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14 SLABS 

14.1 Introduction 
 
A research program carried out by the Dutch organization CUR shows in which parts of buildings 
most concrete is applied. Table 14. 1 contains the results of this survey.  
 
Table 14. 1: Volume of concrete (in %) applied in the various parts of concrete structures for high 
rise buildings and housing.  
 

Foundations             22 % 
Load bearing walls                4 % 
Columns               5 % 
Slabs              59 % 
Other             10 % 

 
The results show that the major part of the concrete is used for constructing slabs. The choice of an 
efficient type of slab is therefore very important with regard to the building costs. 
 
Reinforced concrete slabs are mostly used as floors, roofs and as decks of bridges. The slab is a 
structural element loaded perpendicular to its plane, having a thickness that is significantly smaller 
than the other two dimensions (Fig. 14. 1). Slabs primarily transfer the loads to the supports in one 
or two directions by bending. Due to the relatively small thickness (relatively great span/height 
ratio) of a reinforced concrete slab, the shear deformation is considered to be insignificant; 
deformation from bending is governing. Contrary to membranes and shells, boundary conditions 
and load cases for concrete slabs are in most cases such that no in-plane forces occur.  

 
Fig. 14. 1: Definition of the slab element 
 
By the type of execution, three main types of reinforced concrete slabs can be defined: 

- Cast in situ  
- Prefabricated 
- Partially prefabricated and partially cast in situ systems. 

 

More detailed information about different systems and their main advantages and disadvantages 
can be found in CIE3340/CIE4281 reader Concrete Building Structures.  
 
A structure (e.g. building) usually consists of slabs with different spans and support conditions. 
The slabs can be supported by beams which further carry the load to columns and these transfer 
the load to the foundations. These beams can be present at all slab sides, or slabs can have 1, 2 
or 3 free edges (Fig. 14. 2). Instead of by beams and columns, slabs can also be supported by 
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masonry or reinforced concrete walls, by structural steel members, directly by columns (i.e. flat 
slab) or continuously by ground (e.g. warehouse floors on a bedding). As a result, depending on 
the type of the supports, their size and arrangement, different load transfer mechanisms occur in 
the structure.   
  

 
Fig. 14. 2: Realistic floor plan with different types of slabs (solid lines: stiff line support 
provided by stiff beam; dashed lines: no supports, free edges) 
 
Depending on the way the load on the slab is transferred, a general distinction can be made by 
defining the following structural types of slabs (Fig. 14. 3): 
 
1) One-way slabs with line supports  
2) Two-way slabs with line supports 
3) Flat slabs (or flat plates) with and without drop panels and/or column heads 

 
Examples of one-way slabs and two-way slabs with line supports are given in Fig. 14. 3a and 
Fig. 14. 3b, respectively. These are slabs with supporting beams, meaning that the load is first 
transferred from the slab to the beams, which further transfer the load to the columns. The 
formwork is complex and applying the reinforcement is labour-intensive. This is the reason why 
this type of slab is only applied in case of high slab loads. Instead of beams and columns, the 
supporting structures of one-way and two-way slabs can also be walls. The slabs now first 
transfer the load to the walls and the walls transfer the load directly to the foundation. 
 
Flat slabs are slabs in which the supporting structure consists of columns only (Fig. 14. 3c). 
This is a popular floor type thanks to its ease of execution and the corresponding reduction of 
the labour costs. Moreover, installations can easily be attached to the floor.  
 

One-way slab 
(Supported by 2 beams) 

Cantilever; One-way slab 
(Supported by 1 beam)  

Two-way slab 
(Supported by 4 beams) 

 

Two-way slab 
(Supported by 2 beams) 

Two-way slab 
(Supported by 3 beams) 
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         One-way slabs   Two-way slab              Flat slab 

  
 
 

               

Fig. 14. 3: Structural types of slabs a) one-way slab with line supports, b) two-way slab with 
line supports and c) flat slab 
 

 

A flat slab can be constructed with and without drop panels and column heads Fig. 14. 4. These 
structural elements are commonly applied nowadays. The drop panel or a column head increases 
the bearing capacity of the slab at the column perimeter, where the highest shear stresses occur. 
 
 

                   
 
 

            
 
Fig. 14. 4: Flat slabs with a) column heads and b) drop panels 
 
More specific examples of one-way and two-ways slabs, that will not be discussed here in 
detail, are ribbed slabs and waffle slabs (Fig. 14. 5). In ribbed slabs, the deck transfers the load 
in one principal direction to the ribs. The ribs then transfer the loads to the beams which carry 

a) b) c) 

a) b) 

Column head 

Drop panel 
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the load in one principal direction to the columns. In the waffle slabs, the deck transfers the load 
in two principal direction to the supporting beams directed in two perpendicular directions. 
These two types of slabs are not applied frequently as they are labour intensive to construct, i.e. 
the formwork is expensive and installation of ducts and pipes below the slab is complicated.  
 
 

                  
  
 
 

                      
 
Fig. 14. 5: a) Ribbed and b) waffle slabs 
 
The three main structural types of slabs, being the one-way, the two-way and the flat slab, are 
separately discussed in the following sections. Strict distinctions will be made regarding the 
following three main aspects:  
 

- load transfer in the system 
- designing slab to fulfil safety (ULS) and functionality requirements (SLS) 
- reinforcement detailing  

 
In engineering practice a structural engineer has to deal with several, often project specific, 
additional design aspects, such as required openings in slabs, concentrated loads, irregular 
loads, etc. Some of these aspects are dealt with in section 14.5.  

Ribbed slab Waffle slab 

a) b) 

deck 

rib 

beam 

load transfer of the deck      
      (one direction) 

load transfer of the deck 
(two directions) 
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14.2 Load transfer 

14.2.1 One-way slab 
 
Fig. 14. 6 sketches a system in which a slab is supported by two vertically rigid hinged line 
supports (rigid beams or walls). In this system the load is transferred by the slab in y-direction 
only.  

 
 
Fig. 14. 6: Slab with two vertically rigid, hinged line supports; slab spanning in one direction 
 
The structural action of this one-way slab may be visualized by the deformed shape of the loaded 
surface. If a uniformly distributed load is applied to the slab surface, the deformed surface is 
approximately cylindrical (Fig. 14. 7). The curvature, and consequently the bending moments in y-
direction, are almost the same in all strips, whereas there is no curvature in x-direction. Note that 
this, however, does not mean that there are no bending moments in x-direction, as will be 
explained later.  

 
 
 Fig. 14. 7: Deformed shape of a uniformly loaded one-way slab (two rigid hinged line supports) 
 

Unit width strip 

Static scheme 
ly 
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Examples of one-way slabs with different boundary conditions of the supports are given in Fig. 
14. 8. The first example on the left is the previously discussed slab with two rigid line supports. 
The second example is a continuous three span slab. The four beams supporting the slab are 
assumed to be rigid in vertical direction (i.e. infinitely stiff) and are therefore modelled as rigid 
supports. The third example shows a cantilever slab. The beam connected to the slab is assumed to 
provide a rigid and stiff support. In the static scheme, this is modelled as a fixity. The last example 
shows a slab that has rigid line supports along all four edges. Strictly speaking, this is not a one-
way slab. However, there is a link: in case the ratio of the longer dimension of the slab to the 
shorter dimension is greater than or equal to 2, the mid part of the slab behaves as a one-way slab. 
This is because the load on this part of the slab is mainly transferred in the direction of the shorter 
span (in this case: ly). Therefore, although the slab is supported by beams in both longitudinal and 
transversal direction, part of it behaves as if it was a one-way slab. A detailed derivation and 
explanation why this is the case can be found in Section 14.2.2 (Two-way slabs).  
 

 
 

 Fig. 14. 8: Examples of one-way slabs together with their corresponding static systems 
 
For the one-way slab, the main method of analysis is according to the theory of elasticity. The 
behaviour of the slab spanning in one direction can be compared with the behaviour of a beam. 

Bending moments  
In this example, the slab is assumed to be loaded by a uniformly distributed load q. In the 
calculation this slab is modelled as being split up into parallel strips having a unit width (e.g. 1 m). 
Each strip may be considered as a rectangular beam with a height equal to the thickness of the slab 
and a span equal to the distance between the supported edges. Strips transfer the load in one 
direction, denoted here as the y-direction. Therefore, for the one-way slab given in Fig. 14. 9 the 
situation is analogous to the case of a simply supported beam. The maximum bending moment for 
a strip having a width of 1 m occurs in the cross-section at the midspan and can be calculated as 
follows: 
 

21
8y,max = ⋅ ⋅ ym q l     [ / ]kNm m    (14.1) 

 
Note the units of this bending moment (m, not M); it is a bending moment per unit of width.  
Also note that similarly as with a beam, it is assumed that a bending moment is positive when it 
causes tensile stresses at the bottom of the slab. 
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Fig. 14. 9: Bending moment in the strip 
 
Whereas a beam is free and can deform in transversal direction, this is not the case with the 
individual slab strips. Take a closer look at the cross section of a strip in y-direction, having a 
width bx (Fig. 14. 10a). At the strip top fibre, due to Poison’s ratio, flexural compression in y-
direction results in expansion in x-direction (Fig. 14. 10b). This expansion will occur in all the 
adjacent slab strips which also tend to expand at the top fibre level (Fig. 14. 10c). The opposite 
occurs at strip bottom fiber level. The bottom fibers are in tension in y-direction and, as a result, 
contract (tend to shrink/shorten) in x-direction. Compatibility requirements between adjacent strips 
makes that the free transversal deformations are restrained (εx = 0). As a result, there is also a 
bending moment in the opposite (transversal) direction which develops in the slab (Mx).  
 
To determine the magnitude of this bending moment, take a closer look at a single strip in y-
direction, having a width bx (Fig. 14. 10a). As already indicated, the top fibre of this strip in y-
direction is in compression while the bottom fibre is in tension. Strain at the bottom of the slab in 
y-direction is:  

  cy y
yb

c c y

M
E E W
σ

ε = =       (14.2) 

where cyσ  is the maximum tensile stress in the load bearing strip, at the bottom of the strip (see 

Fig. 14. 10b). Similarly, the strain at the top of the strip is: 

 cy y
yt

c c y

M
E E W
σ

ε
−

= =       (14.3) 

If the strip can deform freely in transverse direction (x-direction), the strain in this direction would 
be:  

 x yε = −ν ε        (14.4) 

So for the outer tensile fiber (bottom of strip):  

 y
xb yb

c y

M
E W

ε = −ν ε = −ν       (14.5) 

This strain can occur only in a strip that is free to deform in x-direction (e.g. a beam), but not in a 
strip that is an integral part of a slab. Free deformation would imply introducing an opening at 
bottom fiber level between adjacent beams. At top fiber level, the opposite would occur, namely 
transverse expansion ( xtε ). As a result each strip tends to bend in the direction perpendicular to its 
longitudinal axis (Fig. 14. 10c). From compatibility requirements, the side faces of the strip should 

Additional information 
 
If the strip with the width of bx was chosen, then the moment 
for this strip would be 21

8y,max y xM q l b= ⋅ ⋅  [ ]kNm . 
 

In reality, instead of span length, l , the effective span, leff, 
should be used, taking into account the support lengths. More 
information about the leff  can be found in section 14.5.1. 
 

  m y 



chapter 14 - slabs 
 

8 
 

stay in a vertical position (the slab remains plane in x-direction). Compatibility is achieved by 
introducing bending moments in the transverse direction, which bring the strain in x-direction back 
to zero: 

 x c xb( ) x
x y

y

WM E W M
W

= −ε = ν       (14.6) 

The total strain at the bottom fibre from Mx and My now is zero. The same result is obtained for the 
top fibre of the strip. 
 
In a solid, uncracked isotropic slab Wx = Wy. Considering that Poisson’s ratio for uncracked 
concrete is about 0,2, the bending moment in transverse direction results in: 

 x y y0, 20M M M= ν ≈       (14.7) 

Therefore, for the bearing mode in transverse direction account should be taken of the restrained 
lateral curvature which causes secondary bending moments in transverse direction. Due to this 
effect transverse reinforcement is needed. This reinforcement will also enable, if required, the 
distribution of concentrated loads, or will take up stresses due to shrinkage. In general, 20% of the 
maximum reinforcement in the major load transfer direction is applied in the transverse direction 
(EN 1992-1-1 cl. 9.3.1.1).  
 

 
Fig. 14. 10: A strip from a slab transferring load in y-direction (bending moment My) and also 

loaded by a bending moment Mx in x-direction 

Shear stresses and support reactions 
The slab transfers its loads to the line supports. These supports can be walls or rigid beams. To 
design the supports, information on their loads is required. Therefore, the support reactions of the 
slab must be known. Furthermore, the slab has to be designed to resist the shear forces that result 
from load transfer to the line supports. This requires insight into the flow of forces in the slab. 
Maximum shear forces occur along the supported edges of a slab.  

line support 

 

 

 

y,max
xt yt

y y

M
E W

ν
ε ν ε= − =

y,max
xb yb

y y

M
E W
ν

ε ν ε
−

= − =

Mx Mx 
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According to Eurocode, the shear stress at a section in a solid slab is calculated as: 
 

Ed
Ed

Vv
bd

=          (14.8) 
 

where VEd  is  the shear force due to the ultimate load, d is the effective depth of the slab and b is 
the width of the section considered. As shown previously for a bending moment, the calculation 
is usually based on a 1 m wide strip from a slab. 
 
In a case of a one-way slab with rigid hinged line supports and a uniformly distributed load q 
(Fig. 14. 11), all the load is transferred equally to the two opposite supports. The effective span 
is l. Therefore, the two reaction forces at the line supports (per unit length) are: 
 

 max
1

2R ql=    [ / ]kN m     (14.9) 

 
The maximum shear stress per unit length in the slab occurs at the supports:  
 

 Ed, max

1
2 ql

v
d

=   2[ / ]kN m                            (14.10) 

 
Fig. 14. 11: The load distribution for each support 
 
Note that the maximum shear stress, calculated in this way, is overestimated. In fact, the 
maximum shear stress in the slab, similarly as with beam analysis, should be calculated not 
directly above the theoretical supports, but at the critical shear section, which is at a distance d 
from the face (inner edge) of the support. Note that d is the effective depth of the slab. This 
approach is used because the distributed load acting between the critical cross section and the 
face of the support is directly taken by the support. This part of the load is transferred by 
concrete compressive struts and, as a result, do not introduce shear stresses as known from the 
slender beam theory. As a result, the shear force acting on a critical cross section is smaller than 
the reaction force. Therefore, the presented method of calculation results in an overestimation of 
the shear stress, but is on the safe side and can be used for a quick check. 
 
 
 
 
 

l 

1m 

Fig. 14. 12: Critical shear cross section (note that d is the effective depth of the slab) 

d 

d 

l 
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Stiffness of supports 
 
If the supporting beam or wall not only provides vertical but also rotational constraint, the 
boundary conditions change from hinged to partially of fully clamped supports. A similar 
situation might occur when a masonry wall is constructed above the supporting masonry wall 
(Fig. 14. 13). This change of boundary conditions of course changes the occurring bending 
moments, shear forces and support reactions. They should be calculated according to the 
corresponding static scheme (Fig. 14. 14).  
 
In reality, full fixity can be obtained if the slab extends sufficiently into a rigid concrete wall of 
sufficient thickness or is cast monolithically with the concrete wall. Then the connection can be 
modelled as providing full or flexible/partial fixity, and corresponding effects, i.e. bending 
moment and shear force distribution in each strip and in the slab can be calculated according to 
the corresponding static scheme.  
 

 
 
Fig. 14. 13: Partial fixity due to a wall constructed above the supporting wall. 
 

 
 
Fig. 14. 14: Corresponding static scheme for the system given in Fig. 14. 13. 
 
It can also be that the slab is supported by a rigid beam, providing full fixity only from one side. 
A basic example when such system might be present is shown in Fig. 14. 15. In the figure, a 
balcony slab is connected to a beam. It is now assumed that the rotational stiffness and torsional 
strength of the beam are such, that a full fixity is provided. Note that the beam is now loaded in 
shear, torsion and bending in its longitudinal direction (in case it is not supported by a rigid 
wall). 

Rigid support with full fixity 

Rigid support with no 
rotational fixity 
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Fig. 14. 15: Example of the cantilever slab  
 
In these examples the assumption is made that the supporting beams or walls act as vertically 
stiff supports. If this is not the case, and a supports become flexible, this will also influence the 
load distribution. For example, consider a one-way slab with two line supports that have a 
certain stiffness in vertical direction. The beams are supported by columns. At the position of 
the columns, the beams provide a stiff support. However, at positions in between the columns 
the beams provide a flexible support. The load transfer in case of flexible line supports is hard to 
determine by hand calculations since it depends significantly on the ratios between the stiffnesses 
of the various components (beams, slab, spans, column spacing, local boundary conditions). 
Nowadays numerical programs are used (e.g. the Finite Element Method, FEM) to calculate the 
actual behaviour. This aspect is not further elaborated here. Only the slabs with vertically rigid line 
supports are further discussed. 
 
Example – comparison FEM and simplified model 
In practice, a slab is often supported by beams or walls with limited and different vertical 
translational and rotational stiffness. The actual boundary conditions in the slab therefore 
usually corresponds to partial fixity. The Finite Element Method (FEM) can be used to depict 
this behaviour. To give an impression of FEM results, two simulations have been performed 
(Fig. 14. 16). In the first simulation, the slab is supported by very thin walls at both sides. In the 
second case, the slab is supported by thick walls. Both slabs have a span of 10 m and are loaded 
by a uniformly distributed load of 10 kN/m2. 

 
 
Fig. 14. 16: Two simulated cases, thin supporting walls (left) and thick supporting walls (right) 
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Parallel to this, a hand calculation is performed in order to check the results of the numerical 
simulations (Fig. 14. 16). Three types of slabs are calculated. The first slab is supported by 
hinged supports and the second one by fixed supports. The third slab is a combination of these 
two. The same as in simulations, the slabs have a span of 10 m and are loaded by a uniformly 
distributed load of 10 kN/m2. The maximum sagging and hogging moments in each of the slabs 
can be simply calculated by using forget-me-not rules from beam design (see Fig. 14. 20).  
 
