forces in the vertical planar elements 
only. The flanges of the cross-section are, in the direction considered, relatively 
flexible which makes their contribution to the transfer of shear rather small (Fig. 
11.20b)  

- The bending moment, , results in a normal compressive force in the 
top flange and a normal tensile force in the bottom flange (Fig. 11.20.c).: 

 
- An optional normal compression force, , is distributed over the four 

planar elements (Fig. 11.20d). 
 
Dimensioning for torsion is now reduced to dimensioning four in-plane loaded planar 
elements. This will be discussed for a box girder with a rectangular cross-section, see 
Fig. 11.21. 
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Fig. 11.21 Box cross-section loaded by a combination of a torsional moment, , a 
shear force,  , and a bending moment,  

 
First planar element AD is considered. This part is loaded by a shear force which has to 
two separate components:  

- The shear force, , will be equally distributed over the two vertical planar 
elements. Each element is therefore loaded by a force 

 
- The torsional moment, , according to equation 11.2b, results in the 

vertical planar elements with a shear stress: 

 
- The shear force from to torsion in element AD is (equation 11.3a): 

 
 
The overall shear force that occurs in planar element AD is: 

 
 
Fig. 11.22 gives a side view of planar element AD. The shear force  introduces 
sloped cracks. The inclination angle of these cracks is denoted as .  
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Fig. 11.22 Planar element AD in side view 
 
We now consider several sections in this planar element. Fig. 11.23a considers the 
triangle ADS loaded by the shear force . To have vertical force equilibrium, the 
force in the vertical shear reinforcement has to equal the occurring shear force: 
 

 
 
The required amount of reinforcement: 
 

 
          equation (11.4) 
 
where: 

  = cross-sectional area of each stirrup 
  = spacing of the stirrups 

 
In a different section the compressive struts are crossed perpendicular to their 
longitudinal axis direction (Fig. 11.23b). When considering the force equilibrium of 
triangle ADS in horizontal direction, the required amount of longitudinal reinforcement, 

, is determined: 
 

 
          equation (11.5) 
 
This reinforcement has to be distributed over the height of the planar element AD.  
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Fig. 11.23 Sections from wall AD to calculate the required reinforcement  
 
Note that the shift of the bending moment line in cases where both torsion and shear 
occur is not necessary, because the additional longitudinal reinforcement, due to torsion, 
resulting from equation 11.5 for the bottom flange is equal to the additional reinforcement 
caused by the shift of the moment line. 
 
Finally it needs to be checked whether the compressive stress in the struts,  (Fig. 
11.23b), does not exceed the maximum allowed stress. Based on equilibrium the 
occurring stress can be determined:  
 

 
   equation (11.6) 
 
The occurring stress needs to smaller than the limit value for the compressive stress in 
these struts: 

 
  equation (11.7) 
where:  
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In this calculation one remark has to be made. The assumption is made that in 
determining the compressive stress, ,the full width, , of the cross-section can be 
taken into account. For thicker walls this assumption can result in an unsafe structure. 
Although in the considered case there is clearly St. Venant torsion, a certain amount of 
warping will occur in the planar elements. This results in an unequally distributed 
compressive stress over the thickness of the planar element (Fig. 11.24). By using the 
effective wall thickness, , this effect can be taken into account. Test results show that 
the effective thickness, can be estimated as: 
 

 
  equation (11.8) 
 
where: 

 = the outer perimeter of the cross-section  
 = the surface within the outer perimeter of the cross-section schematized  

 
If the wall thickness is smaller than the effective thickness, , calculations must be 
based on the actual wall thickness. If the wall thickness is larger than the effective 
thickness, calculations should be based on the effective wall thickness. 
 

 
 
Fig. 11.24 Definition of the effective wall thickness teff 
 
The calculations for the top and bottom flange of the box girder (planar elements AB and 
CD, Fig. 11.21) are performed in a similar way. The top flange ia loaded by a 
compressive force caused by bending ( ). Therefore, in most cases, the 
application of longitudinal tensile reinforcement (based on equation 11.5) is not required. 
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In the bottom flange both bending and torsion tensile forces occur which make the 
application of longitudinal reinforcement necessary.  
 
