{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Component reliability\n", "\n", "
\n", "

\n", "Solution\n", "

\n", "Unfortunately the math equations (defined using Latex) don't work on the website. Hopefully they are readable; if you download and open the notebook in Jupyter or VS Code the equations will display correctly.\n", "
\n", "\n", "
\n", "\n", "
\n", "

\n", "Task 0:\n", "Tasks to complete during the workshop are provided in boxes like this.\n", "

\n", "
\n", "\n", "
\n", "\n", "
\n", "

\n", "Explanations in the solution are provided in boxes like this.\n", "

\n", "\n", "
\n", "\n", "
\n", "

\n", " In-class notes: \n", "

\n", " On Friday our solution notebook had an error in the standard deviation for $M_2$, so the results you saw in class were slightly different.On Friday our solution notebook had an error in the standard deviation for $M_2$, so the results you saw in class were slightly different.\n", "
\n", " We also discussed several other topics:\n", "\n", " \n", "
\n", "\n", "In this workshop, we will perform a reliability analysis of a structural problem: the reliability of a short column. In particular, we consider a column subjected to biaxial bending moments $M_1$ and $M_2$ and an axial force $P$ and is illustrated below. \n", "\n", "![column sujected to biaxial bending](fig_column_ws02.png \"Short column subjected to biaxial bending.\")\n", "\n", "Assuming an elastic perfectly plastic material with yield strength $y$, the failure of the column is defined by the limit state function:\n", "\n", "$$ g(\\mathbf{x}) = 1 - \\frac{M_1}{s_1 Y} - \\frac{M_2}{s_2 Y} - \\left(\\frac{P}{a Y}\\right)^2 $$\n", "\n", "where $ \\mathbf{x} = \\{M_1, M_2, P, Y\\}^T $ represents the vector of random variables, $a=0.190 m^2$ is the cross-sectional area, $s_1=0.030 m^2$ and $s_2=0.015 m^2$ are the flexural moduli of the fully plastic column section. Assume $M_1$ and $M_2$ are correlated with a coefficient $\\rho=0.5$. The distribution paramaters are given in the table below:" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "| Variable | Marginal distribution | Mean | c.o.v | \n", "| --- | --- | --- | --- |\n", "| $M_1$ | Normal | 250 | 0.3 |\n", "| $M_2$ | Normal | 125 | 0.3 |\n", "| $P$ | Gumbel | 2500 | 0.2 |\n", "| $Y$ | Weibull | 40 | 0.1 |\n", "\n", "
\n", "\n", "
\n", "

\n", " Note: c.o.v. is coefficient of variation, $\\sigma/\\mu$. This is another way of defining describing the variance of a random variable, from which the standard deviation can also be found (given the mean is known). Don't confuse this with covariance, $cov$ or $Cov$.\n", "

\n", "
\n", "We start by importing basic packages." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import matplotlib.cm as cm" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "The reliability analysis (FORM) will be performed using OpenTURNS, which is a Python package for reliability analyses. You can read more about the packages or the different functions/classes on their [website](https://openturns.github.io), or in the tutorial in the Probabilistic Design chapter of the HOS online textbook." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import openturns as ot\n", "import openturns.viewer as viewer\n", "ot.Log.Show(ot.Log.NONE)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "The first steps consist in assigning the problem's variables to python variables: " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "a = 0.190\n", "s1 = 0.030\n", "s2 = 0.015" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "You probably observed that the information above contains each distribution's first and second moments (mean and standard deviation), which for normal distributions is enough to define them on OpenTURNS. However, the Gumbel and Weibull distributions have different distributions parameters, which are defined in OpenTURNS documentation ([Gumbel](https://openturns.github.io/openturns/latest/user_manual/_generated/openturns.Gumbel.html) and [Weibull](https://openturns.github.io/openturns/latest/user_manual/_generated/openturns.WeibullMin.html)). In the context of this workshop, we compute the distribution parameters for you to focus on the analyses; it is however a good exercise to do it yourself later.\n", "\n", "The notations adopted below are the one proposed by OpenTURNS and vary from the one of the textbook. Again, mind these differences when using different packages.\n", "\n", "The distribution parameters for the Gumbel distribution $Gumbel(\\beta, \\gamma)$ are such that:\n", "\n", "$$ \\mathbb{E}[X] = \\gamma + \\gamma_e \\beta $$\n", "$$ \\sigma[X] = \\frac{\\pi \\beta}{\\sqrt{6}} $$" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# Distribution parameters: P (Gumbel distribution)\n", "\n", "beta = (np.sqrt(6)*2500*0.2)/np.pi\n", "gamma = 2500 - np.euler_gamma*beta" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Likewise, the distribution parameters for the Weibull distribution $Weibull(\\beta, \\alpha)$ are such that:\n", "\n", "$ \\mathbb{E}[X] = \\beta \\Gamma \\left(1 + \\frac{1}{\\alpha} \\right) $\n", "\n", "$ \\sigma [X] = \\beta \\sqrt{\\left(\\Gamma \\left(1+\\frac{2}{\\alpha}\\right) - \\Gamma^2 \\left(1 + \\frac{1}{\\alpha} \\right)\\right)} $\n", "\n", "By solving the system of equations, we obtain $\\beta = 41700$ and $\\alpha = 12.2$." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "We can finally create random variables objects using OpenTURNS and the distribution parameters compute above.\n", "\n", "
\n", "

\n", "Task 1:\n", "Define the marginal distributions of the random variables using OpenTURNS.\n", "

\n", "
\n", "
\n", "
\n", "

\n", "The solution is in the code cell below.\n", "

" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "M1 = ot.Normal(250, 0.3*250)\n", "M2 = ot.Normal(125, 0.3*125)\n", "P = ot.Gumbel(beta, gamma)\n", "Y = ot.WeibullMin(41700, 12.2)\n", "\n", "rho = 0.5 # Correlation coefficient between M1 and M2" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "As mentioned in the OpenTURNS tutorial, we will be using the PythonFunction class to define our LSF. This requires your LSF to be vectorized, that is allow all the points in a sample to be evaluated without making a for loop : **arguments are vectors, returns too**. \n", "\n", "
\n", "