The maximum bending moment in the span occurs for the slab with the two hinged line supports 
(125 kNm/m). In case the support provides full rotational fixity, the maximum bending moment 
in the slab is at the supports (~83 kNm/m). The third case is given only for comparison and to 
indicate the situation for which the maximum support moment would occur. Note that the 
presented bending moment values are extremes, corresponding to infinitely stiff behaviour of 
the supports. 
These calculations are made according to the beam theory. In slabs there are also secondary 
moments which come from restrained deformations in transversal directions. These transversal 
moments (my) can be calculated as:  

0.2yy xx xxm m mν= ⋅ = , where ν  is Poisson’s ratio of concrete. 

 

 
 
 
 

Consider now the results from FEM analysis (Fig. 14. 18). In the first simulation, the walls are 
very thin and do not provide any rotational stiffness. Therefore, the connection between the slab 
and the wall is close to a hinged connection. The maximum sagging moments in the middle of 

2
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Fig. 14. 17: Different examples of one-way slabs and effects 
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the slab (~123 kNm/m) are almost equal to those obtained by hand calculation, assuming that 
the supports provide no rotational fixity at all (125 kNm/m).  
 
In the second case, the slab is supported by thick walls. The thick walls provide almost full 
fixity at the connection (no rotation allowed). As a result, the maximum sagging moment and 
hogging moments at the supports correspond now to those obtained by hand calculations for a 
situation with clamped supports.  
 
The secondary moments obtained by FEM (Fig. 14. 19)  are in order of magnitude around 15-
20% of the main bending moments, as expected. It is interesting to notice that the bending 
moment isolines (mx) are not straight lines. This can be attributed to the reduced confining 
effects towards the free edges of the slab. Transverse bending moments reduce to zero at free 
sides (which are free to deform), so there are disturbing effects in the longitudinal moments 
which start at the free edges but gradually diminish towards the middle of the slab. These effects 
cannot be considered by simplified beam analysis. Note that results obtained by numerical 
analysis should always be carefully checked by an engineer and by, usually applicable, hand 
calculations. 

Z

mx [kNm/m]
129.6
116.1
102.6

89.1
75.6
62.1
48.6
35.1
21.6

8.1
-5.4

-18.9
-32.5
-46.0
-59.5
-73.0
-86.5

  

 
Fig. 14. 18: Bending moments mx 
  

X

Y
Z

 

 



chapter 14 - slabs 
 

14 
 

my [kNm/m]
18.1
15.9
13.7
11.5

9.3
7.1
4.9
2.7
0.5

-1.7
-3.9
-6.1
-8.3

-10.5
-12.7
-14.9
-17.1

 
Fig. 14. 19: Bending moments my 
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Fig. 14. 20: Forget-me-not formulas for bending moments, reaction forces and deflections  
 
Apart from the dimensions of the elements in the structure, also the reinforcement distribution 
might influence the bending moment distribution. So far, the linear elastic theory for the 
analysis of the slabs was discussed. The Eurocode also allows using the linear elastic theory 
with limited redistribution for the verification of the Ultimate Limit State (ULS). This means 
that the bending moments at ULS calculated using a linear elastic analysis in statically 
undetermined structures may be redistributed provided that the resulting distribution of 
moments remains in equilibrium with the applied loads. In Eurocode 2 (section/clause 5.5.4) the 
maximum allowed values for the ratio of the redistributed moment to the elastic bending 
moment are given. In order to enable this redistribution, a plastic hinge with sufficient rotational 
capacity has to be present. Therefore, the redistribution should not be applied when the rotation 
capacity is too small or cannot be defined with confidence. 
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Continuous one-way slabs  
 
Often slabs are continuous and extend over a number of supports. Continuous slabs should in 
principle be designed to withstand the most unfavourable arrangements of loads, in the same way 
as beams. Therefore, the governing load combination has to be found. 
 
A continuous slab with n spans given in Fig. 14. 21 is now considered. The slab is loaded by a 
permanent load and a live load, both uniformly distributed loads. Since the permanent load G is 
always present, the most unfavourable arrangements of live loads will be governing for the design. 
The question now is, how to arrange the live load Q. 

 
Fig. 14. 21: Continuous one-way slabs 
 
Maximum positive bending moment:  
 
In order to get the largest sagging moment in the slab by hand calculations, the load distribution 
should be according to Fig. 14. 22. This load distribution (G+Q) can then be divided in two 
basic parts: the first one consisting of G+Q/2 and the second one consisting of Q/2. When the 
analysed area is considered, different boundary conditions arise from the two loading parts: 

 
 
 
 
The maximum sagging moment can then simply be estimated by using forget-me-not rules (Fig. 
14. 20) and by superposition of the effects corresponding to these two load combinations 

Fig. 14. 22: Load distribution for the maximum sagging moment and the corresponding 
boundary conditions of the considered area 

 

Analysed area 

= 

+ 
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(G+Q/2 and Q/2) and their corresponding boundary conditions. The boundary conditions follow 
from the deformation of the slab. At the load G + Q/2 it is clear that, because of symmetry, no 
rotation is present at supports (Fig. 14. 24). As a result, the static scheme of a span next to the 
support where the maximum hogging moment occurs has two fixed ends. At the load Q/2 
however, the alternating load is present at all spans, resulting in slab rotation at  supports. 
Therefore, the static scheme of the span now has two ends where rotation is allowed to occur. 
Note that this is the static scheme that corresponds to the maximum slab moment, as also 
indicated in Fig. 14. 22. 
 
Maximum negative bending moment:  
In order to get the largest hogging moment in the slab, the load should be acting above the 
supports, according to the load distribution presented in Fig. 14. 23. Similarly as in case of the 
maximum sagging moment, the maximum hogging moment can then simply be estimated by the 
superposition of the effects corresponding to the two load combinations (G+Q/2 and Q/2) and 
corresponding boundary conditions.  

 
 
 
 
At the load Q/2, at one support there is no rotation (both adjacent spans are loaded), whereas the 
alternating loads at all the remaining supports make that slab rotation occurs at these supports. 
The static scheme of the span now has one fixed end and one end where rotation is allowed to 
occur.  

 
 
 

 
 

 
 

Fig. 14. 23: Load distribution for the maximum hogging moment and corresponding boundary 
conditions 

 

Additional information:  
 
How loading conditions determine the boundary conditions in the system: 

  
Fig. 14. 24: Fixed and hinged boundary conditions 
 
 
 

Analysed area 

= 

+ 
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Similarly, the maximum shear forces, present next to the supports in the solid slab, should be 
calculated and checked for their governing load combinations too.  
 
Note that in case of multiple spanning one-way slabs, also the tabulated values for continuous 
two, three spans etc. spanning beams are available and can be used to determine the maximum 
moments and shear forces in the slab and the support reactions. Be aware, however, that the 
application of these tables is subjected to some restrictions (e.g. the assumed ratio between live 
load and self-weight and span ratio in the case of different spans). Also in that case, account 
should be taken for the fact that the live load does not need to be present at all the slab spans 
simultaneously. These analyses can be nowadays done in FEM programs where the envelopes 
of effects are calculated.  

Transition from one-way to two-way slabs 
 
One should be careful at locations where the uni-axial load transfer from a one-way spanning slab 
is disturbed by other support reactions. Fig. 14. 25 shows an example of a slab (line supports 1 & 
2) where at one end (side 3) an additional support reaction occurs, for instance by a supporting 
wall. This extra support results in a local reduction of the load transfer in the y-direction, but 
simultaneously causes a local bending moment (mxx) in x-direction which is larger than the 
transversal moment in one way slab, yymν . As a result, in a part of the slab the load is not 

transferred in one but in two directions.  

 
 
Fig. 14. 25: Top view and longitudinal cross-section of a one-way spanning slab with distortion at 

the edge 
 
This can be depicted by FEM analysis (Fig. 14. 26). A slab with dimensions 10 m x 50 m and 
simply supported (vertically rigid, hinged line supports) at three sides is modelled. The slab is 
loaded with a uniformly distributed load of 10 kN/m2. At the certain distance from the wall (~ 20 
m from the left support) the moments in y-direction become uniform, the load is transferred in one 
direction only (the magnitude of the primary moment reaches the moment of a one-way slab: 

2 8 125 /ql kNm m= ) and the slab behaves as a one-way slab. However, this is not valid for the 
first 10 m next to the left support where it appears that the load is transferred in 2 directions. Note 
that in this 10 m also the transversal moments are larger than 0.2 125 25 /yym kNm mν = ⋅ =  . 

 
The theory of elasticity can be applied to find the actual two-dimensional load transfer mechanism 
and the bending and torsional moments that occur. The reinforcement to be applied should be 
adjusted to the two-dimensional flow of forces. Section 14.2.2 deals with these aspects of two-way 
spanning slabs. Therefore, also the question of transition between one-way to two-way slabs is 
dealt with in detail. 
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Fig. 14. 26: Results of FEM analysis and cross sectional moments in x- and y-direction in a slab 
simply supported from 3 sides 
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14.2.2 Two-way slab 
Fig. 14. 27 sketches the system in which a slab is supported by four rigid line supports (beams or 
walls). In this system the load is transferred both in x- and y-direction. 
 
 

 
Fig. 14. 27: Slab with line supports spanning in two directions 
 
The structural behaviour of a two-way slab may be visualized by the deformed shape of the loaded 
surface. Fig. 14. 28 shows a rectangular slab, supported by rigid line supports along its four sides. 
These supports might be deep, stiff (monolithic) concrete beams, or walls, or stiff steel girders. 
With a uniformly distributed load at the surface, such a slab bends into a dished surface, rather 
than a cylindrical one, as it was the case with a one-way slab. This means that at any point the slab 
is curved in two principal directions. Since bending moments are proportional to curvatures, 
bending moments also exist in both directions. If the concrete edge beams are flexible, the vertical 
deformation of the slab along the sides significantly alters the distribution of bending moments in 
the slab panel. This is valid for flat slabs, which is a specific type of two-way slab and will be 
separately considered. 

  

 
Fig. 14. 28: Deflected shape of uniformly loaded two-way slab with four stiff line supports 
providing full fixity 
 
For two-way spanning slabs with line supports three methods of analysis apply: 
The theory of elasticity 

Under the assumption of a homogeneous (uncracked) and elastic slab material the bending 
and torsional moments are calculated. The moments obtained are used as a starting point to 
perform cross-sectional analyses to determine the amount of reinforcement required. This 
method is on the safe side (lower bound value approach). 

ly 

lx 
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The strip method (the equilibrium method) 
According to this method the slab is assumed to be composed of strips that transfer the load 
in two directions. When defining the load transfer mechanism the designer has a certain 
freedom. The goal is to create a system of equilibrium that results in a practical and 
economical reinforcement layout, but also is realistic in a way that it is close to the actual 
behaviour of the slab in the uncracked state (i.e. linear elastic). Similarly as the theory of 
elasticity, this method is also on the safe side (lower bound value approach). However, 
compared to the theory of elasticity, this method is less economic as more reinforcement is 
required. The main advantages are that it is always applicable, it is fast and the designer has 
insight and decides how the load can be transferred to the supports. 
 

The yield line theory 
This method aims at finding the failure mechanism for a slab with given reinforcement 
detailing. A number of potential failure mechanisms has to be researched to find the one 
which gives the smallest failure load. Since the designer is never sure to have found the 
mechanism that results in the lowest bearing capacity, this method is in principle not a safe 
one (it is an upper bound value approach). 

 
Today, nearly always the theory of elasticity or the strip method is used for the dimensioning and 
detailing of slab reinforcement. 

Analysis with the theory of elasticity 
The classical theory of elasticity for plates loaded perpendicular to the plate plane was derived in 
the 1800s. Take an infinitesimally small plate element loaded in z-direction by a uniformly 
distributed load q. Fig. 14. 29 shows the occurring bending moments myy and mxx, torsion 
moments mxy and myx and shear forces vx and vy. Note that all these are per unit length.  

 
Fig. 14. 29: Infinitesimal plate element 
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Considering that the equilibrium of forces in z-direction has to be satisfied: 

 0yx vv q
x y

∂∂
+ + =

∂ ∂
        (14.11) 

 
and that the summation of moments from all forces about the x-axes and y-axis has to be equal to 
vx and vy, respectively: 
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Since  
 xy yxm m=          (14.13) 

 
this results in the plate equilibrium equation: 

 
2 22

2 22 xy yyxx m mm q
x x y y

∂ ∂∂
+ + = −

∂ ∂ ∂ ∂
 

The solution can be found either by solving analytically the equation (with some further 
assumptions) or, for example, by using the Finite Element Method (FEM). Engineers generally 
tended to use tabulated solutions for plates with different boundary and loading conditions, which 
are provided in textbooks. However, nowadays, the calculations are mostly carried out using FEM 
analysis. 
 
In two-way spanning slabs, bending moments as well as torsional moments occur. Special 
attention is to be given to these torsional moments. It appears that the corners of the simply 
supported slab tend to lift up when the slab is uniformly loaded (Fig. 14. 30).  
 

  
Fig. 14. 30: Lifting-up of the slab at the corners 
 
Lifting up might be prevented, for example, due to a wall built on top of the slab, above a support, 
or when the slab is supported by and connected to relatively stiff line supports. It is now assumed 
that all four corners cannot lift up. As a result, bending moments at an angle of 45° relative to the 
plate edges occur in the four corner parts of the slab. To explain this more in detail, consider the 
schematic representation in Fig. 14. 31. The slab is assumed to have rigid line supports along the 
four edges. No fixity is present. The yellow arrows represent the uniformly distributed load acting 
on the slab (Fig. 14. 31a). The red arrows represent the reaction forces acting at the supports. Let 
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us divide the slab into strips and take one particular strip from this set: the second one from the 
longer support. (Fig. 14. 31b,c).  
 
At the middle portion of the strip, the inner edge is at a lower level than the outer edge. And 
towards the ends of the strip, both the edges are at the same level. So the strip is twisted (Fig. 14. 
31c). The slab resists the external loads not only by bending but also by so-called torsion. This 
torsional effect increases towards the ends of the strip. The strips nearer to the two long walls 
experience this torsion to a greater extent than the strips near the middle of the slab. In the same 
way, in the other set of strips which are perpendicular to the red strips, the torsional effect will be 
greater at the ends of those strips which are nearer to the short walls. 
 

   
 
Fig. 14. 31: a) view a two way slab which corners are held down b) strips parallel to ly and c) 
analysis of a single strip 
 
The torsional effect will be more pronounced in the four corners of the slab. If torsional moments 
are larger than the cracking moment,  they induce cracking at the top and the bottom side of the 
slab (Fig. 14. 32). These cracks are in a direction perpendicular to the diagonal of the slab at the 
top surface and parallel to it at the bottom surface. Therefore, reinforcement to resist this torsion 
has to be provided. If slabs are calculated according to the theory of elasticity, the total amount of 
reinforcement used in two orthogonal directions must be based on the so-called “reinforcement” 
bending moments: 

 
*

*

;

;
xx xx xy

yy yy xy

m m m

m m m

= ±

= ±
         (14.14) 

where xxm and yym are the bending moments per unit length in x and y-direction, and yym is the 

torsional moment per unit length. 
 

  
Fig. 14. 32: Cracking at the edges of the slab due to torsion at the a) top and b) bottom surface 

a) b) 

a)                                        b)                                   c) 
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Bending and torsional moments 
In Fig. 14. 33 the distributions of the bending and torsional moments in the x- and y-direction are 
given for a slab with hinged line supports on all four edges, see the Fig. 14. 33 a, b, c and d 
respectively. In Fig. 14. 34 a small part of the slab is shown, indicating the positive orientations of 
the moments. 
 
Note that at the location of the maximum bending moments, the torsional moments are zero, and at 
the location of the maximum torsional moments, the bending moments are zero. 

 

 
Fig. 14. 33: a. Distribution of the bending moment in the y-direction 
 b. Distribution of the bending moment in the x-direction 
 c. Distribution of the torsional moment in the x-direction 
 d. Distribution of the torsional moment in the y-direction 

 
Fig. 14. 34: Positive orientations of bending and torsional moment and deformations of an 

elementary part of the slab 
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EN 1992-1-1 presents no tables or figures that can be used to easily calculate the bending and 
torsional moments that occur in two-way spanning slabs. The designer is referred to textbooks.  
 
The former Dutch code NEN 6720 contained such information in tables. To illustrate the theory, 
Table 14. 2 (from NEN 6720, table 18 combined with calculated deformations from GTB 2010, 
chapter 8) presents the bending moments and maximum deflections for a number of slabs having 
different boundary conditions. Bending moments are expressed using coefficients. In these 
coefficients the bending moments per unit width as obtained from a linear elastic calculation are 
incorporated. The coefficients hold for the bending moment in the so-called middle strips which 
are assumed to be present over 50% of lx and ly, see Fig. 14.35 c and d. The remaining parts of the 
slab are so-called side strips.  
 
Torsion moments are taken into account separately, by prescribing additional reinforcement to be 
applied in specific regions of the slab. This reinforcement must be applied in two directions at both 
top and bottom of a slab. The torsion moment is assumed to be equal to the maximum sagging 
bending moment in the middle strips. These aspects of torsion will be discussed later. 
 
In calculations, the ideal boundary conditions are considered: with full rotational capacity (simply 
supported) and with the full fixity (clamped). The coefficients are determined without taking into 
account bending moment redistribution that might occur due to local cracking; it is a linear elastic 
result. The slabs are assumed to be loaded with a uniformly distributed load q over the entire slab 
surface. 
 
Example 
As an example a slab with rigid hinged line supports along its four edges is analysed. First, the 
exact linear elastic moment distributions will be discussed. Next, the simplified method from 
Table 14. 2 will be presented. 
 
The curved bending and torsional moment distributions found when using the theory of elasticity 
are shown in Fig. 14. 35a. The bending moments mxx and myy are zero near the edges. Fig. 14. 35b 
shows the simplified linear distributions which serve as a base for calculating the reinforcement 
required. The distribution of the maximum span moments in x- and y-direction (mxx and myy) and 
the distribution of the torsional moments in x- and y-direction (myx and mxy) are presented.  
 
This is slab type I in Table 14. 2. Coefficients are presented for various aspect ratios ly / lx. It is 
assumed that, in this example, the ratio is 1,5, so interpolation between results for ratios 1,4 and 
1,6 is required.  
 