Finally, determining of the boundaries for the angle  for the compressive struts remains. 
Identical to structures loaded in shear, the designer is free to use the interval 

 (or ). The smallest amount of stirrups is required when θ 
= 21,8°. In that case, the concrete strut compressive stress is maximum. 
 
For solid, rectangular cross-sections the calculation method now is similar to the 
calculation method presented for box girders. In pure torsion, at a certain moment, an 
outer effective layer occurs (Fig. 11.8 and 11.9) causing a behaviour identical to the 
behaviour of a box girder. For the thickness of this layer the effective thickness, , 
can be used. 
 
When a combination of torsion and shear occurs, it might be preferable to use an 
alternative design procedure for solid cross-sections. The top figures in figure 11.25 
show the design procedure presented before. Torsion is carried by the effective layers 
and shear is carried by the full cross-section. However, the left web layer is now 
subjected to a relatively high shear stress (right figure). When distributing the shear force 
over the part of the cross-section surrounded by the effective layers (figure 11.25, bottom 
figures), the shear force stresses and torsional moment stresses don’t have to be 
combined. This might result in an optimized design. It is noted that this approach is n ot 
addressed in EN 1992-1-1.  

 
 
Fig. 11.25 Alternative addition of torsion and shear stresses in a solid cross-section  
 
In the same way a normal force may be distributed over the full cross section or over the 
outer layer only.  
 
When a structural element is exposed to a combination of shear and torsion, the load 
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bearing capacity might be reached when the compressive struts fail before the 
reinforcement yields. To avoid this failure mode, the following requirement must be met: 
 

 
          equation (11.9) 
 
where:  

 is the capacity for pure torsion:  
 

 
          equation (11.10) 
 

 is the capacity for pure shear: 
 

 
 
EN 1992-1-1 calculates VRd,max using the full width b of a solid cross-section. TRd,max is 
calculated using the effective thickness (Fig. 11.25, top).  
 
Another question to be answered is at which combination of shear and torsion 
reinforcement has to be designed and, in line with that question, when is only minimum 
reinforcement required. EN 1992-1-1 gives the following unity check expression (cl. 
6.3.4(5)): 

 
          equation (11.11) 
 
where: 

 the torsional cracking moment for pure torsion, to be determined by 
assuming  

  the shear force causing shear failure of an element without shear 
reinforcement 

 

 
  

  effective height in mm 
  reinforcement ratio;  

 compressive or tensile stress;  
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11.6. Reinforcement of cross-sections loaded in torsion 
 
The longitudinal reinforcement for torsion, according to section 11.5, can be equally 
distributed over the perimeter of the cross-section or concentrated in the corners. The 
stirrups need to be closed and make an angle of 90 degrees with the axis of the 
considered element. The centre-to-centre distance of stirrups needs to be limited to 
make that the compressive struts transfer their force to the reinforcement: Too great 
centre-to-centre distances may result in breaking out of the corners of the cross-section 
(Fig. 11.26) since the force in the compressive struts is inadequately (only locally) 
counteracted by the tensile forces in the steel.  
 

 
 

Fig. 11.26.  Breaking out of longitudinal corner bar when the centre-to-centre distance 
of stirrups is too large  

 
EN 1992-1-1 requires for stirrups a maximum centre-to-centre spacing of , where  is 
the outer perimeter of the cross-section. The maximum centre-to-centre spacing should 
also not exceed  and has to be smaller than the minimum dimension of the cross-
section.  
 
To guide the forces in the compressive struts through the corners of the cross-section, at 
least one longitudinal rebar has to be placed in every corner of the cross-section. The 
remaining longitudinal reinforcement can be distributed over the cross-section, applying a 
maximum centre-to-centre spacing of 350 mm (EN 1992-1-1 cl. 9.2.3 (4)).  
 
In box girders the transverse and longitudinal reinforcement can be divided over the inner 
and the outer surface of the walls, provided that the thickness of these walls is not larger 
than teff (equation 11.8). For thicker walls the reinforcement placed on the inner side is  
assumed not to be able to resist the torsional moment acting on the cross-section (Fig. 
11.27). 
 



 

 
  11-23 
 

 
Fig. 11.27 Reinforcement in box girder loaded in torsion  
 
 
 