\n", "Task 2:\n", "Define the limit-state function.\n", "

\n", "
\n", "
\n", "
\n", "

\n", "The solution is in the code cell below. OpenTURNS will send arguments to the function such that a row defines the value of all random avariables, and expects a single value in return. If there are $N$ samples and $N_{rv}$ random variables, the input and output should be $N$x$N_{rv}$ and $N$x1, respecitvely.\n", "

" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def myLSF(x):\n", " ''' \n", " Vectorized limit-state function.\n", "\n", " Arguments:\n", " x: vector. x=[m1, m2, p, y]. \n", " '''\n", " g = [1 - x[0]/(s1*x[3]) - x[1]/(s2*x[3]) - (x[2]/(a*x[3]))**2]\n", " return g" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Reliability analyses\n", "\n", "Then, we define the OpenTURNS object of interest to perform FORM.\n", "\n", "
\n", "

\n", "Task 3:\n", "Define the correlation matrix for the multivariate probability distribution.\n", "

\n", "
\n", "
\n", "
\n", "

\n", "The solution is in the code cell below. As you can see we specify multivariate normal, which requires only a matrix of correlation coefficients. Since the first line generates a correlation matrix of independent random variables by default, and only the first two random variables are correlated, you simply need to add the coefficient to two indices. Remember the matrix is symmetric with elements $\\rho_{ij}$.\n", "

" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# Definition of the dependence structure: here, multivariate normal with correlation coefficient rho between two RV's.\n", "R = ot.CorrelationMatrix(4) \n", "R[0,1] = rho\n", "R[1,0] = rho\n", "multinorm_copula = ot.NormalCopula(R)\n", "\n", "inputDistribution = ot.ComposedDistribution((M1, M2, P, Y), multinorm_copula)\n", "inputDistribution.setDescription([\"M1\", \"M2\", \"P\", \"Y\"])\n", "inputRandomVector = ot.RandomVector(inputDistribution)\n", "\n", "myfunction = ot.PythonFunction(4, 1, myLSF)\n", "\n", "# Vector obtained by applying limit state function to X1 and X2\n", "outputvector = ot.CompositeRandomVector(myfunction, inputRandomVector)\n", "\n", "# Define failure event: here when the limit state function takes negative values\n", "failureevent = ot.ThresholdEvent(outputvector, ot.Less(), 0)\n", "failureevent.setName('LSF inferior to 0')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### FORM" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "FORM result, pf = 0.0044\n", "FORM result, beta = 2.623\n", "\n", "[1.02874,0.593946,0.952835,-2.13509]\n", "[327.156,163.578,2929.16,29789]\n" ] } ], "source": [ "optimAlgo = ot.Cobyla()\n", "optimAlgo.setMaximumEvaluationNumber(1000)\n", "optimAlgo.setMaximumAbsoluteError(1.0e-10)\n", "optimAlgo.setMaximumRelativeError(1.0e-10)\n", "optimAlgo.setMaximumResidualError(1.0e-10)\n", "optimAlgo.setMaximumConstraintError(1.0e-10)\n", "\n", "algo = ot.FORM(optimAlgo, failureevent, inputDistribution.getMean())\n", "algo.run()\n", "result = algo.getResult()\n", "x_star = result.getPhysicalSpaceDesignPoint() # Design point: original space\n", "u_star = result.getStandardSpaceDesignPoint() # Design point: standard normal space\n", "pf = result.getEventProbability() # Failure probability\n", "beta = result.getHasoferReliabilityIndex() # Reliability index\n", "print('FORM result, pf = {:.4f}'.format(pf))\n", "print('FORM result, beta = {:.3f}\\n'.format(beta))\n", "print(u_star)\n", "print(x_star)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

\n", "Task 4:\n", "Interpret the FORM analysis. Be sure to consider: pf, beta, the design point in the x and u space.\n", "

\n", "
\n", "
\n", "
\n", "From the results printed above:\n", "\n", "
" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### MCS\n", "\n", "OpenTURNS also allows users to perform Monte Carlo Simulations. Using the objects defined for FORM, we can compute a sample of $g(\\mathbf{x})$ and count the negative realisations." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "montecarlosize = 10000\n", "outputSample = outputvector.getSample(montecarlosize)\n", "\n", "number_failures = sum(i < 0 for i in np.array(outputSample))[0] # Count the failures, i.e the samples for which g(x)<0\n", "pf_mc = number_failures/montecarlosize # Calculate the failure probability " ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The failure probability computed with FORM (OpenTURNS) is: 0.004364\n", "The failure probability computed with MCS (OpenTURNS) is: 0.007\n" ] } ], "source": [ "print(\"The failure probability computed with FORM (OpenTURNS) is: \",\n", " \"{:.4g}\".format(pf))\n", "print(\"The failure probability computed with MCS (OpenTURNS) is: \",\n", " \"{:.4g}\".format(pf_mc))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "

\n", "Task 5:\n", "Interpret the MCS and compare it to FORM. What can you learn about the limit-state function?\n", "