To summarize, Table 14. 2 slab type I; ly / lx = 1,5 (v = span = sagging moment): 
 
 2

vx x0,073m q l=    and    2
vy x0,030m q l=  

 
It turns out that these table results are close to the exact results given in Fig. 14. 35a: 
 

 2 2
vx x x

1 0,073
13,7

m q l q l= =  and    2 2
vy x x

1 0,028
35,7

m q l q l= =  
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Table 14. 2: Governing bending moment and deflection coefficients per unit of width in the 
middle strips of slabs on rigid line supports loaded by a uniformly distributed load (NEN 6720).  

 
Support conditions: See next page 

w       =   0.001

4

d x

EI

p l
          4,1         5,6        7,0        8,2        9,2        10                     12.2 

w       =   0.001

4

d x
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p l
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w       =   0.001
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                                     1,6       2,0       2,3        2,4         2,5        2,6       

 
 

           2,1        3,0        3,6        4,2        4,5        4,9       

 
                                     1,6        2,4        3,2        3,8        4,3        4,6       
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w       =   0.001

4
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p l
          1,9         3,2         4,6       6,0        7,2        8,4       

w       =   0.001

4

d x

EI

p l
          1,9         2,2         2,4       2,5        2,6        2,6       

w       =   0.001

4
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p l
          2,8         4,3         5,8       7,1        8,2        9,2       

w       =   0.001

4

d x

EI

p l
          2,8         3,6         4,1       4,6        4,8        5,1       



chapter 14 - slabs 
 

26 
 

Plate support conditions: 
- solid line   = line support, no rotational fixity 
- two solid lines   = line support and fully fixed (no rotation) 

mvx is the positive moment per unit length in a cross-section along the longer edge (ly) 
mvy is the positive moment per unit length in a cross-section along the shorter edge (lx) 
msx is the negative moment per unit length in a cross-section along the longer edge (ly) 
msy is the negative moment per unit length in a cross-section along the shorter edge (lx) 
pd  is the design value of the uniformly distributed load 
w is the maximum deflection 
 
 
In order to account for the favourable influence of a parallel supporting edge which results in load 
transfer in y-direction too, NEN 6720 states that the reinforcement in x-direction over a side strip 
width of 0,25 ly along both edges may be reduced by 50%. This is schematically illustrated in Fig. 
14. 35c by the 0,5 mxx. The same holds for the reinforcement in y-direction, see Fig. 14. 35d. The 
slab is now in fact split into edge and middle strips.  
 
NEN 6720 states that at least half of the maximum span reinforcement should extend to the 
support. It has to be noted that not only the table coefficients must be used; additional design rules 
apply.  
 
As highlighted before, special attention has to be given to the torsional moments mxy and myx. 
Torsional moments near plate corner can be replaced by equivalent force couples ( 
Fig. 14. 36). The equivalent forces counteract each other in the section borders along the entire 
plate edge However, in the corner, an upward force remains.  Corners of the simply supported slab 
tend to lift up (Fig. 14. 37) when the slab is uniformly loaded and this uplift force in the corner is 
equal to:  
 2 xyR m=          (14.15) 

Therefore, corner anchoring should be applied to resist this force. 
 
If lifting up is prevented, bending moments directed at an angle of 45° relative to the edges occur 
in the corner parts of the slabs. As a result, torsional moments are introduced in the corners of a 
simply supported slab. Analysis of this mechanism leads to the conclusion that the torsional 
moments in the corner can be sufficiently resisted by applying a square reinforcement mesh having 
a length 0,3 lx. Note that this reinforcement needs to be provided in a such a way that cracks due to 
torsion are crossed by reinforcement (see Fig. 14. 32 and Fig. 14. 38). The mesh must be applied 
both at the top and bottom of the slab. The amount of reinforcement to be applied in both 
directions in top and bottom should be equal to the maximum span reinforcement in x-direction. 
This follows from Fig. 14. 35a where it can clearly be seen that the torsional moment at all four 
corners in both x- and y- direction is equal to the maximum x-direction sagging bending moment. 
 
If the plate is not anchored in the support to resist this force, the corners will lift. If the corners are 
free to lift, the section forces in the plate will change because these are determined based on the 
boundary condition that the deflection is equal to 0 along the entire length of all the support edges. 
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Fig. 14. 35: Slab with rigid line supports along the four edges where ly/lx = 1.5: 
 a. Bending and torsional moment distributions  
 b. Schematized bending and torsional moments distributions 
 c. Reinforcement in the x - direction 
 d. Reinforcement in the y - direction 
 
The aforementioned torsional reinforcement is not required when 1 or 2 of the line supports at their 
junction in a corner have a restrained rotation. In these cases, a boundary (or the boundaries) 
prevent(s) the slab from rotating. This can be seen in Table 14. 2 where it is indicated that 
torsional reinforcement is only required for slab types I, III, VA and VB.  

torsion 
reinforcement 

(mesh at top and 
bottom) 
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Fig. 14. 36: Effect of torsion on plate corner 

 

 
Fig. 14. 37: The corners of a simply supported slab tend to lift up (left) and the deformation is 

compensated for by bending moments that cause torsion (right) 
      

 
a)                                                                  b) 
Fig. 14. 38: Reinforcement mesh to ensure torsional moments at the edges at the a) top and b) 

bottom surface 
 
Note that Table 14. 2 presents bending moment expressions for the middle strips only. The 
designer, however, has to calculate the reinforcement required in the full slab. For example, the 
designer has to design the reinforcement in the edge strips too. To enable the designer to do so, 
NEN 6720 presented a set of design rules. These additional rules are given to derive edge strip and 
slab corner reinforcement from middle strip results. The designer now has to calculate middle strip 
bending moments only and can use these to calculate full slab reinforcement. 
 

Torsional moments near plate corner Equivalent couples replacing the torsional moments 

xy ym d  xy ym d  
xym  
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The following design rules hold (NEN 6720 cl. 7.5.1.4): 
- The amount of reinforcement per unit width should not vary over the width of a strip. 
- The amount of positive moment (bottom) reinforcement in an edge strip should be at least 

50% of the amount of bottom reinforcement applied in the parallel middle strip. 
- The amount of negative moment (top) reinforcement in an edge strip should be at least 

equal to the amount of top reinforcement applied in the parallel middle strip. 
- In the corners of free line supported edges mesh top and bottom reinforcement should be 

applied. The amount of reinforcement required should be based on the maximum amount 
of bottom reinforcement per unit width applied in a middle strip. The reinforcement 
should extend over at least 0,3lx from the supports. (Note: This reinforcement is required 
to resist the torsional bending moments that occur in corners where two line supports 
without rotational restraint meet). 
 

These requirements for the two-way spanning slab design and reinforcement distribution  are 
applied to the example given in Fig. 14. 39 (NEN 6720). In this example, the slab has two rigid 
line supports (without rotational fixity) and two rigid line supports with rotational fixity. 

  Reinforcement in x – direction  Reinforcement in y – direction 

    
Fig. 14. 39: Example of the requirements for a reinforcement distribution in a two-way slab 
(designed using bending moment coefficients) 
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Transition from one-way to two-way slab 
 
To illustrate the use of Table 14. 2 the slab from Fig. 14. 25 is analysed. The bending moment in 
x-direction in the slab is to be calculated. When assuming that the ratio between the longer and 
shorter span is 3,0 and by using plate type I, it follows that the span bending moment in transverse 
direction is mxx = 0,023 q ly

2
 . The bending moment in the main load-transfer direction (myy) is 

around 5 times higher (0,117 q ly
2). The calculated bending moment mxx turns out to be of the same 

magnitude as the secondary moment in a one-way slab which originates from Poisson’s ratio and 
the required restrained slab strip deformation.  
 
It can also be observed that considering the slab as a one-way slab implies that the moment in the 
principal direction (equals to 1/8 q ly

2) is approximately only 7% larger than according to the 
theory of elasticity for a two-way slab. All these demonstrate that the major part of the slab acts as 
a one-way slab, whereas only the end part next to the additional line supports experiences two-way 
load transfer. 
 
Note: Notations for x and y-directions are according to Fig. 14. 25 and not Table 14. 2. 
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Shear stresses and support reactions 
 
In the previous sections attention was given to bending moment reinforcement design. It was 
demonstrated that coefficients from linear elastic analysis can be used to dimension the 
reinforcement. The structural engineer, however, also needs information regarding the support 
reactions and the shear forces. No tables with coefficients are available in the Eurocode, but an 
option is to model the load transfer in the slab. A major advantage of this approach is that insight 
into structural behaviour is obtained. Of course, the finite element method can also in this case be 
used to calculate these forces.  
 
Support reactions and shear forces will now be estimated by modelling the load transfer in a two-
way slab. It is often sufficiently accurate to subdivide the slab surface into parts, as shown in Fig. 
14. 40. Fig. 14. 40a shows a rectangular slab with rigid hinged line supports along its four edges. 
The slab is assumed to be uniformly loaded over its full surface. The shaded areas display how the 
parts of the load are transferred to the edges and load the supports. Fig. 14. 40b shows a similar 
scheme for a slab that has rigid line supports along two edges and rigid line supports with 
additional rotational fixity along its two other edges. Note that three different angles are used, 
namely 30º, 45º and 60º. When two edges that meet in a corner give the same boundary conditions, 
the 90º corner angle is split in two identical angles, 45º each. When two edges with different 
boundary conditions meet, the ‘stiff’ edge attracts the major part of the load. Now, the corner angle 
is split into 60º and 30º angles. The engineer can now construct, starting at the corners, the load 
transfer. An envelope-like slab surface distribution occurs.  

 
              (a)                                             (b)                                             (c)               
Fig. 14. 40: Calculation of the reaction forces on rigid line supports of a line supported slab 

having identical (left) and different (middle, right) support conditions along its four 
edges  

 
For the two-way slab given in Fig. 14. 40a, where ly > lx, the maximum reaction force per unit 
length of support, both in x- and y-direction is: 
 

 max
1

2 xR ql=    [kN/m]   (14.16) 

 
The maximum shear stress per unit length in the slab occurs next to these supports (the 
governing strip is indicated in red):  
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 Ed, max

1
2=

xql
v

d
  [MPa]    (14.17) 

 
where d is the effective depth (height) of the slab. 
 
Analogously, for the support conditions given in Fig. 14. 40b, the maximum reaction force in 
beam 2 is:  

 max
3
8

= =x xR qa ql   [kN/m]   (14.18) 

Note, however that this will not be the location of maximum shear stress in the slab. The opposite 
beam will take more load (labelled in red). The maximum reaction force per unit length of this 
support is: 
 

 max
5
8

= =y xR qa ql   [kN/m]   (14.19) 

 
Therefore, the maximum shear stress per unit length in the slab is: 
 

 Ed, max
5
8

= xqlv
d

   [MPa]    (14.20) 

 
Take into account that these reaction forces are analogous to the beam with one fixed and one 
hinged support (third example from Fig. 14. 17). 
 
Finally, Fig. 14. 40c gives an example of the load distribution when two edges are free. Note 
that free edges, as indicated in Fig. 14. 40c, cannot take any load. The procedure for the 
calculation of the maximum reaction force and shear stress is analogous to the previous 
examples. The maximum shear stress per unit length in the slab is: 

 Ed, max =
xqlv

d
                [MPa]    (14.21) 

Stiffness of supports 
 
In Fig. 14. 41a two slabs are shown. They each have vertically rigid line supports from beams 
along their three outer sides. There is also a mutual support A. This line support A is from a 
beam that is assumed to be infinitely stiff in bending. This makes that each of the two slabs has 
four rigid line supports, distributing each slab in four identical triangles.  
 
The load distribution for each square slab part will now be presented in case the supporting 
beam A is no longer rigid, but flexible in bending. Fig. 14. 41b shows how a uniformly 
distributed load on the slabs is transferred to the supports. If beam A acts as a rigid support, the 
angle describing the load transfer to this beam is a = 45°. If beam A acts as a flexible support, 
this angle is smaller and will be in the range 00 < a < 450. So, if the bending stiffness of beam 
A decreases, the part of the load carried by it decreases too.  
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(a) (b) 

Fig. 14. 41: Slabs supported by a rigid beam A (a) and slabs supported by an elastic beam A (b) 
 
In case beam A is very flexible, α = 0º and no load will be transferred to the beam. The two 
slabs will now transfer the load as if there is no beam A. As a result, the two slabs act as a single 
slab and the main load transfer direction will be the shorter span direction. 
 
If the theory of elasticity is used, the load transfer in case of elastic (flexible) line supports is hard 
to determine since it depends significantly on the ratios between the stiffnesses of the various 
components (beams, slab, spans). As indicated before, nowadays numerical programs are used 
(e.g. the Finite Element Method) to calculate the complex actual behaviour. 

Continuous two-way slabs 
 
The slabs presented in Table 14. 2 refer to standard cases with specific well defined support 
conditions (rigid line supports, hinged or with full rotational restraint). Often slabs are continuous 
and extend over a number of supports. In such cases the rigid supports have a partially restrained 
rotation.  
 
Similarly as with continuous one-way slabs (multiple spans) and continuous beams with multiple 
spans, continuous two-way slabs should be designed to withstand the most unfavourable 
arrangements of loads. There are now multiple spans in two directions. These make that the slab 
can be modelled at a set of panels. The governing load combination has to be found, taking into 
account that a live load does not have to act simultaneously on all the panels of a slab. 
Subsequently, when taking into account the boundary conditions and by combining the diagrams 
and data from Table 14. 2, the governing bending moments can be calculated for two-way 
continuous slabs too. In this case the calculation is more complex since load distribution must be 
found for both directions. 
 
An example is given for a continuous two-way spanning slab with a regularly shaped layout. All 
the panels of the slab have the same spans in x- and y-direction. It will be illustrated how the 
maximum bending moments can be determined, using the data from Table 14. 2. 
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Maximum positive bending moment:  
In Fig. 14. 42 the loading configuration that causes a maximum (positive) moment in x-direction 
in a span is shown. The hatched area indicates where the live load has to be applied to have the 
maximum positive span moment. The figure also illustrates how this checkerboard load 
configuration can be divided into two components. The first component is a fully uniformly 
distributed load on all panels: 

 G Gk Q Qk(γ ) + (γ ) 0,5q q ⋅        (14.22) 

Note that this expression corresponds to the G+Q/2 combination, as used before for continuous 
one-way slabs. An individual panel can now be regarded as being fully clamped (no rotation at all 
four edges). The bending moments can be determined using slab type II from Table 14. 2. 
 
The second component of the load consists of an anti-symmetrical load: 

 Q Qk(γ ) 0,5q ⋅         (14.23) 

where this expression corresponds to the Q/2 combination, as used for continuous one-way slabs. 
For this load type the bending moments are zero at the supports, which actually implies that the 
individual panels can be regarded as being simply supported only along their four edges (see also 
Fig. 14. 24). The span moments in these panels in both directions follow from slab type I, Table 
14. 2. 
 
The sum of the moments in both directions obtained from both load components are the actual 
bending moments in the span of the panels. They are the basis for the reinforcement design. 
 
In this example the load distribution that results in the maximum sagging bending moment in x-
direction is identical to the load distribution that gives the maximum sagging bending moment in 
y-direction. This implies that, with regard to the sagging bending moment, identical loading 
schemes and slab panel types can be used. This is not always the case, as will be shown in the 
following example where the maximum hogging moment is calculated. 
 
Maximum negative bending moment:  
A similar procedure can be used to find the maximum support moments. Fig. 14. 43 presents the 
loading configuration to have a maximum (negative) moment in x-direction at a support. However, 
now, in order to get the maximum effects, two adjacent panels must be loaded by the live load.  
 
To determine which slab types from Table 14. 2 must be used, the x- and y-direction boundary 
conditions must be combined. In each direction, boundary condition information at two panel 
edges is now obtained. When combining the information regarding all four edges of a panel, the 
corresponding slab type from Table 14. 2 can be found. It turns out that slab types II and Va from 
Table 14. 2 must now be combined. 
 
In case the structural engineer has to calculate the maximum negative bending moment in y-
direction, the previously loaded/unloaded panel scheme has to be changed. In this case, the 
corresponding load scheme is obtained by rotating the previous one over 90º clockwise. 
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 To summarize: 
It is noted that the self-weight is always present. This corresponds to slab type II, Table 14. 2. The 
live load, however, can be present and is positioned such that one plate (one panel) experiences the 
most extreme effects. 
 Maximum span moment: 
The load configuration of the live load on the slab should result in a panel with hinged rigid line 
supports (no rotational restraint) at all its sides. This results in slab type I, Table 14. 2. 
 Maximum support moment: 
The load configuration of the live load should result in a panel with rotational restraint at one side 
(above the support of interest) and hinges at three sides. This results in slab type Va, Table 14. 2. 
 

 
Fig. 14. 42: Alternately loaded panels (checkerboard-type) to determine the maximum span 

moments. The total load is divided into two known standard load cases from 
tabulated data (hatched = panel loaded by live load) 

Table 14. 2 type II 

Table 14.2 type I 

Analysed strip 



chapter 14 - slabs 
 

36 
 

 

 
Fig. 14. 43: Alternately loaded panels to calculate the maximum support moments. The total 

load is divided into two standard cases (hatched = panel loaded by live load) 
 
In a similar way, also the maximum shear forces should be analysed.  

Table 14.2 type II 

Table 14.2 type V A  

Analysed strip 
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Analysis with the strip method or equilibrium method  
 
According to the theory of elasticity and vertical force equilibrium in a slab, the external load is 
carried by bending and torsional moments. Hillerborg chose a solution where no torsional 
moments are assumed to be present (mxy = 0) and where the load is thus completely carried by 
bending in x and y-direction: 
 

 
22

2 2
yyxx mm q

x y
∂∂

+ = −
∂ ∂

       (14.24) 

 
This method is the so-called “strip method”. 
 
The strip method is an approach which offers the structural engineer a certain freedom with regard 
to the choice of a load transfer model. The slab is assumed to be replaced by a system of separate 
beams (strips) transferring load in their longitudinal directions.  
 
Freely defined strip method 
 
In case of a rectangular slab, the load can be assumed to be divided into two equal parts: one part is 
transferred by beams that span in one direction, the second part is transferred by beams that span in 
the other direction (Fig. 14. 44). Note that in this example, the load transfer is freely chosen and it 
is not related to the spanning of the slab in x- and y-direction, or boundary conditions. 
 
The primary requirement in this approach is that force equilibrium is present in the system. 
However, there are some restrictions.  
 
1. The selected load transfer model can result in a load distribution that deviates considerably 

from the distribution according to the theory of elasticity. In that case, to have ultimate limit 
state (ULS) load transfer according to the assumed scheme, a redistribution of forces has to 
take place after cracking has occurred. However, the load transfer mechanism, and, as result, 
reinforcement distribution, now is not according to the linear elastic load transfer mechanism, 
but is chosen by the structural engineer. This might result in a cracked stage in which wide 
cracks and large deflections occur, especially if a qualitatively poor system of load transfer is 
chosen. A restriction, therefore, comes from serviceability limit state (SLS) considerations. 
  

2. In ULS (ultimate limit states) deformations and crack widths are not, or are of minor interest. 
The development of a state of equilibrium then is sufficient to meet the requirements from the 
codes (safety; load bearing capacity). In ULS the designer might, however, have to deal with 
the aspect that the deformation capacity of the structural components (rotational capacity) has 
to be high enough to let the failure mechanism develop without premature failure, e.g. by 
crushing of the concrete. As a result, plastic deformation capacity or plastic rotation capacity 
checks might be required. 

 
When selecting a load transfer scheme it is, therefore, recommended to account for a force 
distribution that is identical to, or at least close to that in the elastic stage. Or, in other words, when 
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applying the strip method, an engineer should strive to follow SLS stress flow as much as possible 
in order to limit the crack widths and be close to force equilibrium from the elastic force 
distribution.  
 
Note that, if lx is not equal to ly, and the type of support is not the same at all the four sides, the load 
transfer from Fig. 14. 44 (i.e. the uniform load is divided in two equal parts) will not be the most 
optimal. As demonstrated before, when the ratio ly/lx increases, more load gets transferred in the x-
direction (shorter span), and the slab will behave more like a one-way slab. This will be further 
elaborated. 

 
 

Fig. 14. 44: Load transfer in two directions by strips acting independently one from the other 
 
Strip method based on deflection compatibility 
 
Fig. 14. 45 illustrates how two separated load transfer mechanisms can be defined in a rectangular 
slab that is simply supported (stiff line supports) along its four edges. The slab is subjected to a 
uniformly distributed load q. To visualize the flexural performance of this slab, think of a set of 
parallel strips, in each of the two directions, intersecting each other. From compatibility 
requirements, at the intersection of the two strips, the deflection of both strips has to be equal. This 
should in theory be valid for any strip. This requirement will however not be met since we would 
have to solve a huge set of compatibility requirements. We would then in fact return to the linear 
elastic load distribution approach. Therefore, in the strip method approach the calculation is 
simplified and the focus is on only one or a few compatibility requirements. In this example, let’s 
consider the maximum deflection of the middle strips only; the strips halfway the edges. 

 
Fig. 14. 45: Compatibility of the deflection of the middle strips in x- and y-direction 
Evidently, part of the load is carried by one set of strips and transmitted to the edge supports, and 

lx 

ly 



chapter 14 - slabs   

39 
 

the remaining part of the load is transferred by the other set of strips. In x-direction a part qx of the 
load is assumed to be transferred. The deflection at mid-span position of the strip in x-direction is: 

 
4
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x
c x
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 q lw E I
  (14.25) 

In a similar way for the strip in y-direction it holds: 
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The load equilibrium condition requires that: 

 x y+ =q q q                       (14.27) 

Compatibility at the position where the strips meet requires that: 

 x y=w w                      (14.28) 

If it is assumed that the slab material is isotropic, the bending stiffness per unit width of both strips 
is the same ((EcI)x = (EcI)y):  

 4 4
x x y y=q l q l                    (14.29) 

 
When considering that 

 x y= -q q q                     (14.30) 

 
the following equations for the load transfer contributions qx and qy of the strips are obtained: 
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where kx and ky are the load distribution factors. kx indicates the portion of the total load transferred 
in the x – direction, whereas ky indicates the portion of the load transferred in the y – direction. For 
other, more or less standard, support conditions the corresponding values can be derived in the 
same way. Table 14. 3 contains the results from these calculations.  
 
In Fig. 14. 46 the load distribution factor kx of a rectangular simply supported slab (first slab in 
Table 14.3) is presented as a function of the ratio ly / lx. It can be seen that for aspect ratios ly / lx > 
1,5 and ly / lx < 2/3 the load transfer primarily takes place in one direction. In these cases the slab 
can be regarded as being a one-way spanning slab, where the detailing of the reinforcement in 
transverse direction is based on 20% of the maximum span moment in the principal direction 
(which follows from Poisson’s ratio). 
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Table 14. 3: Strip method: Load distribution factors for different support conditions (solid line 
= rigid line support; line with shaded area = line support and rotational fixity) 

 
 
The strip method is particularly useful in non-standard cases, such as irregular slab lay-outs, 
irregular load configurations, slab openings, etc. A proper load transfer mechanism for such a slab 
can be prepared by using information from Table 14. 3 as input. 
 
Although torsional reinforcement in the corners is not necessary to satisfy the equilibrium 
conditions, it is recommended to be applied in order to prevent the occurrence of wide cracks. 
 
Note: With the strip method, based on compatibility of deflections, only in the case that ly is equal 
to lx, and boundary conditions on all four sides are identical, the load transfer is such that qy = qx. 
Generally, as already indicated, the strip method also gives the designer freedom to define a load 
transfer model such that deflection compatibility is not complied with.  
 

 
Fig. 14. 46: Load distribution factor kx of a rectangular simply supported slab as a function of the 

ratio between the spans 
 
In general it can be stated that designing according to the theory of elasticity is most economic. 
The difference between the solution according to the theory of elasticity and a solution that follows 
from the strip method can be reduced when the load transfer mechanism selected is more close to 
the linear elastic one. This is illustrated by the following example. 
 

one-way one-way two-way 
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Example  
 
Consider a quadratic slab that is simply supported along its four edges.  
When the slab is designed according to the theory of elasticity the maximum sagging (span) 
bending moment mx is (see Table 14. 2 slab type I; ly / lx = 1,0; v = span cross-section):  

 2
vx x= 0,041m ql                   (14.32) 

This bending moment is assumed to be present over the full width of the middle strip (strip width 
0,5 ly). In both edge strips (each having a width 0,25 ly) the positive bending moment (bottom) 
reinforcement should be at least 50% of the reinforcement in the middle strip (NEN 6720 
requirements to Table 14. 2). The total span moment on which the reinforcement must be based is: 

( )2 2 2 31 1 1
xx xx,i y,i x y x y y x2 2 40,041 2 0,041 0,031 0,031M m l q l l q l l q l l ql= = ⋅ + ⋅ ⋅ ⋅ = =∑  

When analysed with the strip method, the least complicated method of load transfer for this slab is 
to divide the load using two perpendicular strips which transfer it to the supports, as shown in Fig. 
14. 47. This system is considered as Solution 1. 
 

 

                               
 
 
Fig. 14. 47: System of load transfer according to the strip method for a quadratic (lx=ly=l) slab 

simply supported along all edges, Solution 1 
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The maximum bending moment per unit width of each of the strips occurs at mid-span: 

 2 2 21 1 1
8 2 16xx x x x= ( ) = 0,0625m q l q l q l=     (14.33) 

This bending moment is present over the total width ly since identical strips are assumed to be 
present over the full width of the slab. The total bending moment, considering that lx = ly = l is: 

 2 3
xx xx y y x0,0625 0,0625M m l q l l q l= = =     (14.34) 

The distribution of the load acting on the edge support is also shown in Fig. 14. 47. This load is 
simply the end reaction (support reaction) of the strips that are supported by a beam or wall. 

 
The results indicate that the load transfer mechanism from Fig. 14. 47 requires two times as much 
reinforcement as the bending moment from the tabulated data from Table 14. 2 which is based on 
the theory of elasticity (0,0625 versus 0,031). 
 
The load transfer mechanism from Fig. 14. 47 will be improved now. The result is shown in Fig. 
14. 48 and it is denoted as Solution 2.  
 
The support reactions of the middle strip spanning in x-direction: 

 31 1 1 1 1
4 2 2 4 2 16Ed,A1 x y x y y x= =V l q l l q l q l l⋅ ⋅ + ⋅ ⋅     (14.35) 

The total bending moment at mid-span of the middle strip: 

 23 3 51 1 1 1
16 2 8 8 16 8 128xx1 y x x y x x y x x y x= ( ) - ( ) - ( ) =M ql l l q l l l q l l l q l l⋅ ⋅ ⋅  (14.36) 

The support reactions of the two edge strips spanning in x-direction: 

 1 1 1
4 4 16Ed,A2 x y y x= =V l q l q l l⋅ ⋅       (14.37) 

The bending moment at mid-span of the two edge strips together: 

 231 1 1 1
16 2 16 8 128xx2 y x x y x x y x= ( ) - ( ) =M ql l l q l l l q l l⋅ ⋅    (14.38) 

Considering that lx=ly=l the total moment over the whole span in x - direction is: 
 
 3 3 35 31

128 128 64xx,tot = ( + ) = 0,047M q l q l ql=     (14.39) 

 
The load transfer system from Fig. 14. 48 (Solution 2) turns out to be a better alternative than the 
system from Fig. 14. 47 (Solution 1); the total midspan bending moment over full plate width is 
reduced to 75% of its original value. However, the result is still about 50% greater than the total 
bending moment according to the theory of elasticity.  



chapter 14 - slabs   

43 
 

 

                               

 
 
Fig. 14. 48: Alternative system of load transfer according to the strip method (line supported slab, 

lx=ly=l), Solution 2 
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The load transfer system is further improved and this solution is denoted as Solution 3. The load is 
now divided into triangular regions by diagonal lines and is transferred to the nearest support, as 
indicated in Fig. 14. 49. Each strip therefore carries a uniform load per unit area over the end 
regions. The distribution of the load acting on the edge supports of the slab is also shown.  
 
The maximum x-direction bending moment is a function of y and rises sharply (parabolic) to a 
peak at the slab centre. The distribution of the y-direction bending moments is similar to the x-
direction bending moment distribution. The maximum bending moment per unit width is: 

 
2

8x
qlm =          (14.40) 

The total bending moment over the slab cross-section is: 

 3 3
2

8

1 1

3 24
0.042x

ql
l ql qlM = = =       (14.41) 

 
Solution 3 matches with the yield line theory (exact) solution. From all the three solutions based on 
the strip method it turns out to be the most economical one. Compared to Solutions 1 and 2 it 
requires around 33% and 11% less reinforcement, respectively. However, in Solution 3, the 
bending moment varies continuously across the slab, requiring (theoretically) a continuously 
varying bar spacing, which is very impractical and not efficient from an economical point of view.  
 
Obviously, for all four solutions, the reinforcement in the y-direction is identical to the 
reinforcement in x-direction as half of the load is transferred in this direction.  

                 
     

 
 
Fig. 14. 49: Alternative system of load transfer according to the strip method (line supported 
slab, lx=ly=l), Solution 3, matching with the yield line theory 
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Note: 
These three solutions with strip models illustrate two features of this method. The first is the ease 
in which the bending moments in the slab and the loads on the supporting systems can be obtained. 
The second is the variety of bending moment and load distributions possible, depending on the 
assumed load transfer direction(s). This indicates that all three design methods, together with the 
result from the theory of elasticity, result in highly different amounts of reinforcement.  
 
It is, however, stressed that the previous analyses with the theory of elasticity only concerns the 
reinforcement due to bending. The actual required amount of reinforcement comes from the 
amounts required both for bending and torsion. In the three cases considered, the strip method does 
not require torsional moment reinforcement (torsion is not accounted for), whereas Table 14. 2 
data indicate that the four corners are to be provided with mesh reinforcement at top and bottom. 
 
In other words, according to the theory of elasticity, the total load on the slab is carried not only by 
the bending moments which occur in two directions, but also by torsional (twisting) moments. 
Therefore, the maximum bending moments in the slabs designed using the theory of elasticity, are 
smaller ( 2

x0, 042 q l ) than computed for the sets of unconnected strips loaded by q/2 ( 2
x0, 0625 q l , 

Solution 1). In this case, the twisting moments reduce the bending moments by about 35%. Since 
part of the load is now transferred by torsion, the torsional moments require reinforcement too. 

14.2.3 Flat slab  
 
When two –way slabs are supported only by columns we  refer to a flat slab. The deformed 
shape of a uniformly loaded flat slab, compared to a uniformly loaded two-way slab with rigid, 
fully fixed line supports is shown in Fig. 14. 50. Note that both slabs have the same load, 
thickness and span. The flat slab is supported by four columns; one column in each corner.  
 
Columns are modelled as stiff supports. The deformation of the floor system along the column 
lines alters the distribution of moments in the slab panel itself and a number of new aspects are 
introduced.  

X

Y
Z

 
Fig. 14. 50: Deflected shape of uniformly loaded flat slab compared to that of the two way slab 
 

Flat slab Two-way slab 
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One of these aspects are the column support reactions. The slab load is locally transferred to the 
column by shear stresses. Local shear at the columns is therefore often critical for flat slabs ( 
Fig. 14. 51). The effect of concentrated loading on slabs is referred to as punching shear. If the 
shear capacity is too low, a local punching failure may happen. 

 
Fig. 14. 51: Punching shear  
 
Shear capacity can be increased ina number of ways. For instance by the application of higher 
concrete strenght class and/or shear reinforcement and/or increase of the cross-section 
transferring the shear force. An option to increase the cross section is to increase the column 
dimensions. However, an increase of the shear capacity is required at the slab-column 
connection only. It is not required over full column height. Therefore, attention focuses on the 
support area only. The dimensions of the support area can be increased with capitals and/or drop 
panels.  
Fig. 14. 52 shows two flat slabs; one with and one without drop panels. A drop panel increases 
slab thickness locally, thus increasing the area of the cross-section loaded in shear.  
 
The flat slab is a type of slab that is often aplied since it has, compared with a slab supported by 
beams, a number of advantages: 

• the flat soffit allows for a simple form- and falsework and reduces the time required to 
erect the building; 

• the flat soffit makes that the slab reinforcement can be provided fast and without 
problems; 

• the flat soffit of the slab eases the installation of equipment (pipes, cables etc.) underneath; 
 

 

 
 
Fig. 14. 52: Solid slab without (left) and with (right) drop panels  
 
As this is a special type of two-way slab, a flat slab can also be analysed using the theory of 
elasticity, the strip method, the yield line theory and FEM analysis.  

slab 

column 



chapter 14 - slabs   

47 
 

Analysis with the strip method (equilibrium method) 
The load transfer in a solid flat slab, see Fig. 14. 53b, is very similar to the one in a slab supported 
by relatively shallow beams on four sides, see Fig. 14. 53a. In both cases the load is assumed to be 
first transferred from the slab parts to the “beams”. In the case of Fig. 14. 53a, these are the visible 
beams in which a part of the slab is incorporated (by means of the so-called effective width beff; 
NEN-EN 1992-1-1 fig. 5.3). In Fig. 14. 53b these beams are not visible since they are "hidden" in 
the slab as fictitious "effective" beams or "column strips" (EN 1992-1-1 fig. I.1). Column strips in 
flat slabs behave as beams.  
 
The beams are supported by columns at the intersection of their centrelines. If the surface load is 
applied, this load is transferred by imaginary slab strips la in the short direction and lb in the long 
direction, similar as with two-way slabs explained previously (Fig. 14. 46a). The portion of the 
load that is carried by the long strips lb is transferred to the beams B1 spanning in the short 
direction of the panel. The portion carried by the beams B1 plus the part carried directly in the 
short direction by the slab strips la sum up to 100% of the load applied to the panel. Similarly, the 
short – direction slab strips, la, transfer a part of the load to the long direction spanning beams B2. 
That load, plus the load carried directly in the long direction by the slab, also is 100% of the 
applied load. It is clear that with the column-supported construction, the full load is carried in both 
directions, jointly by the slab and its supporting beams.  
 
 
 
 
 
 
 
 

               
 
Fig. 14. 53: A flat slab (left) compared with a solid slab supported by beams (right) 
 
Fig. 14. 54 shows how the flat slab, just as the slab having rigid line supports, is subdivided into 
strips. Column strips and middle strips are to be distinguished. The chosen width of these strips is 
open for discussion. For example, the column strips as well as the middle strips have widths of 
0,5 lx or 0,5 ly according to the former Dutch code NEN- 6720. NEN-EN 1992-1-1 (Fig. 14. 55) 
proposes a different definition of strip width with a strip having a width of 0,5 ly in both directions, 
where ly is the shorter span. This definition is not used in The Netherlands since available tabulated 
bending moment data are based on the strip layout from Fig. 14. 54.  

  
Beams 
 
 

Effective beams 
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Fig. 14. 54: Subdividing a solid slab into strips (according to the former Dutch code NEN 6720) 
 
 

 
 
Fig. 14. 55: Division of panels in flat slabs (according to NEN-EN 1992-1-1) 
 
Fig. 14. 56 illustrates how a uniformly distributed load q is transferred from the middle strip to a 
column strip ("hidden beam") and how the loads from columns strips are transferred to the 
columns. Note that a column strip not only has to transfer the load directly acting on it, but is also 
loaded by a middle strip that transfers its load to column strips. The column strips are the supports 
of the middle strips.  
 
In Fig. 14. 57 the static system and the loads on the middle strip and the column strip are shown 
schematically. Note that clamped boundary conditions at the connection between the slab and the 
column are assumed.  
 

0,5 ly 
column strip 

0,5 ly 
column strip 
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As already indicated, the total load that has to be transferred in the x-direction is equal to q, being 
the total load on the flat slab. The same holds for the y-direction.  
 

 
Fig. 14. 56: Schematised load transfer 
 
 
 

                                    
 
Fig. 14. 57: Schematized illustration of the load transfer to the middle strip and the column strips 
 
For a square panel (lx = ly = l) the bending moments at mid-span and at a support (absolute value) 
are the same in x and y-direction for the middle strip (width 0,5l) and the column strip (total width 
2 · 1/4 l = 0,5 l): 
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As a check, consider the bending moment diagram for the direction of span lx.. In this direction, the 
slab may be considered as a wide, flat beam of width ly.. Accordingly, the load per unit length of 
the span is qly.. In any span of a continuous beam, the sum of the midspan positive bending 
moment and the negative bending moments at the adjacent supports is equal to the midspan 
positive moment of a correspondingly simply supported beam.  
 