\n", "
\n", "
\n", "
\n", "The probabilities are different! This is because FORM uses a linear approximation, and if we sample enough, MCS will approach the \"true\" value of $p_f$. The difference also tells us about the limit-state function: since FORM has a smaller value, we can tell that the surface is concave towards the origin (see plots below to confirm). Thus, if we were to perform more FORM analyses for different design situations we could expect it to consistently underpredict $p_f$ slightly. This is important, because often when the limit-state function is computationally expensive we prefer to skip MCS and do more FORM analyses. \n", "
" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Importance and Sensitivity" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Importance factors\n", "\n", "As presented in the lecture, the importance factors are useful to rank each variable's contribution to the realization of the event. \n", "\n", "OpenTURNS offers built-in methods to compute the importance factors and display them:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[M1 : 0.139562, M2 : 0.139562, P : 0.119726, Y : 0.601151]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhOElEQVR4nO3dd1xV9eMG8OcCl41MQVGWC/fMzJEzR6JmqZUbLUdmfl2VmrkqLXM0HGkO9JumVmpGafF1Ww4cuAFFAZUhe48L9/z+8MfNKxsufC73PO/Xi5dy7rnnPJc7eDjnfM5RSJIkgYiIiIhkw0h0ACIiIiKqXiyARERERDLDAkhEREQkMyyARERERDLDAkhEREQkMyyARERERDLDAkhEREQkMyyARERERDLDAkhEREQkMyyA1cDPzw8KhQIXL14UHaXCdu/eja+++kp0DJ3x9fWFQqEo8svf31+n67p16xaWLFmC8PBwnS5XFxYuXAh3d3eYmJjAzs5OdJwSPfucWVlZwdPTE0OGDMH27duRk5NTpevv2bMnevbsWaXrKGndTz92CwsLtGnTBl999RXUanW5lhUeHg6FQgE/P78KZVm+fDkOHjxYofuWxtfXF9bW1qXOd/78ebz66qtwd3eHmZkZXFxc0LlzZ8yZM0drvmd/bk9/3bhxo8R1KBQKLFmypEKPIzc3F1OnTkXdunVhbGyMtm3bVmg5RanO1+GGDRsq/DopzeXLl/HSSy/B2toadnZ2eO2113Dv3r0qWRcVzUR0AKoZdu/ejRs3bmDmzJmio+iMhYUFjh07Vmh606ZNdbqeW7duYenSpejZsyc8PT11uuzK+PXXX/HZZ5/ho48+wssvvwwzMzPRkUr19HOWlZWFBw8e4PDhw5g0aRJWr16NI0eOoH79+lWy7g0bNlTJcsuqQYMG2LVrFwDg8ePH+O677zBr1ixER0fjiy++KPNy6tati7Nnz6Jhw4YVyrF8+XIMHz4cQ4cOrdD9K+v333/HkCFD0LNnT6xcuRJ169ZFdHQ0Ll68iD179mD16tVa8z/9c3taaY//7NmzFX4tbdy4EZs2bcK3336LDh06lKnUllV1vg43bNgAJycn+Pr66nS5wcHB6NmzJ9q2bYt9+/YhOzsbixYtwosvvoigoCDUrl1bp+ujorEAUokyMzNhaWkpOkaVMDIywgsvvCA6RoVV9rkp2AIyY8YMODs7lzhvVlYWLCwsKrwuXSnqORs3bhwmTJiAQYMGYfjw4Th37lyVrLt58+ZVstyysrCw0HrsL7/8Mpo2bYp169bh008/hVKpLNNyzMzMavTrfuXKlfDy8sKff/4JE5N/f4W9+eabWLlyZaH5n/25lVVlfkY3btyAhYUFpk+fXuFlPKvg/a7L16EkScjOzq729/aiRYtgZmYGf39/1KpVCwDQoUMHNG7cGKtWrSrXHzRUcdwFLEjBro7g4GD0798fVlZWqFu3Lj7//HMAwLlz59CtWzdYWVmhSZMm2LFjh9b9C3YrBwQEYMKECXBwcICVlRUGDx5c5Gb0bdu2oU2bNjA3N4eDgwNeffVV3L59u8hM169fR79+/WBjY4M+ffqgZ8+e+P333xEREaG1C6XA0qVL0alTJzg4OKBWrVpo3749tm7dCkmStJbv6emJQYMG4ciRI2jfvj0sLCzQtGlTbNu2rVDeR48eYfLkyXBzc4OpqSlcXV0xfPhwxMbGauZJTU3F3Llz4eXlBVNTU9SrVw8zZ85ERkZG+Z+QZwQEBOCVV15B/fr1YW5ujkaNGmHKlCmIj48vNG9wcDBGjhwJFxcXmJmZwd3dHePGjUNOTg78/PwwYsQIAECvXr00P7und6tU5rkBgCtXrmDQoEFwdnaGmZkZXF1d4ePjg4cPHxb7+Dw9PbFw4UIAgIuLi9buroLnaf/+/WjXrh3Mzc2xdOlSAE9+sb3yyiuwt7eHubk52rZtW+i1eeLECSgUCuzevRsffvgh6tatC2trawwePBixsbFIS0vD5MmT4eTkBCcnJ0yYMAHp6enle4Ke0a9fP0yaNAnnz5/HqVOntG7bu3cvOnfuDCsrK1hbW6N///64cuWK1jz37t3Dm2++CVdXV80uxT59+iAoKEgzT1G73h4+fIjhw4fDxsYGdnZ2GD16NAIDAws9xwXP3927dzFw4EBYW1vDzc0Nc+bMqfCua6VSiQ4dOiAzMxNxcXEAyvb8FLULeMmSJVAoFLh58yZGjhwJW1tbuLi4YOLEiUhJSdHMp1AokJGRgR07dmhey9W9WzwhIQFOTk5a5a+AkZHufqU9uwu44DP3+PHjeOedd+Dk5ARHR0e89tpriIqK0rrfli1bkJWVVej9LkkSNmzYgLZt28LCwgL29vYYPnx4oc/snj17omXLljh16hS6dOkCS0tLTJw4UXPbsz/zxMRETJs2DfXq1YOpqSkaNGiAjz76qNBrS6FQYPr06fjuu+/QrFkzmJmZFXp9FPD09MTNmzdx8uRJzeN4eg9GZGQkxowZo/ncadasGVavXl3qIQl5eXnw9/fHsGHDNOUPADw8PNCrVy8cOHCgxPuT7nALoEAqlQqvvfYapk6divfffx+7d+/G/PnzkZqail9++QUffvgh6tevj2+//Ra+vr5o2bIlOnTooLWMt956C3379sXu3bvx4MEDLFy4ED179sS1a9c0x3StWLECCxYswMiRI7FixQokJCRgyZIl6Ny5MwIDA9G4cWPN8nJzczFkyBBMmTIF8+bNQ15eHurXr4/JkycjLCysyDdneHg4pkyZAnd3dwBPyut7772HR48eYdGiRVrzXr16FXPmzMG8efPg4uKCLVu24K233kKjRo3QvXt3AE/KX8eOHaFSqbBgwQK0bt0aCQkJ+PPPP5GUlAQXFxdkZmaiR48eePjwoWaemzdvYtGiRbh+/Tr+97//aZXU4uTl5Wl9r1AoYGxsjLCwMHTu3Blvv/02bG1tER4ejjVr1qBbt264fv26ZmvL1atX0a1bNzg5OWHZsmVo3LgxoqOjcejQIeTm5sLHxwfLly/HggULsH79erRv3x7Av7ufKvvcZGRkoG/fvvDy8sL69evh4uKCmJgYHD9+HGlpacU+7gMHDmD9+vXYunUrjhw5AltbW63dXZcvX8bt27excOFCeHl5wcrKCiEhIejSpQucnZ3xzTffwNHRET/88AN8fX0RGxuLDz74QGsdCxYsQK9eveDn54fw8HDMnTsXI0eOhImJCdq0aYMff/wRV65cwYIFC2BjY4Nvvvmm1OerJEOGDMGGDRtw6tQpzWtp+fLlWLhwISZMmICFCxciNzcXX375JV588UVcuHBBszVl4MCByM/Px8qVK+Hu7o74+Hj8888/SE5OLnZ9GRkZ6NWrFxITE/HFF1+gUaNGOHLkCN54440i51epVBgyZAjeeustzJkzB6dOncInn3wCW1vbQu+TsgoLC4OJiQns7e3L/fwUZdiwYXjjjTfw1ltv4fr165g/fz4AaP5IO3v2LHr37o1evXrh448/BgCtX+LVoXPnztiyZQtmzJiB0aNHo3379qVu/Xz2fW5kZFThsvj222/Dx8dH85n7/vvvY8yYMZpDE86ePYtPPvkEx48f10wreL9PmTIFfn5+mDFjBr744gskJiZi2bJl6NKlC65evQoXFxfNeqKjozFmzBh88MEHWL58ebF5s7Oz0atXL4SFhWHp0qVo3bo1Tp8+jRUrViAoKAi///671vwHDx7E6dOnsWjRItSpU6fYrf8HDhzA8OHDYWtrq9ntXHCYSFxcHLp06YLc3Fx88skn8PT0hL+/P+bOnYuwsLASd1OHhYUhKysLrVu3LnRb69atERAQgOzsbJibmxe7DNIRiarc9u3bJQBSYGCgZtr48eMlANIvv/yimaZSqaTatWtLAKTLly9rpickJEjGxsbS7NmzCy3z1Vdf1VrX33//LQGQPv30U0mSJCkpKUmysLCQBg4cqDVfZGSkZGZmJo0aNapQpm3bthV6DD4+PpKHh0epjzU/P19SqVTSsmXLJEdHR0mtVmtu8/DwkMzNzaWIiAjNtKysLMnBwUGaMmWKZtrEiRMlpVIp3bp1q9j1rFixQjIyMtL6mUqSJP38888SAOmPP/4oMWfBY332q2vXroXmVavVkkqlkiIiIiQA0q+//qq5rXfv3pKdnZ30+PHjYtf1008/SQCk48ePa03XxXNz8eJFCYB08ODBEh9vURYvXiwBkOLi4rSme3h4SMbGxlJISIjW9DfffFMyMzOTIiMjtaa//PLLkqWlpZScnCxJkiQdP35cAiANHjxYa76ZM2dKAKQZM2ZoTR86dKjk4OBQat7x48dLVlZWxd5++/ZtCYD0zjvvSJL05OdoYmIivffee1rzpaWlSXXq1JFef/11SZIkKT