As a result: 

 M = (Msupport + Mspan)middle strip + (Msupport + Mspan)column strip  = 31
8

ql    (14.42) 

which is equal to the well-known mid span bending moment of a correspondingly simply 
supported beam. 
 
From these bending moments it appears that the bending moments in the column strip are about 
70% of the total bending moment Mtotal = Msupport + Mspan = 1/8 ql3 =96/768 ql3; the bending moments 
in the middle strip are about 30% of total moment. This holds for both the negative (support) and 
positive (span) bending moments. According to the EC 2, the bending moments should be 
apportioned as given in Table 14. 4. 
 
Table 14. 4: Simplified apportionment of bending moments for a flat slab 
 

 
 
In this example, a very approximate method was used for calculating the effects in the flat slab by 
simplifying it to a continuous beam analysis. 
 
EC 2 (Annex I) gives recommendations for idealizing the three-dimensional column-plate 
structure as plane frames in two directions, where the stiffness of the members is calculated from 
their gross cross-section. This is called equivalent frame analysis and it is the most common 
method for the determination of load actions in the panels and columns of a flat slab (Fig. 14. 58). 
 
In order to determine maximum negative and positive moments in the slab at the positions of the 
columns and the mid-span cross-section, respectively, the live load has to be placed unfavourably 
with respect to each load case. In the old days, this was a rather time consuming task, and therefore 
several approximate methods were often used: 
 

• One alternative was to analyse the slab as a continuous beam (simply supported by the 
columns), with successive approximations for the column moments (beam method). 

• Another even more simple alternative was an approximation of the beam method, based 
on bending moment coefficients for outer and inner spans. This method is valid provided 
there  certain ratio limits between neighbouring spans are met. 
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Fig. 14. 58: Equivalent frames from a flat slab consisting of a number of panels and columns 
 
With today’s availability of computer programs, static analyses of the frames can be carried out by 
using an available computer program for plane frames. However, an engineer should always check 
results by hand performing approximate calculations. 

Theory of elasticity 
 
Similarly as with a two-way slab with line supports, also for a flat slab the theory of elasticity 
might be applied. For the flat slab the columns are the only rigid supports. This implies that, when 
focusing on the linear elastic distribution of the bending moment over column strip width, it turns 
out that high (negative) support bending moments occur at the position of the column. Due to 
cracking a certain level of bending moment redistribution will occur. The reinforcement required is 
therefore distributed over column strip width such that at the centre part, close to the column, more 
reinforcement is provided than at the outer parts of the column strip. This has a positive influence 
on crack width control and on the punching shear resistance (EN 1992-1-1 cl. 6.4).  
 
The width of the central part of the column strip with concentrated reinforcement depends on the 
geometry of the structure, see Fig. 14. 59. In this figure, the width of the strip to be provided with 
concentrated reinforcement is indicated. Its width depends on column width and slab height.  
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Fig. 14. 59: Distribution of the negative moment over the width of the column strip (NEN 6720) 
 
In Fig. 14. 60 the distribution of the total support bending moment Ms in the column strip over the 
width of the column strip (0,5 lx) and the (concentrated) reinforcement strip (s) is schematically 
shown: 40% of the moment is transferred by the reinforcement strip only, whereas 60% is 
transferred by the full column strip. 
 

 
Fig. 14. 60: Distribution of the negative bending moment over the width of a column strip (left) 

and the width of the strip over which part of the reinforcement is concentrated (right) 
 
EN 1992-1-1 cl. 9.4.1 (2) gives a different approach to distribute the reinforcement over the 
column strip. Namely, it states that half of the reinforcement required to resist the full negative 
moment (from the sum of the two half panels at each side of the column) should be placed in a 
width equal a sum of 0,125 times the panel width on either side of the column. In case of panels 
with equal widths, half of the reinforcement should be placed in a strip having a width 0,25  lx (half 
of the column strip width, see Fig. 14. 60). 
 

column strip 

concentrated reinforcement 

moment linear elastic 

moment scheme for 
reinforcement design 

s = 2,5b + 1,5h 
concentrated 
reinforcement 
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To avoid that designers have to make calculations for each standard situation, tables are developed 
(enabling a so-called ‘direct design method’). The former Dutch code NEN 6720 contains a set of 
such tables. The use of these tables is restricted by certain conditions. An important requirement is 
that the load should be uniformly distributed on each panel of the slab. Furthermore, there are 
requirements with respect to the ratio between the magnitude of the uniform loads on adjacent 
panels. There are also requirements with respect to the ratio between adjacent span lengths.  
 
To derive the tabulated data the columns are regarded as hinged point supports that do not transfer 
a bending moment. Table 14. 5 shows an example of one of the tables available in NEN 6720.  
The tables are based on a subdivision of each panel in column strips and middle strips in both load 
transfer directions. This subdivision results in nine sections in each panel. For all these sections the 
reinforcement moments (bending moment plus torsional moment) are specified. It is noted that the 
data are based on the results of sets of linear-elastic finite element calculations. These results were 
combined such that hand calculations could be performed. That is why it was assumed that 
bending moments are constant over strip width. 
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Table 14. 5: Reinforcement moments in a flat slab, continuous along all four edges (NEN 6720 
table 19). Schematic presentation of the positive and negative reinforcement moments in two 
directions (figure) and their magnitude, depending on the ratio between both spans (table) 
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Single 
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Schematized reinforcement moments per unit width 
Panel continuous at all four edges 
Full rotational fixity, no vertical support   
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Irregular load patterns 
 
If the loads on the various panels do not meet the requirements, the following approach can be 
used: 

• The effect of a higher load at a single panel (qa) relative to the load on all other panels 
(qb), can be taken into account in a practical approximate way, see Fig. 14. 61. This 
approach can be used as an alternative to the system with the checkerboard load 
configuration (Fig. 14. 42). Take notice that here, Δq is only added in the panel with a 
relatively higher load, whereas in the checkerboard configuration Q/2 is added and 
subtracted from certain panels. 

• The difference between the uniform load on the panel considered and the load on all 
the other panels is subdivided into the parts Δqx and Δqy that are transferred in the x- 
and y-direction respectively. Now the specified coefficients from Table 14. 5 can be 
used or the strip method can be used to calculate the bending moments in the slab. 

• In this way not only the additional span moments and support moments are obtained, 
but (with a good approximation) the additional loading (reactions R) on the "hidden 
beams" as well. After the calculation of the bending moments, the required additional 
reinforcement can be determined. 

 
Fig. 14. 61: Practical approach to account for the additional load on one panel from a flat slab 
 
Comparison of a two-way slab with line supports and flat slab - FEM analysis 
 
Note that the bending moment diagrams and therefore also the resulting reinforcement 
distribution are different for a two-way slab with line supports and a flat slab. Fig. 14. 62 shows 
the result of a FEM calculation where the bending moments in a two-way slab with fixed line 
supports and a flat slab are compared. In a flat slab, the edge strips (column strips) are the strips 
taking the larger portion of the load, and therefore have more reinforcement compared to the 
middle strip. On contrary, in a two-way slab, the largest portion of the load is carried by the 
middle strip. 

hinge 
(approximation) 

(qa – qb) = Δq 
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Fig. 14. 62: Moment distribution in a panel from a continuous flat slab (left) and a two-way slab 
with fixed (no rotation) line supports (right)  

Punching shear stress  
 
Due to the high reaction forces at the columns, local shear at the columns is often critical for flat 
slabs. If the shear capacity is too low, local punching failure may happen. This requires special 
considerations with respect to flat slab design and will be separately dealth with in Secion 14.4. 

192.05 
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14.3 Design of the slab 

14.3.1 Introduction 
 
The design of the slab starts with determining the thickness of the slab, the distribution of 
reinforcement and the required material properties of the slab in order to satisfy: 
 

• Ultimate Limit State (ULS) criteria (related to the capacity of the structure, e.g. 
bending moment resistance, shear resistance)  

• Serviceability Limit State (SLS) Criteria (related to functionality of the structure, e.g. 
crack widths and deflections). 
 

14.3.2 Estimation of slab thickness 
 
In general a slab is designed in such a way that the maximum deflection, relative to a horizontal 
line between the supports, under the quasi-permanent load combination, does not exceed wmax = 

/ 250l  = 0,004 l. Quasi-permanent load is self-weight plus a “permanent” part of the live load 
(often 40% – 50%). 
 
Usually, this is the governing criterion for the design of the slab. This requirement follows from 
appearance and general utility (EN 1992-1-1 cl. 7.4.1 (4)). 
 
If the slab is designed with an upward camber (wc), this camber may be taken into account when 
calculating the deflection wmax. It is advised to make the camber not larger than 0,004 l (EN 1992-
1-1 cl. 7.4.1. (4)).  
 
As a complementary requirement the following rules are used in engineering practice for the so-
called additional deflection:  
wadd ≤ 0,003 l  for slabs in general  
wadd ≤ 0,002 l  for slabs which carry partition walls that are susceptible to cracking 
 
The “additional” deflection is defined as the total deflection under the quasi-permanent load 
combination (wtot,qp) at time t = ∞, minus the immediately occurring deflection, which takes place 
when the formwork is removed at time t = 0 (won) (note: partition walls are not constructed yet): 
 

( )add tot,qp on max c onw w w w w w= − = + −      (14.43) 

 
If no camber is applied wmax = wtot,qp. 
 
To calculate the deflection wtot,qp long-term loading has to be taken into account. This implies that 
the quasi-permanent load combination is to be assumed as permanently acting on the slab. In this 
calculation, creep has to be taken into account when calculating the bending stiffness of the slab 
(EcI)∞. The deflection wtot,qp has two components. One component comes from the increase of the 
load from selfweight G to the quasi-permanent load combination, in which a part of Q is present 
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too. The second component is from long-term loading. The following vertical deflections can be 
defined (Fig. 14. 63): 
 
 wc = camber 
 w1 = deflection due to selfweight 
 w2 = deflection due to longterm instead of short term selfweight loading 
 w3 = deflection due to load increase from selfweight to quasi-permanent loading 
 wtot = total deflection (total deformation) 
 wmax = total deflection (visible) relative to a line between the supports 
 
 

 
 
Fig. 14. 63: Definitions of vertical deflections 
 
For cost-efficiency reasons, the slab should preferably be designed in such a way that no shear 
reinforcement is required. 
 
Note: 
According to NEN-EN 1990, 6.5.3(2), the combination of actions for the Servicability Limit 
State are defined either as: 
 

• characteristic combination which is normally used for irreversible limit states, or when 
somewhere in the construction the yield limit of reinforcement is reached and 
deformation stays permanent even if load is removed. This combination results in the 
most strict requirements.  

• frequent combination which is normally used for reversible limit states 
• quasi-permanent combination which is normally used for long-term effects and the 

appearance of the structure 
 

The Dutch national annex (NEN-EN 1990, National Annex, A1.4.3(3)) in certain situations (e.g. 
with floors that carry partition walls susceptible to cracking) uses a maximum additional 
deflection, wadd, that is calculated for the frequent (G + ψ1Q) instead of the quasi-permanent load 
combination. Then the more strict regulation applies as ψ2 < ψ1.  
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Rule of thumb for the thickness of one-way slab 
In the following, the derivation is given on how to calculate the slab thickness for which the 
deflection will not be governing. For the design of a slab the maximum allowable deflection 
(wmax) according to NEN-EN 1992-1-1 cl. 7.4.1 can be used as a criterion. This recommendation 
requires that the total deflection (wmax) is not larger than 0,004 l: 

 max 0,004w l=         (14.44) 
       

with l  being the span of the slab. 

Consider a simply supported one-way slab as given in Fig. 14. 64. 

 
Fig. 14. 64: Slab with two simple line supports spanning in one direction 
 
As shown before in the load transfer analysis, a one-way slab with hinged line supports can be 
approximated with the simply supported beam. The deflection of a statically determinate beam 
on two supports under a uniformly distributed load q is now assumed to be equal to the limit 
value of the total deflection: 

 
4

max
c

5=
384

q lw
E I

                   (14.45) 

If the total deflection under the quasi-permanent load combination (wtot,qp) should not be larger 
than wmax = 0,004 l, this results in:  

 
4

G 2 Q

c

5 ( + ψ )
0,004 =

384
q q l

l
E I

                  (14.46) 

where: 
 
qG  is the permanent load per unit length or unit area; 
ψ2 is the factor to calculate the quasi-permanent part of a live load; 
qQ  is the live load per unit length or unit area. 
 
With this equation a rule can be derived to determine the slab thickness, which will generally 
not violate the condition wmax < 0,004 l.  
 
For the slab considered, having line supports on two sides and being subjected to a uniformly 
distributed load, the maximum bending moment per unit width in the serviceability limit state, 
under the quasi-permanent load combination ( pq ) is: 
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 21
8qp G 2 Q= ( + ψ )M q q l    (14.47) 

which can also be written as: 

 
2

qp

c

5
0,004 =

48
M l

l
E I

 (14.48) 

where  

 qp

c

=
M
E I

κ  (14.49) 

At mid-span the curvature κ (which follows from a cross-sectional analysis) is Fig. 14. 65: 

 s s

s

ε σ= =
( - ) ( - )d x E d x

κ  (14.50) 

 
 

Fig. 14. 65: Curvature (κ) of a cracked reinforced concrete cross-section 
 
Rewriting the expressions results in: 

 
2

s

s

σ50,004 =
48 ( - )

ll
E d x
⋅  

The requirement with regard to the effective depth of the cross-section is: 

 s

s

σ5
48 1 0,004

ld
xE
d

≥ ⋅
 − ⋅ 
 

 (14.51) 

For a rectangular cracked cross-section the relative concrete compression zone height only 
depends on the Young’s moduli of concrete and steel and the amount of reinforcing steel: 

 2
e e e= -α ρ + (α ρ ) + 2(α ρ )l l l

x
d

 (14.52) 

 
where: 
 ae  is the Young’s modulus ratio between steel and concrete, Es / Ec; 
 ρl is the reinforcement ratio based on the effective depth d of the cross-section: 

  s
l

A
b d

ρ =  

Note: 
Equation (14.52) is derived assuming that the concrete is cracked and behaves linear elastic in 

reinforcement 
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compression. The concrete is assumed to have no tensile strength. Linear elastic behavior in 
compression mostly holds since the calculation of deflection is in the serviceability limit state, 
not in the ultimate limit state. 
 
In Table 14. 6 the ratio x / d is given for slabs made of concrete having a strength class C25/30 
and for various reinforcement ratios (ρ). 
 
Ecm = 31000 N/mm2 for concrete C25/30 (EN 1992-1-1 table 3.1). It should be noted that this is 
the Young’s modulus in case of short-term loading. Creep of concrete (EN 1992-1-1 cl. 3.1.4) 
results in a time-dependent increase of the concrete compressive strains (EN 1992-1-1 cl. 5.8.6 
(4)). This effect can be incorporated in the analysis by using a fictitious Young's modulus: 
 

 cm
c,eff

eff1
EE
ϕ

=
+

                   (14.53) 

 
 where φeff is the effective creep coefficient of the concrete. 
 
Assuming that, for instance effϕ ~2,7 results in Ec,eff ≈ 9000 N/mm². With Es = 200·103 N/mm²:  

s
e

c,eff

200000α  =  =  = 22,2
9000

E
E

 

 

The relation between x / d and ρl is given in Table 14. 6 and can approximately be described by: 

  ~ 0, 2 + 0,3 l
x
d

ρ                   

where ρl is in %. 
 
Table 14. 6: Relation between x / d and the reinforcement ratio ρl 
 

ρl (%) x / d [-] 
0,2 0,26 
0,3 0,30 
0,4 0,34 
0,5 0,37 
0,6 0,38 

 
As a result: 

 1 -  = (0,8 - 0,3ρ )l
x  
d

  

 
If this expression is substituted in eq. (14.51), it is found that: 
 

 s
3

5   
48 200 10 (0,8 - 0,3ρ )  0,004l

 ld σ
≥ ⋅

⋅ ⋅ ⋅
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or: s  
7680 (0,8 - 0,3 ρ )l

 ld
 
σ

≥
⋅

   (ρl in %)                (14.54)  

However, no account has been taken yet of the stiffening effect of the concrete in the tension zone 
between the cracks (the so-called tension stiffening). This effect results in an increase of the 
stiffness by about 20%. If in eq. (14.54) the number 7680 is replaced by 9200 (≈ 1,20 * 7680), 
then it is found that: 

 sσ 
9200(0,8 - 0,3ρ )l

ld ≥       (ρl in %) (14.55) 

The reinforcement ratio in slabs is mostly low (0,15-0,30%). When using a value ρl = 0,2% eq. 
(14.55) becomes (rounded values): 

 s

7000
ld σ

≥  for slabs (14.56) 

Note, that the similar estimation can be made for beams. Considering that the reinforcement ratio 
of beams is higher than that of slabs (0,6-1,2%), and therefore assuming a value ρl = 0,8% the 
result is: 

 sσ  
5000

ld ≥  for beams (14.57) 

The eqs. (14.55 and 14.56) are derived for simply supported beams and slabs having an effective 
span leff that is here denoted as l. The boundary conditions of beams and slabs can differ from the 
assumed two simple supports: The slab or beam can be continuous or the type of support might 
diff, for instance clamped/fixed. Equations (14.55 and 14.56) can then still be used, but the 
effective span has to be adjusted. It is then not based on the actual span, but on the distance 
between the points where the bending moment M = 0.  
 
Table 14. 7 presents some cases for which the deflection can be calculated using a fictitious 
effective span leff as presented (l is the actual span). When drawing the bending moment lines for a 
uniform load and marking the points of zero bending moment, the table values can be derived.  
 
Equation (14.56) and Table 14. 7 can be replaced by a practical table to determine the slab 
thickness.  
Table 14. 8 gives these practical minimum values for l / d of a slab.  
 
For example, the steel stress, σs , in SLS (= Serviceability Limit State) can be assumed to be in a 
range 250-330 MPa. With the value of σs ~ 280 MPa the following relation is derived: 

25
ld ≥ , which corresponding to the value given in Table 14. 8. 

 
Note: 
The span l is in Table 14. 8 always the distance between the supports and not the distance between 
points of zero bending moment. It is therefore independent of the type of structural system 
(boundary conditions) since the influence of the latter is incorporated in the slenderness ratio.  
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Table 14. 7: Effective span (leff) for a number of structural systems having different boundary 
conditions 

 
 
 
Table 14. 8: Estimation of the slenderness ratio of slabs 
 

Scheme l / d (l ≤ 7,0 m) l / d (l ≥ 7,0 m) 

l  
 

slabs simply supported at both sides 
(pinned supports). 

 
 
 

25 
 

 
 

175 / l 

l
 

 
slabs simply supported at one side and 
fixed or continuous at the other side 

 
 

32 

 
 

225 / l 

l
 

 
slabs fixed or continuous at both sides 

 

 
 

35 

 
 

245 / l 

 
By using this practical approach the designer can quickly estimate the slab thickness which in most 
cases satisfies the demands for the maximum deflection, without making extended calculations.  
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Example for determination of the thickness of a one-way slab  
The use of the ratio between l and d as presented in Table 14. 8 is now demonstrated by an 
example. The slab considered is simply supported at two sides and has a span of 5,0 m. The 
effective depth of the slab (d) should then be:  
 
 1

25 5000 = 200 mmd ≥ ⋅      (14.58) 
 
Bar diameter is 10 mm and concrete cover is 20 mm. The total depth of the slab then is: 
 
 1

2nom= + + Ø = 200 + 20 + 5 = 225 mmh d c      (14.59) 
 
Note: 
The effective depth is the distance from the outer compression fibre to the centre of the tensile 
reinforcement. The total depth is the full depth of the slab, so d plus the distance of the centre of 
the reinforcement to the outer tension fibre. The concrete cover on the reinforcement (cnom) has to 
be taken into account when calculating h.  
 
Permanent loads 
self-weight slab:   0,225 * 25 =  5,6 kN/m² 
floor finishing:     0,4 kN/m² 
       6,0 kN/m² 
 
Live load      4,0 kN/m² 
 
The design load (ULS = ultimate limit state; load factor 1,2 for permanent and 1,5 for live loads):  
 
 qd = 1,2 qG,k + 1,5 qQ,k       (14.60) 

 qd = (1,2 · 6,0) + (1,5 · 4) = 13,2 kN/m² 
 
The load to be used to determine the stress in the steel reinforcement in the SLS condition 
regarding the deflection is: 
 
 q = qG,k + ψ2 qQ,k = 6,0 + (0,5 · 4,0) = 8,0 kN/m²    (14.61) 
 
Note that for live load: ψ2 = 0,5 (for the quasi-permanent value). 
 
The steel stress caused by this quasi-permanent SLS load can be approximated by assuming that 
the ratio between the steel stresses in SLS and in ULS (fyd = 435 N/mm2) is the same as the ratio 
between their loads. The result is: 
 
 σs,qp = (8,0/13,2) · fyd = (8,0/13,2) · 435 = 264 N/mm²    (14.62) 
 
When substituting this value in eq. (14.56) the result is a required effective depth: 

 s,qpσ 264 5000 = 189 mm 200 mm
7000 7000

l
d ⋅

= = <      (14.63) 
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Note: 
The steel stress in a cracked concrete cross-section in SLS must be (in most cases) calculated using 
linear-elastic behaviour of concrete in compression. In ULS, concrete demonstrates elasto-plastic 
behaviour too (Fig. 14. 66).  
 

 
Fig. 14. 66: Bi-linear stress-strain relation of concrete (EN 1992-1-1 fig. 3.4) 
 
The amount of reinforcement actually provided in the slab (As,prov as used in NEN-EN 1992-1-1) 
will mostly differ from the amount of reinforcement theoretically required in ULS (As,req in NEN-
EN 1992-1-1) since a number of bars having specific bar diameter(s) and bar spacing must be 
chosen. In case of slabs, reinforcement labour costs are reduced by choosing meshes from a 
standard assortment.  
 
Both aspects make that a more exact SLS cross-sectional analysis might result in a different steel 
stress than the simple approach used in the previous example. The result, however, is often 
sufficiently accurate in a preliminary design. 
 
It can be derived that at a steel stress of 240 N/mm2 in SLS, the limit value d = 180 mm is 
calculated, since: 
 
 (240 / 264) · 189 mm = 172 mm ~ 180 mm     (14.64) 
 
When using d = 180 mm as found with the rule of thumb, the longitudinal reinforcement ratio (ρl) 
is: 
 

 

21
8s Ed d

yd yd

-3 3 21
-28

1 1= =

1000 12,96 10 (5,0 10 ) 1= = 0,32 10 = 0,32%
(0,9 180 435) (1000 180)

l
A M b q l

b d z f b d z f b d

 

ρ = ⋅ ⋅ =

⋅ ⋅ ⋅ ⋅ ⋅
⋅

⋅ ⋅ ⋅

 (14.65) 
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Note: 
The internal lever arm z is assumed to be z = 0,9 d. The exact ratio between z and d (z = d - x/3, see 
Fig. 14. 65) depends on the reinforcement ratio, but an assumed internal lever arm ratio of 0,9 is 
most often quite accurate.  
 

Thickness of a one way slab according to Eurocode rules 
 
From the previous findings it appears (eq. (14.55)) that the reinforcement ratio (ρl) is important 
when determining the thickness of the slab. In the derivation of this expression the effect of the 
strength class (in fact the Young's modulus of the concrete) is neglected. As a conservative 
approach a low strength class, namely C25/30, was assumed. The slab thickness can also be 
estimated using the slenderness rules from the Eurocode.  
 
In the Eurocode an expression is given in which the reinforcement ratio (ρ = As/Ac) as well as the 
strength class and the favourable action of the concrete in between the cracks (tension stiffening) is 
included. The result of a parameter analysis is as follows (EN 1992-1-1 eq. (7.16.a-b)): 
 

3/2

o o
ck ck

ρ ρ= 11+1.5 + 3.2 -1
ρ ρ

l K f f
d

  
⋅ ⋅  
   

 for ρ ≤ ρo  (14.66a) 

'
o

ck ck'
o

ρ 1 ρ= 11+1.5 +
ρ -ρ 12 ρ

l K f f
d

 
⋅ ⋅ 
  

 for ρ > ρo  (14.66b) 

where: 
 
l / d is the limit value of the slenderness ratio; 
K is a parameter that depends on the static scheme (see Table 14. 9); 
ρo is the reference reinforcement ratio = 310 ckf− ;  
ρ is the required tension reinforcement ratio at mid-span to resist the bending moment due 

to the design loads (at support for cantilevers); 
ρ’ is the required compression reinforcement ratio at mid-span to resist the bending moment 

due to design loads (at support for cantilevers). 
 
These equations are based on the requirement that 500

lδ ≤ , where δ   is the defection after the 

construction. 
 
Note: 
Compression reinforcement is not often used. Only in slabs that are extremely slender 
sometimes compression reinforcement is used to reduce deflections and/or to increase rotational 
capacity. 
 
When deriving the equations (14.66a-b), a steel stress of 310 N/mm2 was assumed under the quasi-
permanent load combination. In Table 14. 9 the factor K is given for concrete elements with 
different support conditions. 
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Table 14. 9: Factor K for different support conditions (EN 1992-1-1 table 7.4N) 
 

K Structural system 

1,0 Simply supported slab spanning in one or two directions   

1,3 End span of a one-way continuous slab or a two-way spanning slab 
continuous over one long side 

1,5 Interior span of a one-way or two-way spanning slab 

1,2 Slab supported by columns without beams (flat slab) 
(based on the longest span) 

0,4 Cantilever 

 
Fig. 14. 67 shows the results of the equations (14.66a-b) in a graph. In this case a two-way slab, 
simply supported at its ends, is assumed (K = 1,0), without compressive reinforcement. With the 
increase of concrete compressive strength, the slenderness ration of the slab will increase. The 
slenderness ratio also increases with the lower reinforcement ratios. This is also indicated by 
expression 14.8 showing that the slenderness increases if the reinforcement ratio decreases. This 
follows from the reduced compression zone height, resulting in an increase of internal lever arm. 
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Fig. 14. 67: Relationship between the basic slenderness ratio and the reinforcement ratio 



chapter 14 - slabs 
 

68 
 

Deflection and thickness of a two-way slab 
For two-way slabs with different span ratios and boundary conditions, deflections can be 
determined based on the theory of elasticity. Tables for moments and deflections for various 
support conditions can be found in different textbooks. Table 14. 2 shows bending moments and 
deflections of two-way line supported slabs. Take a look at an uncracked rectangular plate with 
hinged line supports, subjected to uniformly distributed load q, for span ratios Lx/Ly ranging 
from 1 to ∞.  
 
The table shows that for a span ratio of 3 the deflection is: 
 

4 4

12,2 0,001 0,0122x xqL qLw
EI EI

= ⋅ =      (14.67) 

 
The thickness of the slab can now be determined such that the deflection should generally satisfy 
the rule: 
 

w < wmax = / 250l  = 0,004 l.      (14.68) 
 
Note that for a one-way uncracked slab, the deflection of a simply supported strip with unit width 
is: 

4 45 0,013
384

x xqL qLw
EI EI

= =       (14.69) 

 
Hence, similarly to the bending moments (see section Transition from one-way to two-way slab, 
page 30), the one-way assumption for Ly/Lx = 3,0 will over-estimate the deflection with 
approximately 6% .  
 
For the ratio Ly/Lx = 2,0, considering the slab as a one-way instead of a two-way slab (theory of 
elasticity) results in overestimating deflection by approximately 30%  (coefficient is 10 instead of 
13). This implies that the common practice approach, namely assuming that a slab may be 
considered as a one-way slab if the span ratio is larger than 2,0, is rather conservative for span 
ratios between 2,0 and 3,01. This further demonstrates the advantage of applying the theory of 
elasticity for plates, which might give a more economical solution with regard to the thickness 
requirements.  

Example: Deflection check for a two-way slab – Serviceability Limit State (SLS) 
 
Note however, that calculating deflections by the theory of elasticity requires that the material is 
homogenous and isotropic. These requirements are not satisfied for a reinforced concrete slab 
which is cracked at SLS. Therefore, some approximations have to be made in order to calculate the 
deflections of a reinforced concrete slab still using the theory of elasticity.  
 
Fig. 14. 68 shows a typical crack pattern at ULS for a simply supported two-way slab (seen 

                                                 
1 Note that Timoshenko and Woinowsky-Krieger, in ”Theory of Plates and Shells” conclude that one-
way assumption is relevant for span ratios larger than 3,0. Therefore, it might be considered to calculate a 
slab as being two-way if Ly/Lx < 3,0, even though EC2 cl. 5.3.1(5) states that a slab with Ly/Lx > 2,0 can 
be considered to be a one-way slab. 
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from bottom face). Cracking in the middle of the slab starts perpendicular to the principal load-
carrying direction. It is therefore, reasonable to assume that the plate stiffness is dominated by the 
one-way acting plate strips in this direction (x-direction, marked in red). 

 
Fig. 14. 68: Typical crack pattern in simply supported two-way slab 
 
For a cracked cross-section, the height of compression zone (x) and moment of inertia (Icx) of a 
1 m wide plate strip in x-direction (b = 1m) can be derived based on principles of mechanics and 
diagrams of concrete and steel strains and stresses in the cross-section: 
 

  2 31 1 (1 )
2 3 2 3

x
cx x x x

c

aM xI x x d bx a d b
σ

 = = − = − 
 

   (14.70) 

 
where dx is the effective depth of cross section and xa  is the compression zone depth factor 
(which determines the height of the neutral axis) in x-direction: 
 

2( ) 2x e e e
x

xa
d

a ρ a ρ a ρ= = − + +       (14.71) 

with s
e

cm

E
E

a =  

 
and the reinforcement ratio per unit width in x-direction: 
 

,ρ = s x

x

A
d

        (14.72) 

 
where ,s xA  is the reinforcement area in the x-direction [mm2/m] 
 
From the moment of inertia of a cracked cross-section, an effective thickness of a cracked 1 m 
wide plate strip can be calculated as: 
 

3 12eff cxh I=         (14.73) 
 
Deflection at the midspan section for the actual span ratio can be determined from Table 14. 2: 
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4

,

0.001 x

c eff cx

plw
E I

γ=        (14.74) 

 
Note that a similar calculation can be performed for checking the maximum deflection in 
cracked, one-way slabs. Calculations of deflections can also be done using FEM analysis. 
Young modulus of concrete, ,c effE , should be estimated based on long-term loading effects (see 
eq. 14.53). 
 

Deflection and thickness for a flat slab 
 
Similarly as with one-way and two-way slabs, also in flat slabs, the slab thickness has a major 
influence on the deflections and therefore, it is also important to choose the slab thickness and 
reinforcement ratio based on deflection calculations. Note, however, that with the flat slabs, 
punching might be also governing for the design and determination of the slab thickness. 
 
For flat slabs, the thickness is recommended to be chosen in the order of magnitude h ~ L/25, 
for normal live loads and span lengths ≤ 7,2 m [14.1]. If the live load is close to the self-weight, 
a larger slab thickness should be considered since otherwise large reinforcement quantities are 
needed to limit the deflections to acceptable sizes. For smaller spans, e.g. ≤ 7,2 m, a thickness of 
L/30 is probably sufficient [14.1]. 
  
For a flat slab, the equivalent frame analysis might be used. Since transverse distribution of 
moments in the equivalent frame analysis is based on elastic theory solutions, the same 
distribution assumptions can be used for analysis in SLS. Fig. 14. 69 shows how the deflection 
of the slab can be calculated. The approach is based on calculating two deflections using the 
strip method. One deflection is calculated using a column strip in x direction and a middle strip 
in y direction. The second deflection is calculated using a column strip in y direction and a 
middle strip in x direction. The compatibility requirement is that both calculations result in the 
same deflection.  

 
 
Fig. 14. 69: Principle for deflection calculation in a flat slab panel [14.1] 
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14.3.3 Bending moment resistance 
 
Once the thickness is determined, the design of the slab starts with the cross-sectional analysis 
(Fig. 14. 70), similarly as the design of a beam. The amount of reinforcement required should be 
calculated taking into account ULS loads and a non-linear relation between concrete compressive 
stress and strain. Crack widths and deflection should be calculated taking into account SLS loads 
and, in general, considering concrete to be linear elastic in compression.  
 
For a slab transferring load in one direction the following design procedure is used: 
In the main load bearing direction the reinforcement is calculated in the same way as in a beam. In 
the transverse direction, around 20% of the reinforcement required in the main direction is applied 
(as secondary transverse reinforcement). This is a conservative approach, since actually, when the 
cracking moment (Mcr; r = rupture) is reached, the stiffness of a cross-section is reduced. That is 
why Poisson’s ratio of cracked concrete is lower compared to the ratio of uncracked concrete. As a 
result, the bending moment in the main direction could be reduced. The method chosen is therefore 
conservative and the result is sufficiently accurate.  
 

 
Fig. 14. 70: Cross-sectional analysis of one-way slab (starts analogous to the design of a beam) 
 
For a slab transferring load in two directions, as already shown (Eq. (14.14)), the amount of 
reinforcement should be calculated based on the “reinforcement” bending moments in two 
directions, taking into account both bending moments and torsional moments Fig. 14. 71: 

   
Fig. 14. 71: Reinforcement bending moments in x-direction. 

SLS design 

ULS design 
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The amount of reinforcement can be also be determined using the bending moments calculated by 
the strip method. In the strip method it is assumed that the slab takes the load only by bending, 
without torsion. Note that the assumed load transfer scheme should comply with the actual load 
transfer scheme. If that is not the case, the SLS behaviour of the slab might not meet code 
requirements (e.g. crack width).  

14.3.4 Shear resistance 
 
From the point of view of costs it should be avoided that a slab requires shear reinforcement. This 
is because shear reinforcement leads to more demanding workmanship and therefore higher costs 
which by far overweight savings on concrete. This is why the requirement that no shear 
reinforcement is needed is sometimes governing for the determination of the slab thickness. One 
can easily verify whether the effective depth of the slab (d) satisfies the rules with regard to the 
design value of the shear resistance of a slab without shear reinforcement (νRd,c) (EN 1992-1-1 cl. 
6.2.2). The calculation is as follows. 
 
The design value of the shear resistance of a concrete structure without shear reinforcement has a 
minimum value that can always be applied (EN 1992-1-1 eq. (6.3N)): 
 
 

3
2

Rd,c min ck= = 0.035v v k f  (14.75) 
 
where k represents the size effect (EN 1992-1-1 cl. 6.2.2): 
 

 
200= 1+ 2,0k
d

≤                    (14.76) 

where d is in mm. 
 
Equation (14.75) presents a minimum value. NEN-EN 1992-1-1 presents another expression that 
might result in a higher value for vRd,c (EN 1992-1-1 eq. (6.2.a)): 
 

 
1
3

Rd,c ck 1 cp0,12 (100 )v k f kρ σ= +  (14.77) 
 
where cpσ  is the concrete stress in the cross-section from an axial load and/or prestressing. 
According to Dutch National Annex, k1 is 0,1 for compression and 0,5 for tension.  
 
However, to use this equation, the amount of longitudinal (bending) reinforcement, represented by 
percentage of reinforcement ρ , must be known.  
 
Shear reinforcement is not required if the design value of the shear stress (vEd = VEd/(b d)) is less 
than νRd,c. Table 14. 10 contains the vRd,c values calculated with eq. (14.75).  
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Table 14. 10: Minimum shear stress resistance vRd,c (in N/mm2) of a concrete element not provided 
with shear reinforcement 
 

Strength 
class 

d (mm) 200 225 250 275 300 350 

k 2,00 1,94 1,89 1,85 1,82 1,76 

fck 
(N/mm2) vRd,c ( N/mm2) 

C20/25 20 0,44 0,42 0,41 0,39 0,38 0,36 

C25/30 25 0,49 0,47 0,46 0,44 0,43 0,41 

C28/35 28 0,52 0,50 0,48 0,47 0,45 0,43 

C30/37 30 0,54 0,52 0,50 0,48 0,47 0,45 

C35/45 35 0,59 0,56 0,54 0,52 0,51 0,48 

 

14.3.5 Reinforcement detailing aspects 
 
In order to improve the robustness of slabs, it is in general required that a part of the tensile 
reinforcement in the span continues to the supports (EN 1992-1-1 cl. 9.3.1.2). This reinforcement 
ensures that there is always a residual bearing capacity to reduce the impact of possible damage.  
  