4+XgIgffXVVyWuv0ePHlKPHj00369fv14CIB0+fFhrvilTpkgApO3bt2tlByDt27dPa96BAwdK3t7eJa63YN0tWrSQVCqVpFKppKioKGnevHkSAGnEiBGSJJX9+bl//36hfAWvhZUrV2rdd9q0aZK5ubnW+9jKykoaP358qZkrorTnWJKePF/dunXTvGeVSqXUpUsXacWKFVJaWprWvD169CjyfT569OhSswCQFi9erPm+4DN32rRpWvOtXLlSAiBFR0eX+DjOnj0rAZBWr16tNf3BgweShYWF9MEHHxTKffTo0UK5nn0dfvfdd0W+tr744gsJgPTXX39pPSZbW1spMTGx1McvSZLUokULrXUVKHjtnT9/Xmv6O++8IykUikKfHU8r+B31448/Frpt+fLlEgApKiqqTPmocrgLWCCFQoGBAwdqvjcxMUGjRo1Qt25dtGvXTjPdwcEBzs7OiIiIKLSM0aNHa33fpUsXeHh44Pjx4wCe/DWalZVV6CBeNzc39O7dG0ePHi20zGHDhpXrcRw7dgwvvfQSbG1tYWxsDKVSiUWLFiEhIQGPHz/Wmrdt27aaLYUAYG5ujiZNmmg9tsOHD6NXr15o1qxZsev09/dHy5Yt0bZtW+Tl5Wm++vfvD4VCgRMnTpSa28LCAoGBgVpfW7duBfDkIPupU6fCzc0NJiYmUCqV8PDwAADN7tnMzEycPHkSr7/+eoUOWtbFc9OoUSPY29vjww8/xHfffYdbt26VO0dRWrdujSZNmmhNO3bsGPr06QM3Nzet6b6+vsjMzMTZs2e1pg8aNEjr+4Ln08fHp9D0xMTESu8Glp455ODPP/9EXl4exo0bp/UaMTc3R48ePTSvEQcHBzRs2BBffvkl1qxZgytXrpRpZO3JkydhY2ODAQMGaE0fOXJkkfMrFAoMHjxYa1rr1q2LfF8X5ebNm1AqlVAqlXB1dcXq1asxevRofP/99wDK//wUZciQIYXyZWdnF3ofl1V+fr7Wz768I5aL4ujoiNOnTyMwMBCff/45XnnlFYSGhmL+/Plo1apVocM0GjZsWOh9/sknn1R4/UX9jACU+jz6+/tDoVBgzJgxWj+TOnXqoE2bNoU+s+zt7dG7d+9S8xw7dgxWVlYYPny41vSCz5VnP0d69+4Ne3v7Updb2jqbN2+O559/vtA6JUkqcnDds0raQ1OWvTdUedwFLJClpWWhzdympqZwcHAoNK+pqSmys7MLTa9Tp06R0xISEgBA82/dunULzefq6oqAgIBCmcqzS+fChQvo168fevbsie+//x7169eHqakpDh48iM8++wxZWVla8zs6OhZahpmZmdZ8cXFxpY6+i42Nxd27d4vd9VPUsXrPMjIywnPPPVdoulqtRr9+/RAVFYWPP/4YrVq1gpWVFdRqNV544QVN1qSkJOTn51d4pKAunhtbW1ucPHkSn332GRYsWICkpCTUrVsXkyZNwsKFC8s8MOBZRWVKSEgoNuvTj6fAs69jU1PTEqdnZ2dXarRkwS/ggjwFx4t27NixyPkLdqkpFAocPXoUy5Ytw8qVKzFnzhw4ODhg9OjR+Oyzz2BjY1Pk/RMSErR22RUoahpQ9PvdzMysyPd1URo2bIg9e/ZAoVDA3NwcXl5eWoOAyvv8FOXZ92fBLr9n38dl1adPH5w8eVLz/fjx43V2WpHnnntO8/5VqVT48MMPsXbtWqxcuVJrMIi5uXmR7/OKqujPKDY2FpIkFfv6aNCggdb3RT2XRUlISECdOnUKlSZnZ2eYmJgUet7LutzS1lnUGQ3K8lor+PkVNU9iYiIUCoXen5LKULAA1nAxMTFFTmvUqBGAf99s0dHRheaLioqCk5OT1rTy/uW1Z88eKJVK+Pv7a/1yq8x5wmrXrl3iAAYAcHJygoWFRZEDSApur6gbN27g6tWr8PPzw/jx4zXT7969qzWfg4MDjI2NS81aHF09N61atcKePXsgSRKuXbsGPz8/LFu2DBYWFpg3b16FshW1LkdHx2KzApX7mevCoUOHAEBzgHxBnp9//lmz9bY4Hh4emq2/oaGh2LdvH5YsWYLc3Fx89913Rd7H0dERFy5cKDS9qPekLpRWZPTx+dm0aZPWsahVlUGpVGLx4sVYu3Ztqef3E8XJyQkKhQKnT58u8pRLz04r62exo6Mjzp8/D0mStO7z+PFj5OXlVfozvrh1VvS11rBhQ1hYWOD69euFbrt+/ToaNWrE4/+qCXcB13DPnt/qn3/+QUREhOaXYOfOnWFhYYEffvhBa76HDx9qdhmVxbNb6QooFAqYmJjA2NhYMy0rKwv//e9/y/lI/vXyyy/j+PHjCAkJKXaeQYMGISwsDI6OjpotAU9/VeZ8ewUfkM9+IG/atEnrewsLC/To0QM//fRTiVsci9tCoKvn5uncbdq0wdq1a2FnZ4fLly+X6/6l6dOnD44dO6Y14hEAdu7cCUtLS6GnFgkICMCWLVvQpUsXdOvWDQDQv39/mJiYICwsrMjXSHFlqkmTJli4cCFatWpV4s+wR48eSEtLw+HDh7Wm79mzR3cPrByq6/kp7rOgKN7e3jp7XxYoqngA/x6aUbAVSt8MGjQIkiTh0aNHRb4WW7VqVaHl9unTB+np6YX+6N65c6fm9ooq7rnu06cPbt26Vej9sXPnTigUCvTq1avYZZqYmGDw4MHYv3+/1h8HkZGROH78OF577bUK56Xy4RbAGu7ixYt4