EN 1992-1-1- cl. 9.3.1.2 (1) states that at least 50 % of the span reinforcement must extend on to 
the supports of a simply supported slab, see Fig. 14. 72 [14.4]. In case of a continuous slab, 25 % 
of the span reinforcement must be present at the intermediate supports, see Fig. 14. 73 [14.4]. At 
an end support of an end span of a continuous slab, also 25 % of the span reinforcement is 
required.  
Both Fig. 14. 72 and Fig. 14. 73 also present some information on the length over which top 
support reinforcement is at least required. Part of the lengths presented in Fig. 14. 73 is based on 
experience from engineering practice. These dimensions should be checked for each situation. 
 
Note: 
Also the simply supported slab from Fig. 14. 72 has to be provided with top support 
reinforcement. This is to resist possible negative bending moments at the supports when partial 
fixity occurs. In reality, the connection between the slab and the edge beam is partially fixed. The 
degree of fixity depends on the bending stiffness of the beam or a wall supporting the slab. For 
practical calculations, it is usually assumed that the slab edge is simply supported. Therefore, if the 
partial fixity is not taken into account in the calculation, at least 15 % of the maximum positive 
span moment should be resisted at the support, see NEN-EN 1992-1-1 cl. 9.3.1.2 (2). This 
reinforcement should extend over at least 0,2 times the length of the span. 
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Fig. 14. 72: Requirements on reinforcement at the supports (masonry walls in this case) of a 
simply supported slab [14.4] 

 
 

 
 

Fig. 14. 73: Requirements on continuity reinforcement in the mid span and top reinforcement of a 
continuous slab [14.4] 
 
Such a small (“accidental”) fixity moment occurs for example when the end of the slab is 
supported by a continuous wall, see Fig. 14. 74. 
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Fig. 14. 74: The development of an (“accidental”) fixed end moment when partial fixity occurs 
 
The fixity caused by such a wall is limited, but it is difficult to calculate the actual fixed end 
bending moment. By applying a minimum bending moment a practical solution is found to 
determine the amount of reinforcement required.  
 
The maximum spacing of the reinforcing bars has to be limited. The maximum spacing (s) for the 
main reinforcement is min. (2h ; 250 mm) (EN 1992-1-1 cl. 9.3.1.1 (3)). In case of a decreasing 
moment the maximum spacing is min. (3h ; 400 mm) (EN 1992-1-1 cl. 9.3.1.1 (3)). 
The maximum spacing for the transverse reinforcement is min. (3h ; 400 mm) (EN 1992-1-1 cl. 
9.3.1.1 (3)). 
 
At free (unsupported) edges the longitudinal reinforcement must be enclosed, see Fig. 14. 75 (EN 
1992-1-1 fig. 9.8). This can be achieved by extending and bending the transverse reinforcement 
(Fig. 14. 75, top) but this is complex. In most cases hairpins are used (Fig. 14. 75, bottom).  
 

 
 

Fig. 14. 75: Enclosing reinforcement at free edges of a slab (adopted fig. 9.8, NEN-EN 1992-1-1) 
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14.4 Punching shear in flat slabs  

In the design of concrete slabs, shear is generally not critical when slabs carry distributed loads and 
are supported by beams or walls. However, in slabs with concentrated loads and flat slabs, the 
maximum shear force per unit length can be relatively high in a cross-section close to the loaded 
area. The effect of concentrated loading on slabs is referred to as punching shear. Punching shear 
can result from a concentrated load or reaction force acting on a relatively small area. In civil 
engineering, punching shear is usually considered in: 

- Slab-column connections in flat slabs floors 
- Column-footing connections in a foundation 
- External loads such as wheel loads. 

As already indicated, in flat slabs the bearing capacity of the slab around the column can be a 
critical point. The local combination of very high shear stresses and normal compressive stresses 
(from bending) can lead to failure of concrete in the area where the column support reaction is 
transferred. This type of failure is referred to as “punching shear” failure, see Fig. 14. 76.  

 

 

 
Fig. 14. 76: Punching shear failure mechanism in a flat slab and the functioning of shear 

reinforcement (if required) (top) and an example of the actual failure of a flat slab 
 

required rebars 
 



chapter 14 - slabs   

77 
 

At first the mechanism leading to punching will be described, see Fig. 14. 77 and Fig. 14. 78. In 
the beginning circular shaped (tangential) cracks arise along the perimeter of the column. These 
are caused by the large radial bending moments occurring in this region. Then, cracks arise in 
radial direction. At further increasing load new circular cracks develop at a shorter distance from 
the column. At a certain load an inclined shear crack occurs in the interior part of the slab. This 
crack may open and propagate further when a part of the slab moves in vertical direction relative to 
the surrounding slab. This is only possible when the segments between the radial cracks mutually 
rotate. This rotating will be counteracted by the reinforcement crossing the cracks. Finally, the 
column punches through the slab, while pushing away a conical part of the slab. Failure due to 
punching might occur prior to the yielding of bending moment reinforcement. 
 
 

 
 

Fig. 14. 77: Crack development prior to punching shear failure 
 
Based on the observed failure mechanism it is concluded that the following factors play a role: 
 

-  concrete strength; 
-  slab thickness; 
-  dimensions of the directly loaded area (or supporting area); 
-  slab reinforcement. 
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Fig. 14. 78: Top view of a concrete slab with internal column at a load of 0,37VRd and VRd (left; 
VRd = punching shear resistance, cracking of a symmetrical two-way slab, slab P2 
from [14.2]) and after failure (right)  

 

14.4.1 Centrically loaded column 

Introduction 

Since the punching mechanism is very complex, a simplified model is used. In the model the 
conical failure surface is replaced by a vertical shear plane at a distance of 2d from the loaded area, 
see Fig. 14. 79 (EN 1992-1-1 fig. 6.12). The circumference of this plane is denoted as the first 
control perimeter u1. 

 
In case of a centrically applied load a uniformly distributed vertical shear stress (vEd) is assumed to 
be present through the effective depth d of the slab. The average shear stress in the first control 
perimeter is the basis for punching shear design. The design value of the punching shear stress in 
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the first periphery follows from the basic control perimeter and the design value of the punching 
shear force: 

 Ed
Ed

1

Vv =
u d

 (14.78) 

where: 
vEd is the design value of the punching shear stress; 
VEd is the design value of the punching shear load; 

Centrically loaded circular column 

For a circular cross-section of a column the expression for the length of the basic control perimeter 
is: 

 1 = π ( + 4 )u c d  (14.79) 

where: 

c is the diameter of the column; 

d is the effective depth of the slab 
 
At the position of a column, a slab is reinforced in two directions. NEN-EN 1992-1-1 weighs the 
effective depths in both directions (y and z) (EN 1992-1-1 eq. (6.32)): 

 y z
eff 2

d + d
d = d =   (14.80)  

No punching shear reinforcement is required if the design value of the punching shear stress (vEd) 
is smaller than or equal to the limit value of the punching shear resistance stress (vRd,c) (EN 1992-
1-1 eqs. (6.47) & (6.3N): 

 
( )

1
3

3 1
2 2

Rd,c ck 1 cp

min ck 1 cp

0,12 100

0,035
lv k f k

v k f k

ρ σ

σ

= +

= +
 (14.81) 

where : 
 

k is a size effect parameter: 
2001 2,0k = +
d

≤  (d in mm) 

ρl is the weighed reinforcement ratio: x y 0,02l l lρ ρ ρ= ≤  

σcp is the normal concrete stress: cy cz
cp 2

+
=
σ σ

σ  

σcy , σcz are the normal concrete stresses in the critical sections in y- and z-direction (positive 
for compression). 

k1  = 0,1 for compression (Dutch National Annex) 

 = 0,5 for tension (Dutch National Annex) 
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Note: 
Equation (14.18) presents the expressions used to calculate the shear resistance, see NEN-EN 
1992-1-1 cl. 6.2.2. The only difference with the shear resistance is that in the punching shear 
expressions three variables come from a two-dimensional approach, namely the effective depth, 
the reinforcement ratio and the axial in-plane stress. 

 
Fig. 14. 79: The basic (or: first) control perimeter (u1) for a circular cross-section (h = slab height; 

d = effective slab depth) (EN 1992-1-1 fig. 6.12) 
 
Equation (14.18) is an empirical expression that is the result from the evaluation of a large number 
of experiments. The parameters used in the expressions have the following effects on the punching 
shear failure mechanism: 

ρ1 : the basic reinforcement ratio above the support counteracts the rotation of the segments 
(see Fig. 14. 78) and consequently delays punching failure;  

fck : at a higher concrete strength class the cracks will develop later (increase of concrete tensile 
strength) which causes punching failure to occur at a higher load; 

k : a size effect factor which, just as for shear, expresses that the failure load does not 
proportionally increase with the slab depth; 

σcp : if the slab is under in-plane compression, for example by prestressing, the cracks will 
develop later which results in a delay of punching failure. Under tension, cracks will 
develop sooner which reduces the punching failure load. 
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If vEd > vRd,c  structural measures should be taken. These measures can consist of: 

1. Increase of concrete strength class, ↑ckf   

2. Increase of reinforcement ratio, ρ ↑   

3. Increase of the slab thickness  ↑d   

a. Locally with the drop panel 

b. Globally, by increase of the slab thickness 

4. Increase of the loaded area 

a. Locally with the column head 

b. Globally, by increase of the column dimensions  

5. The application of punching shear reinforcement (hooks, stirrups or dowels). 

Note that a designer often tries to avoid the use of punching shear reinforcement in slabs. 

 

Centrically loaded non-circular columns 
In case of columns having a non-circular cross-section the basic control perimeter is defined in 
another way. Fig. 14. 80 (EN 1992-1-1 fig. 6.13) demonstrates how the basic control perimeter is 
derived for different shapes of the loaded area.   
 

 
Fig. 14. 80:  Typical basic control perimeters around loaded areas 
For a rectangular cross-section of a column (see Fig. 14. 81) the size of the basic control perimeter 
is: 
 1 1 2= 2 ( + ) + 4 πu c c d  (14.82) 
 
where: 
 
c1 , c2  are the column dimensions; 

d is the effective slab depth. 
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Fig. 14. 81: Basic control perimeter for a rectangular cross-section 

 

14.4.2 Eccentrically loaded columns 

Introduction 
When the support reaction is eccentric relative to the centre of gravity of the basic control 
perimeter, not only a shear force but also a bending moment acts. This will occur, for example, 
when: 

• only a part of the slab is loaded, 
• adjacent spans have different lengths 
• the framework provides stability 
• the columns are near an edge or at the corner of a slab.  

 
Fig. 14. 82 (EN 1992-1-1 fig. 6.15) gives information on the perimeter for loaded areas close to or 
at an edge or corner of a slab. Two aspects contribute to the bending moment. First, the bending 
moment in the column connections at both top and bottom fiber level of the slab. The greater the 
column stiffness, the higher the column bending moments. Second, the eccentricity of the basis 
control perimeter relative to the axis of the column. In case there is an eccentricity, even the 
normal force from an axially loaded column only, results in a bending moment in the perimeter 
cross-section.  
 

 
Fig. 14. 82: Basic control perimeters for loaded areas close to or at edge or corner 
 

The bending moment contributes to the shear stresses in the concrete. See Fig. 14. 83 for the 
assumed plastic shear stress distribution in case of pure bending (EN 1992-1-1 fig. 6.19). 
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Fig. 14. 83: Assumed plastic shear distribution due to a bending moment at a slab - internal 

column connection. 

In a structure where the lateral stability comes from the frame action between the slabs and the 
columns, the frame action provides the stability of the building (“sway frames”). Relatively large 
moments occur in the connections between columns and slabs since all horizontal loads, e.g. wind 
loads, must be resisted by the frame. The contribution of the eccentricity moment should then be 
accurately calculated since now, in most cases, the eccentricity of the punching shear force will not 
be toward the interior of the slab.  

In a structure where the lateral stability does not depend on the frame action between the slabs and 
the columns, the stability is provided by specific stability elements such as shear walls resulting in 
“non-sway frames” or “braced frames”. The contribution of the eccentricity moment can be 
calculated accurately, but the Eurocode provides easier, safe (upperbound) approximation of the 
effect of bending moments to shear stresses. 

Internal column with bending about one axis 
Accurate approach 
For uni-axial bending (see Fig. 14. 84) the design value of the punching shear stress in the basic 
perimeter is (EN 1992-1-1 eq. (6.38)): 

 Ed
Ed

1

Vv =β
u d

 (14.83) 

where  

νEd is the design value of the punching shear stress; 

VEd is the design value of the punching shear force; 
u1 is the basic control perimeter; 
d is the effective slab depth. 

The variable β is used to take into account the influence of the bending moment on the developed 
shear stress (EN 1992-1-1 eq. (6.39)): 

 Ed 1

Ed 1

1 M uβ = + k
V W

 (14.84) 

where: 
k is a coefficient dependent on the ratio between the column dimensions c1 and c2 (EN 1992-1-1 

table 6,1; Table 14. 11); 
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W1  corresponds to a distribution of shear as illustrated in Fig. 14. 83 and is a function of the first 
control perimeter u1 (W1 = linear surface moment of u1). 

           
Fig. 14. 84: Definition of column dimensions for a column loaded in bending around one axis (EN 

1992-1-1 fig. 6.19) 
 
W1 of the basic control perimeter is: 

 
- for a rectangular column (Fig. 14. 84; NEN-EN 1992-1-1 eq. (6.41)): 

            
2

21
1 1 2 2 14 16 2

2
cW c c c d d d c= + + + + π  (14.85) 

 c1 is the column dimension parallel with the eccentricity of the load; 

 c2 is the column dimension perpendicular to the eccentricity of the load. 

 

- for a circular cross-section of the column (D = column diameter): 

             2
1 ( 4 )W D d= +  (14.86) 

The factor k reflects that the bending moment transferred by the column (Fig. 14. 85) does not 
only cause shear forces but also bending and torsional moments in the slab. This implies that only 
a part of the bending moment contributes to vertical shear stresses. 

 
Fig. 14. 85: The transfer of a bending moment from a column into a slab [14.3]  

VEd e 
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For rectangular loaded areas the values for k are given in Table 14. 11. 

 
Table 14. 11: Values for k with respect to rectangular loaded areas (EN 1992-1-1 table 6.1) 
 

c1 / c2 ≤ 0,5 1,0 2,0 ≥ 3,0 
k 0,45 0,60 0,70 0,80 

 

Internal column with bi-axial bending 

For bi-axial bending (see Fig. 14. 86), the design value of the punching shear stress in the basic 
control perimeter is: 

 Ed
Ed

1

Vv
u d

= β                       (14.87) 

where: 

 Ed,1 Ed,21 1
1 2

Ed 1 Ed 2

1
M Mu uk k
V W V W

= + ⋅ + ⋅β                  (14.88) 

For a rectangular column W1 and W2 are: 

 
2

21
1 1 2 2 14 16 2

2
cW c c c d d d c= + + + + π  (14.89) 

 
2

22
2 1 2 1 24 16 2

2
cW c c c d d d c= + + + + π  (14.90) 

The expression for W2 is easily constructed from the expression for W1 by interchanging c1 and c2.  
 
Note: 
This must also be accounted for when determining the factors k1 and k2.   

 
Fig. 14. 86: Bi-axially loaded column 

 
For a circular column (diameter D) bi-axially loaded W1 = W2 and (EN 1992-1-1 eq. (6.42): 
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 1 0,6 e
D+4d

β π= + ⋅                   (14.91) 

 
where e is the eccentricity of the load. 
 
For an interior bi-axially loaded rectangular column the factor β can be approximated (EN 1992-1-
1 eq. (6.43)): 
 

 
22

y z

z y

1 1,8
e e
b b

  
= + +        

β  (14.92) 

where: 

ey , ez  are the eccentricities MEd / VEd along the y and z axes respectively; 

by , bz are the dimensions of the basic control perimeter (EN 1992-1-1 fig. 6.13, Fig. 14. 80): 
 y 2= + 4b c d  

 z 1= + 4b c d  
 
For a square column (c = c1 = c2) the approximate expression for β is: 

 2 2
y z

1,81
4

 e e
c d

= + +
+

β  (14.93) 

 

Edge column  
For an edge column distinction should be made with respect to the direction of the eccentricity of 
the axial force. The eccentricity can be toward the interior (in Fig. 14. 87: to the right) or the 
exterior of the slab (in Fig. 14. 87: to the left). If the eccentricity is directed interior, the following 
approximate expression for β can be used: 
 

 1
*
1

u
u

=β  (14.94) 

 
where u1* is the reduced basic control perimeter, see Fig. 14. 87 (EN 1992-1-1 fig. 6.20a). This 
perimeter is the basic control perimeter u1 from which two line segments are removed (each of 
length > 0,5c1 or > c1 - 1,5d). 
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Fig. 14. 87: Reduced basic control perimeter u1* for a rectangular edge column 
 
If the eccentricity of the axial force in an edge column is directed interior (in Fig. 14. 87: to the 
right) and an additional eccentricity resulting from a moment about an axis perpendicular to the 
edge of the slab is present, β can be determined by adding both components that contribute to the 
shear stress in the slab (EN 1992-1-1 eq. (6.44)): 
 

 1 1
par*

1 1

= +u uk e
u W

β  (14.95) 

 where 
epar is the eccentricity parallel to the edge of the slab resulting from a moment about an axis 

perpendicular to the slab edge 
W1 is calculated for the basic control perimeter u1 for a rectangular edge column as given in Fig. 

14. 87:  
2

22
1 1 2 1 24 8

4
cW c c c d d dcπ= + + + +   

 
If the eccentricity of the force is not interior but exterior to the slab, the simplified reduced basic 
control perimeter approach cannot be used. The designer then has to use the original basic 
expression for β: 

 Ed 1

Ed 1

= 1 + M uk
V W

⋅β  (14.96) 

The W1 should be calculated with respect to the centroid of the basic control perimeter. This 
calculation results in complex expressions and is not elaborated in this textbook. 

Corner column  
Just as for the edge column, the direction of the eccentricity of the column force is important with 
regard to the expressions to use. For an interior directed eccentricity the following expression for β 
may be used: 
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 1
*
1

u
u

=β  (14.97) 

 

where u1* is the reduced basic control perimeter, see Fig. 14. 88(EN 1992-1-1 fig. 6.20b). 
 
Note: 
The expression is the same as for an edge column. The difference between an edge and a corner 
column is in the definition of u1*, see Fig. 14. 88. 
 

 
Fig. 14. 88: Reduced basic control perimeter u1* for a rectangular corner column 
 
If the eccentricity of the axial force is exterior, the reduced control perimeter cannot be used. Just 
as for the edge column then the following expression for β must be used: 
 

 Ed 1

Ed 1

= 1 + M uk
V W

⋅β  (14.98) 

 
Also now the W1 must be calculated for the basic control perimeter. The calculation becomes even 
more complex than for the edge column and is not elaborated in this textbook.  
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Standard β values 
Easy (approximate) approach 
 
If the lateral stability does not depend on the frame action between the columns and the slabs, and 
when the adjacent spans do not differ in length by more than 25%, approximate values for β may 
be used, see Fig. 14. 89 (EN 1992-1-1 fig. 6.21N). 

 

 
Fig. 14. 89: Apporximated safe values for β (EN 1992-1-1 fig. 6.21N) 
 
The expression for the design value of the punching shear in the basic control perimeter is 
unaltered: 

 Ed
Ed

1

Vv =β
u d

 (14.99) 

where  
νEd is the design value of the punching shear stress; 

VEd is the design value of the punching shear force; 

u1 is the basic control perimeter; 

d is the effective slab depth; 

β internal column:  β = 1,15; 

 edge column: β = 1,4; 

 corner column:  β = 1,5. 
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14.4.3 Structural measures to increase the punching shear resistance 

From eq. (14.81) it appears that the punching resistance can be increased by increasing the depth 
of the slab or the dimensions of the column or by applying concrete having a higher strength class. 
These options have some drawbacks: 
- increasing the depth of the slab leads to an increase of the self-weight of the structure; 
- an increase of the column dimensions is contrary to architectural demands; 
- a higher strength class of the concrete of results in higher costs for the entire slab whereas the 

extra strength is required only in a relatively small area around the column. 
 
Another option to increase the punching shear resistance is to apply a column head and/or drop 
panel (Fig. 14. 90).  
 

 
Fig. 14. 90: Flat slab with drop panel and/or column head 

Column head 
A column head is a local increase of column size just underneath the slab (Fig. 14. 91). If the 
column size increases gradually the floor is called a mushroom flat slab. This measure results in a 
considerable increase of the diameter of the punching cone. 

 
Fig. 14. 91 Increasing the punching shear resistance by applying a column head by a step-wise 

(left) or gradual (right) increase of slab depth; lH < 2,0 hH (EN 1992-1-1 fig. 6.17) 
 
The design value of the shear stress for a circular column then results from: 

 Ed
Ed

1

=
 

Vv
u d

        (14.100) 

where: 1 H= π  ( + 2 + 4 )u c d⋅         (14.34) 
If the width of the column head lH further increases and becomes larger then 2,0 hH a so-called 
drop panel is created.  
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Drop panel 
Now, two punching cones can arise, see Fig. 14. 92 (EN 1992-1-1 fig. 6.18). The shear stresses 
must be verified at both failure surfaces. 
In case of a circular column and a circular drop panel, the verification formulae are: 
 
Inner failure surface: 

 Ed
Ed

1 H

= Vv
u  d

 

where: 
 H Hd d h= +  
 1 H= π  ( + 4 )u c d⋅  (14.101a) 
 
Outer failure surface: 
 

 Ed
Ed

2

= Vv
u  d

 

where: 
 2 H= π  ( + 2 + 4 )u c l d⋅  (14.101b) 

 
Fig. 14. 92: Example of a slab containing a drop panel (left) or a wide column head (right) in 

which two punching cones can arise (EN 1992-1-1 fig. 6.18) 
 
Often in practice the drop panel is rectangular, not circular. The outer basic control perimeter is 
then calculated as for a rectangular loaded area. 
 
Another option to increase the punching shear resistance is to provide shear reinforcement that 
anchors the punching cone to the surrounding concrete. Cracks that develop cross the shear 
reinforcement. The reinforcement then carries (part of) the punching shear load. 
 
The shear reinforcement must be arranged close to the column and must extend to a cross-section 
where shear reinforcement is no longer required and the concrete can resist the design value of the 
shear stress: vRd,c > vEd. This cross-section is called the outer perimeter and is indicated in Fig. 14. 
93 (uout in NEN-EN 1992-1-1 fig. 6.22). The outer perimeter has the same shape as the basic 
control perimeter. Shear reinforcement should extend to a cross-section that is maximum 1,5d from 
uout (EN 1992-1-1 cl. 6.4.5 (4)). This outer perimeter will be discussed later on. 
 
According to the Eurocode at least two rows of link legs must be provided. The radial spacing, sr, 
between these rows may not exceed 0,75d (EN 1992-1-1 cl. 9.4.3 & fig. 9.10). This is to ensure 
that no cracks can develop between the punching reinforcement that do not cross any shear 
reinforcement.  

dH 
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Fig. 14. 93: The area over which shear reinforcement is required (up to 1,5d from uout) 

 
 
The first link leg may not be situated closer than 0,3d to the column, but also not more than 0,5d 
away from the column (EN 1992-1-1 cl. 9.4.3 & fig. 9.10). These requirements must ensure that a 
crack protruding from the column crosses the shear reinforcement. Fig. 14. 94 shows the 
arrangement of shear reinforcement relative to the first punching shear cracks that can develop. 
 

 
Fig. 14. 94: A punching shear crack extending to the basic punching perimeter and link legs to 

increase the punching shear resistance 
 
When no shear reinforcement is provided, the punching shear resistance is:  
 
 Rd,c Rd,c 1=V v  u  d  (14.102) 
 
where vRd,c follows from eq. (14.81) and u1 from eq. (14.82). The question is how adding shear 
reinforcement contributes to the shear resistance. This is illustrated in Fig. 14. 95.  
 

link leg 

sr 

st 
≤ 
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Fig. 14. 95: Schematic representation of the development of the contributions of the concrete and 

the shear reinforcement to the punching shear resistance 
 
When the punching shear load is gradually increased, first the force VRd,c is reached which is the 
resistance of the concrete. When no shear reinforcement is provided, punching shear failure now 
will occur. If shear reinforcement is present, the link legs are gradually stressed after cracking 
occurs and the load can be further increased. Experiments indicated that the contribution of the 
concrete does not drop to zero but stays at a level of about 0,75VRd,c. This is also the result of the 
shear and longitudinal reinforcement action that reduces the width of the inclined cracks and, as a 
result, preserves the contribution of aggregate interlock over the crack faces.  
 
The contribution of vertical punching shear reinforcement anchoring the cone to the surrounding 
slab is: 
 
 Rd,s sw ywd,ef= Σ  V A f  (14.103) 
 
where swΣA  is the total cross-sectional area of the punching reinforcement that is crossed by the 
punching cone. 
 
In case the shear reinforcement is inclined (angle α), the contribution is: 
 
 Rd,s sw ywd,ef= Σ  sinV A f a  
 
The “effective” reinforcement design stress fywd,ef is lower than the value fyd = 435 N/mm2 and is 
expressed as follows (EN 1992-1-1 cl. 6.4.5): 
 
 ywd,ef ywd= 250 + 0,25f d f≤  (14.104) 
 
where d is in mm.  
 
The reasoning behind the steel design stress reduction is the importance of a proper functioning of 
the shear reinforcement in thin slabs. Above the columns these slabs are often heavily reinforced in 
two directions to resist the bending moments. This is top reinforcement. These slabs are often 
provided with a relatively high amount of shear reinforcement because of their small height. 
Underneath the longitudinal reinforcing bars it is not easy to have a good compaction of the 
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concrete. This might cause poor bond of the links, which in turn reduces the stress developed in 
the links once cracking occurs. Moreover, reducing shear link steel stress results in crack width 
reduction, which in turn results in aggregate interlock, which makes that concrete still contributes 
to punching shear resistance. 
 
The total punching shear resistance is (EN 1992-1-1 cl. 6.4.5 eq. (6.52)): 
 
 Rd,cs Rd,c Rd,s= 0,75 +V V V  (14.105) 
 
Equation (14.105) expressed as stresses results in (EN 1992-1-1 eq. (6.52)): 
 

 Rd,cs Rd,c Rd,s

1 1 1

0,75
V V V
u d u d u d

= +                 (14.106) 

 

 
sw ywd,ef

r
Rd,cs Rd,c

1

1,5 sin
0,75

d A f
sv v

u d

a
= +               (14.107) 

 
where: 
 
sr is the distance in radial direction between individual perimeters of shear reinforcement;  
Asw is the total cross-sectional area of the shear reinforcement provided in each individual 

perimeter of shear reinforcement.  
 
The following remarks must be made: 
The previous equation has a factor 1,5 in the contribution of the shear reinforcement. This should 
theoretically be 2,0 (since the punching shear crack has an angle θ = 26,6º so the crack extends 
over 2,0d). The number of shear reinforcement perimeters, spaced at sr, crossed by the crack is: 
 

 
r

2,0 d
s

 

By also reducing this component of punching shear resistance by 25%, the NEN-EN 1992-1-1 
expression is obtained. Experiments have shown that this approach gives good results. Shear links 
must be anchored at both sides of the punching shear cone. The smallest anchorage length of both 
is governing for the steel stress that can occur. Close to the top and bottom of the slab, the 
anchorgage length at one side of the crack is rather limited. This might result in a reduction of 
shear link effectiveness. The factor 0,75 takes this into account.  
 
Note: 
The amount of reinforcement Asw has to be applied in each individual shear reinforcement 
perimeter; it is not the total amount of reinforcement that is crossed by a punching shear cone, 
since the latter is (including the 25% reduction discussed before): 

 sw
r

0,75 2,0 d A
s

⋅  

The designer is, within certain limits (Fig. 14. 94), free to choose Asw and sr. For instance: a small 
number of shear reinforcement perimeters (large sr), but each perimeter containing a large amount 
of reinforcement (large Asw) or vice versa.  
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The amount of shear reinforcement that can be applied is restricted to a maximum. Two design 
rules must be applied. 
 
Design rule 1 
 
If the amount of shear reinforcement is too high the concrete just around the column might 
prematurely fail in compression before the stress in the shear reinforcement is fully developed (EN 
1992-1-1 eq. (6.53)). This is similar to the concrete diagonal compression failure known from 
beams. From experiments it appears that the following holds (EN 1992-1-1 eq. (6.53)):  
 
 Rd,cs Rd,maxV V≤  (14.108) 
 
where: 
 
 Rd,max Rd,max 0=V v  u  d  (14.109) 
 
and: 
 
 Rd,max cd= 0,4 v  fν  

 

  where ν is a strength reduction parameter (EN 1992-1-1 eq. (6.6N)): 

  ck= 0,6 1-
250
fν  ⋅ 

 
 

 u0 = length of column perimeter (see Fig. 14. 80 for interior columns).  

 
Design rule 2 
 
The increase of punching shear resistance by applying shear reinforcement, is also limited by the 
following expression. 
 

 
sw ywd,ef

r
Rd,cs Rd,c max Rd,c

1

1,5 sin
0,75

d A f
sv v k v

u d

a
= + ≤                       (14.110) 

where according to the Dutch national annex, kmax = 1,6. 
 
Often links (stirrups, double hairpins) are used as shear reinforcements which enclose the 
longitudinal reinforcement. Fig. 14. 96 presents the lay-out of such a type of reinforcement. The 
reinforcement is often labour-intensive to install. The shear reinforcement can be applied as two 
hairpins that have sufficient overlapping length at both their legs to transfer the force. 
 
There are also other possibilities. A good solution is the application of studs. The studs are welded 
to a steel strip at one side and are provided with an enlarged stud end at the other side. If the 
surface area of the stud end is large enough and is close to and outside an intersection of the two-
dimensional longitudinal bending reinforcement, yielding of the stud can be achieved. This is a 
very efficient way of reinforcing for shear. Applying this reinforcement is easier than providing 
links. Fig. 14. 97 shows an example. 
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Fig. 14. 96: Application of links as shear reinforcement 
 
 

 
Fig. 14. 97: Applying shear studs as punching shear reinforcement 
 
As well as for bending and shear, also for punching shear a minimum amount of reinforcement is 
required, if VEd > VRdc . It is established from tests that a proper minimum cross-sectional area of an 
individual reinforcement link is (EN 1992-1-1 eq. (9.11)): 

 r t ck
sw,min

yk

0,08 
=

1,5 
 s s f

A
 f

 (14.111) 

where sr is the link spacing in radial direction (see Fig. 14. 93) and st is the link spacing in 
tangential direction (= the circumferential direction). The Asw,min makes that the designer does not 
use too small diameter bars. From the point of view of punching shear crack width control it is 
preferred to use closely spaced bars. 
 
As stated before, the basic control perimeter u1 is at a distance 2d from the loaded area. It should 
always be verified whether punching shear failure can also occur outside this area, see Fig. 14. 98. 
This figure shows other punching shear cones that might develop. If necessary, also these cones 
must be provided with shear reinforcement.  
 

Hairpins as technically easier solution 
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Fig. 14. 98: Formation of punching cones outside the basic control perimeter area 
 
Outside the basic control perimeter checks should also be carried out. The most convenient way to 
do so is to calculate for which perimeter uout no shear reinforcement is required. The length of this 
perimeter follows from the requirement that the concrete alone must be able to resist the full 
punching shear force (EN 1992-1-1 eq. (6.54)): 
 

 Ed
out

Rd,c

=  
 

Vu
v  d

 (14.112) 

 
If uout is known, it is also known up to which position the shear reinforcement must continue since 
the perimeter uout is constructed in the same way as u1. The only difference is that u1 is spaced 2d 
from the loaded area whereas this distance is unknown for uout and follows from its length and 
shape.  
 
A detailing rule states that outer shear reinforcement does not have to extend to uout. It is allowed 
that the last perimeter of shear reinforcement is located maximum 1,5d from the outer control 
perimeter (EN 1992-1-1 cl. 6.4.5 (4)).  
 
In radial direction the reinforcement spacing may not be larger than sr = 0,75d. In circumferential 
direction (tangential direction) the maximum spacing is st = 1,5d, see Fig. 14. 93.  
 
In theory all shear reinforcement perimeters require the same amount of reinforcement Asw. In 
practice the tangential bar spacing st requirement (max. spacing is 1,5d) makes that at increasing 
distance from a perimeter to the column, the number of links required is often defined by the 
requirement st < 1,5d and not by Asw. Reducing the link bar diameter is an option not to use too 
much link reinforcement, but the Asw,min requirement from eq. (14.111) makes that there is a limit 
to this. Therefore, the outer perimeters are often provided with (much) more punching shear 
reinforcement than follows from Asw.  
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14.5 Special aspects 

14.5.1 Effective span 
 
In theory the span is the distance between centre lines of the supports. This is sometimes too 
conservative. The span to be used in the calculation depends on the type of bearings. The positions 
of the support reacting forces are governing. The distributions of these forces and, as a result, the 
positions of the resulting support reactions, influence the bending moment at mid-span. The 
effective span follows from the expression (EN 1992-1-1 cl. 5.3.2.2, see Fig. 14. 99):  
 
 eff n 1 2l l a a= + +   (14.113) 
 
where ln is the net distance between the faces of the supports and where a1 and a2 are at both ends 
1 and 2 the distance between the face of the support and the resulting support reaction. The values 
a1 and a2 depend on the type of bearing and the dimensions of the structural components. They are, 
however, usually relatively small when compared with the total span. In the Eurocode, therefore, 
relatively simple practical values are given, see Fig. 14. 99 (EN 1992-1-1 fig. 5.4).  

 
Fig. 14. 99: Effective span leff for different support conditions (EN 1992-1-1 fig. 5.4) 
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14.5.2 Transfer of concentrated (point and line) loads 
 
Because of its stiffness in transverse direction, a one-way spanning monolithic slab will also 
transfer part of concentrated loads in this transverse direction. This implies that not only a directly 
loaded strip but also the slab area close to the concentrated load (with width beff) will be active in 
load transfer, see Fig. 14. 100. 
 

 
Fig. 14. 100: Effective width (beff) for a concentrated load on a one-way slab 
 
Concentrated loads can be both line loads (e.g. masonry walls) or point loads (e.g. column 
load).  
 
Line load 
A line load can act over a certain length with different orientations. Assume that the slab is loaded 
over its full span length l, with the line load acting perpendicular to the supports (Fig. 14. 100 
right). Grasser and Thielen [14.5] calculated the effective width for different support conditions. 
The width of the effective strip that resists the line load depends on slab span, the boundary 
conditions at both slab ends and the slab cross-section considered (bending moment at mid span 
(mv) or at a fixity (ms)), as given in Table 14. 12. 
 
Point load 
The maximum effective width of the slab area, beff, that may be taken into account when 
transferring a concentrated load also depends on the span, boundary conditions and distance of the 
load to the support.  
 
Based on calculations using the theory of elasticity, Grasser and Thielen [14.5] calculated the 
effective width for different support conditions. Their results are given in Table 14. 12.  
 
Point loads applied over a width be are first spread under 45º to the centre line of the plate (see the 
figure in Table 14. 12). The result is the basic strip width which is further increased depending on 
the distance from the concentrated load to the left support. A distinction is made between the 
effective width for a span moment (MEd,V), a support moment (MEd,S) and a shear force (VEd). 
 
Obviously, the effective width may also be chosen smaller than the values presented in the table. 
For non-movable loads it is economic to choose a width of the strip that is as small as possible. In 
general, the reason to allow this is to enable more realistic stress distribution, which will be more 
in accordance to linear elastic analysis. 
 
Of course the amount of transverse reinforcement should be adjusted to the required amount of 
principal reinforcement at the location of the concentrated load or line load. 

beff beff 

Point load Line load 

l l 
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Table 14. 12: Effective strip width (beff) for concentrated loads and evenly distributed (line) loads 
based on the theory of elasticity (mv = span moment; ms = support moment; vs = 
shear force; x = distance from left support to position of concentrated load) [14.5]. 
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