++23MWLECDx48AAfffQR6tWrh2nTpgEA7Ozs8PHHH2PBggUYN24cRo4ciYSEBCxduhTm5uZYvHhxmdbTqlUr7N+/Hxs3bkSHDh00u099fHywZs0ajBo1CpMnT0ZCQgJWrVpVqZMKL1u2DIcPH0b37t2xYMECtGrVCsnJyThy5Ahmz56Npk2bYubMmfjll1/QvXt3zJo1C61bt4ZarUZkZCT++usvzJkzB506darQ+ps2bYqGDRti3rx5kCQJDg4O+O233wrtkgWgGRncqVMnzJs3D40aNUJsbCwOHTqETZs2wcbGBi1btgQAbN68GTY2Nprdd46OjpV+bvz9/bFhwwYMHToUDRo0gCRJ2L9/P5KTk9G3b98KPf7iLF68GP7+/ujVqxcWLVoEBwcH7Nq1C7///jtWrlwJW1tbna6vKGq1WnOev5ycHERGRuLw4cPYt28fmjVrhn379mnm9fT0xLJly/DRRx/h3r17GDBgAOzt7REbG4sLFy7AysoKS5cuxbVr1zB9+nSMGDECjRs3hqmpKY4dO4Zr166VuAV1/PjxWLt2LcaMGYNPP/0UjRo1wuHDh/Hnn38C0O0pScqiup6fVq1a4cSJE/jtt99Qt25d2NjYwNvbWyfLBp4cN/jzzz8Xmm5lZYWXX34Z/fv3R/369TF48GA0bdoUarUaQUFBWL16NaytrfGf//xHZ1l0qWvXrpg8eTImTJiAixcvonv37rCyskJ0dDTOnDmDVq1a4Z133in3cseNG4f169dj/PjxCA8PR6tWrXDmzBksX74cAwcOxEsvvVThzAV7F/bu3YsGDRrA3NwcrVq1wqxZs7Bz5074+Phg2bJl8PDwwO+//44NGzbgnXfeKXT88LOWLl2Kjh07YtCgQZg3b57mRNBOTk6FruZCVUjc+BP5KG4UcFGj3QpG+z3Lw8ND8vHxKbTMv/76Sxo7dqxkZ2enGVF6586dQvffsmWL1Lp1a8nU1FSytbWVXnnlFenmzZta85Q0Ai8xMVEaPny4ZGdnJykUCunpl862bdskb29vyczMTGrQoIG0YsUKaevWrRIA6f79+8U+hqcf87MjzR48eCBNnDhRqlOnjqRUKiVXV1fp9ddfl2JjYzXzpKenSwsXLpS8vb01j6tVq1bSrFmzpJiYmCIfR1keqyRJ0q1bt6S+fftKNjY2kr29vTRixAgpMjKy0MjAgnlHjBghOTo6SqamppK7u7vk6+srZWdna+b56quvJC8vL8nY2LjQCMzKPDfBwcHSyJEjpYYNG0oWFhaSra2t9Pzzz0t+fn4lPn5JKnkUcFHPkyRJ0vXr16XBgwdLtra2kqmpqdSmTRutxyJJ/44C/umnn7SmF/U+KCnHs54duW1hYSG5u7tLgwcPlrZt2ybl5OQUeb+DBw9KvXr1kmrVqiWZmZlJHh4e0vDhw6X//e9/kiRJUmxsrOTr6ys1bdpUsrKykqytraXWrVtLa9eulfLy8jTLKep1GhkZKb322muStbW1ZGNjIw0bNkz6448/Co0WL+75K3jspSnuc+FZZXl+ShoF/OxzUPCcPf0+DgoKkrp27SpZWlpKAIocJVpRxY3OB6A5C8HevXulUaNGSY0bN5asra0lpVIpubu7S2PHji105oCy/tyK8ux7vbjXb8Hr/elR/iV9vmzbtk3q1KmTZGVlJVlYWEgNGzaUxo0bJ128eLFMuYt6HSYkJEhTp06V6tatK5mYmEgeHh7S/PnztT6DCh7Tu+++W4ZH/0R4eLjUr18/ycbGRus5kCRJioiIkEaNGiU5OjpKSqVS8vb2lr788kspPz+/TMu+ePGi1KdPH8nS0lKqVauWNHToUOnu3btlzkaVp5CkZ4bOUY3g5+eHCRMmIDAwUKcHOBNR5RScezAyMrLKLktHRFRZ3AVMRFRB69atA/DksAGVSoVjx47hm2++wZgxY1j+iEivsQASEVWQpaUl1q5di/DwcOTk5MDd3R0ffvih5jJ7RET6iruAiYiIiGSGp4EhIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCIiIiKZYQEkIiIikhkWQCKiGs7X1xcKhQJTp04tdNu0adOgUCjg6+urmbZixQp07NgRNjY2cHZ2xtChQxESElLpHNHR0Rg1ahS8vb1hZGSEmTNnljj/nj17oFAoMHTo0FKXff36dfTo0QMWFhaoV68eli1bBkmSNLdfuXIF7dq1g7W1NYYMGYKkpCTNbXl5eWjfvj0CAwMr+tCIDA4LIBGRAXBzc8OePXuQlZWlmZadnY0ff/wR7u7uWvOePHkS7777Ls6dO4eAgADk5eWhX79+yMjIqFSGnJwc1K5dGx999BHatGlT4rwRERGYO3cuXnzxxVKXm5qair59+8LV1RWBgYH49ttvsWrVKqxZs0Yzz9tvv43evXvj8uXLSE5OxvLlyzW3rVq1Ct26dUPHjh0r/uCIDIyJ6ABERFR57du3x71797B//36MHj0aALB//364ubmhQYMGWvMeOXJE6/vt27fD2dkZly5dQvfu3SucwdPTE19//TUAYNu2bcXOl5+fj9GjR2Pp0qU4ffo0kpOTS1zurl27kJ2dDT8/P5iZmaFly5YIDQ3FmjVrMHv2bCgUCty+fRu7du1CkyZNMHLkSPj7+wMA7t27h23btuHSpUsVflxEhohbAImIDMSECROwfft2zffbtm3DxIkTS71fSkoKAMDBwaHYecLDw6FQKHDixIlK51y2bBlq166Nt956q0zznz17Fj169ICZmZlmWv/+/REVFYXw8HAAQJs2bTRbM48ePYrWrVsDAKZOnYqVK1fCxsam0rmJDAkLIBGRgRg7dizOnDmD8PBwRERE4O+//8aYMWNKvI8kSZg9eza6deuGli1bFjufUqmEt7c3LC0tK5Xx77//xtatW/H999+X+T4xMTFwcXHRmlbwfUxMDABgy5Yt+Pnnn9GwYUOYmppi/vz52LlzJywtLdGxY0f0798fjRo1wsKFCyuVn8hQcBcwEZGBcHJygo+PD3bs2AFJkuDj4wMnJ6cS7zN9+nRcu3YNZ86cKXG+evXqITg4uFL50tLSMGbMGHz//fel5nqWQqHQ+r5gAEjB9BYtWuDkyZOa2xMSErBkyRKcOnUK7733Hrp27Yr9+/ejY8eO6NSpEwYPHlypx0JU07EAEhEZkIkTJ2L69OkAgPXr15c473vvvYdDhw7h1KlTqF+/fpVnCwsLQ3h4uFb5UqvVAAATExOEhISgYcOGhe5Xp04dzZa+Ao8fPwaAQlsGC8yaNQszZ85E/fr1ceLECXz66aewsrKCj48PTpw4wQJIsscCSERkQAYMGIDc3FwAT46TK4okSXjvvfdw4MABnDhxAl5eXtWSrWnTprh+/brWtIULFyItLQ1ff/013Nzcirxf586dsWDBAuTm5sLU1BQA8Ndff8HV1RWenp6F5j969CiCg4Ph5+cH4MmgE5VKBQCaf4nkjscAEhEZEGNjY9y+fRu3b9+GsbFxkfO8++67+OGHH7B7927Y2NggJiYGMTExWqeQedajR4/QtGlTXLhwocT1BwUFISgoCOnp6YiLi0NQUBBu3boFADA3N0fLli21vuzs7GBjY4OWLVtqyt26devQp08fzTJHjRoFMzMz+Pr64saNGzhw4ACWL1+uGQH8tKysLLz77rvYvHkzjIye/Irr2rUr1q9fj6tXr+KXX35B165dS/9BEhk4bgEkIjIwtWrVKvH2jRs3AgB69uypNX379u1aJ4x+mkqlQkhICDIzM0tcdrt27TT/v3TpEnbv3g0PDw/NaN2yiI+PR1hYmOZ7W1tbBAQE4N1338Vzzz0He3t7zJ49G7Nnzy5032XLlmHQoEFo27atZto333yDUaNGoXv37hg1ahSGDRtW5ixEhkohPX0qdSIiIiIyeNwFTERERCQzLIBEREREMsMCSERERCQzLIBEREREMsNRwEQkL6psICsRyEwEspKAnFQgXwWo8/79V60C8vOe/B8SYGIGmFgASnNAaQmYmANKiydfptaAlRNgbiv6kRERlRkLIBEZBrUaSIsCkiKA5Ih//02N+rfsZSUCqpJPY1JhJuaAVW3A2hmwcgasawPWLoBNHcDeC3BsBNi6AUbc8UJE4vE0MERUs+SkA49vA49vArG3gPjQJ0Uv5SGQnys6XcmMzQAHL8ChIeD4/19O3kCdVoCZteh0RCQjLIBEpLcyVBm4lXALtxJu4Wb8TdxKvIXVsQnwjrklOppuKYwAx8aAa7t/v+q2frKLmYioCrAAEpHeiMuMw5lHZ3A+5jxuxt9ERGoEJGh/RH1m3hhDbh8VlLAaKYyB2k2B+h0Aj26A14tALVfRqYjIQPBgFKrxfH19oVAooFAooFQq0aBBA8ydOxcZGRmVWu7+/fvRv39/ODk5QaFQICgoSOv2xMREvPfee/D29oalpSXc3d0xY8YMpKSklLrsDRs2wMvLC+bm5ujQoQNOnz6tdfuqVavg4uICFxcXrF27Vuu28+fPo0OHDsjPz6/U49MHeeo8XIy5iK8vf40Rv41An5/6YNE/i/D7vd8RnhpeqPwBQIi5TLaKSflPdnNf3gkcmAysaQZ80w747T/AzQNPjmkkIqogDgIhgzBgwABs374dKpUKp0+fxttvv42MjAzNNU8rIiMjA127dsWIESMwadKkQrdHRUUhKioKq1atQvPmzREREYGpU6ciKioKP//8c7HL3bt3L2bOnIkNGzaga9eu2LRpE15++WXcunUL7u7uuH79OhYtWgR/f39IkoRBgwahb9++aNmyJVQqFaZOnYrNmzfD2Ni4wo9NpNiMWPwd9TfOPDqDc1HnkKZKK9f9Q6TsKkpWAyTee/J1ye/JbuO6bYHGfYGmg57sMiYiKiPuAqYaz9fXF8nJyTh48KBm2qRJk+Dv74/o6OhKLz88PBxeXl64cuWK1gXmi/LTTz9hzJgxyMjIgIlJ0X9fderUCe3bt9cqp82aNcPQoUOxYsUK7Nu3D2vWrMG5c+c088+dOxcjRozA8uXLERsbi6+//rrSj6u6qNQqBD0OwplHZ3Dm0RmEJoVWanl2prY4HXJdR+kMiL3nkyLYbAjg9jygUIhORER6jFsAySBZWFhApVIVe/uSJUvg5+eH8PBwna43JSUFtWrVKrb85ebm4tKlS5g3b57W9H79+uGff/4BALRq1QqhoaGIjIyEJEkIDQ1Fy5YtcffuXfj5+eHSpUs6zVxVAmMCsf/Ofpx4cALpqnSdLTc5NwWxtq5wSYnS2TINQlI4cHbdky/rOkBTH6DZYMCrO2BUM7cWE1HVYQEkg3PhwgXs3r0bffr0KXYeJycnNGzYUKfrTUhIwCeffIIpU6YUO098fDzy8/Ph4uKiNd3FxQUxMTEAnmwNXL58Ofr27QsAWLFiBZo1a4aXXnoJK1euxJ9//oklS5ZAqVTi66+/Rvfu3XX6OCojLjMOv4b9igN3DiAyLbLK1hPi5MkCWJL0GODi1idf1nWANm8C7cYCTo1EJyMiPcECSAbB398f1tbWyMvLg0qlwiuvvIJvv/222PmnT5+O6dOn62z9qamp8PHxQfPmzbF48eJS51c8s3tOkiStaVOnTsXUqVM13/v5+cHGxgadO3eGt7c3AgMD8fDhQ7z55pu4f/8+zMzMdPZYyitPnYfTD09j/539OPPoDPKkvCpfZ4i1HfSn9uq59Bjg76+efLm9ALQbA7R4lecdJJI5FkAyCL169cLGjRuhVCrh6uoKpVJZbetOS0vDgAEDYG1tjQMHDpS4bicnJxgbG2u29hV4/Phxoa2CBeLj47Fs2TKcOnUK58+fR5MmTdC4cWM0btwYKpUKoaGhaNWqlU4fU1lEpkZi/539OBR2CHFZcdW67mBjHrpcIQ/OPfk6Mg9oPhRoPw5w7yQ6FREJwAJIBsHKygqNGlX/7q3U1FT0798fZmZmOHToEMzNzUuc39TUFB06dEBAQABeffVVzfSAgAC88sorRd5n5syZmDVrFurXr4/AwECtYxvz8vKq9XQw2XnZCIgIwP47+3Ep9lKRp2mpDqG5PAVKpeSmA0E/PPlybQ90fvdJITTmrwQiueC7nWRp3bp1OHDgAI4eLf6EwomJiYiMjERU1JNjzUJCQgAAderUQZ06dZCWloZ+/fohMzMTP/zwA1JTU5GamgoAqF27tuY0LX369MGrr76q2eU8e/ZsjB07Fs899xw6d+6MzZs3IzIyUmuXb4GAgADcuXMHO3fuBAA8//zzCA4OxuHDh/HgwQMYGxvD29tbdz+YYiRnJ8Pvph/2he5DWm75TttSFSIzY5BlagmL3Cq6rq+cRF0GfnkL+N8S4PnJQIfxgLmt6FREVMVYAEmW4uPjERYWVuI8hw4dwoQJEzTfv/nmmwCAxYsXY8mSJbh06RLOnz8PAIW2Pt6/fx+enp4AgLCwMMTHx2tue+ONN5CQkIBly5YhOjoaLVu2xB9//AEPDw+tZWRlZWH69OnYu3cvjIyenLO9Xr16+PbbbzFhwgSYmZlhx44dsLCouhMjFxS/H4N/RGae/pQttaRGqHNjtHl4VXQUw5HyAAj4GDi58slxgi+8A9h7lH4/IqqReB5AIiokOTsZO27twO7bu/Wq+D3tY0tvvH4zQHQMw6UwBlqNAHrOAxy8RKchIh3jFkAi0kjJScGOmzuwO3g3MlSVu5ReVQs1MxUdwbBJ+cC1PcCNn4G2o4AeHwK29UWnIiId4RZAIqpRxa9Am1oN8cPV46JjyIex2ZPjA1+cA9jUEZ2GiCqJBZBIxgqK34/BP+r0ah3VwdLEEufuhEAhaCSybJlYAB3felIELR1EpyGiCmIBJJKhnPwcbLuxDTtv7qxxxe9p/mnG8Ii/LzqGPJnbAb0WAB3f5qXmiGogFkAimTn54CRWXFiBR+mPREeptNWmnugXckp0DHlzbgG8/PmTaw4TUY1hJDoAEVWPR+mP8N7R9zD92HSDKH8AEGJhIzoCPb4J7BgM7B0LJFfd9Z+JSLc4CpjIwOXm52L7je3Ycn0LsvOzRcfRqRBF1V93mMro9iHgTgDQ9T9At1mAsuSr4hCRWNwFTGTALsdexuJ/FiM8NVx0lCpRx6I2Am5dEh2DnuXYCHhlPeD+gugkRFQMFkAiA5ShysDaS2uxL2SfsOv1VpczMamwzUoWHYOepTACnp8C9FkEmFqKTkNEz2ABJDIwpx+exrJzyxCTESM6SrXYKrng+fBA0TGoOPZewCvrAM9uopMQ0VM4CITIQKTkpGDe6XmYdnSabMofAITYOIqOQCVJug/4DQJ+nwvk1NxTDhEZGhZAIgNwNe4qhv82HL/f+110lGoXrOTHmP6TgMDvgY2dgQcXRIchIrAAEtV4P9z6Ab5HfGW11e9poXlpoiNQWSVHAttfBs6sBXj0EZFQPAaQqIbKUGVg0d+L8FfEX6KjCKU0UuL8/Ugo1SrRUag8Gr0EvLoJsHISnYRIlrgFkKgGupN0B2/6vyn78gcAKrUK92o3FB2Dyuvu/4DvugHhZ0QnIZIlFkCiGuZQ2CGM/mO0wZ7bryJCHVxFR6CKSIsGdgwBTnwOqNWi0xDJCgsgUQ2Rk5+DJf8swUdnPkJWXpboOHolxJznmauxpHzgxArgh9eArCTRaYhkgwWQqAZ4kPYAY/8Yi1/u/CI6il4KlgzrEneydO848H1v4HGw6CREssACSKTnjkYexRu/vYHbibdFR9FboVmxoiOQLiTeA7a8hPQ7p0UnITJ4LIBEemx90HrMPD4TaSqe6qQkSbkpiLWtKzoG6YDKojYG7o7DltP3REchMmgsgER6SC2p8em5T/Hd1e9ER6kxQpy8REegSpLMbPF23hxEZpnh099vY/7+68jL5+AQoqrAAkikZ1RqFeadmoe9IXtFR6lRQq3tREegSpAUxlhZax5OJthrpv14IRIT/AKRkZMnMBmRYWIBJNIjWXlZmHFsBg6HHxYdpcYJNuY57Wuyw/VmYOMDj0LTT9+Jx6gt55GcmSsgFZHhYgEk0hOpuamYEjAFZx7xxLgVEZKbLDoCVdAdtxGYdrdjsbdffZCM1zedRWwqR3sT6QoLIJEeiM+Kx4QjE3Dl8RXRUWqsyMxoZJnyfIA1TYrLCxgU9kqp84XGpmPYxn8QHp9RDamIDB8LIJFgD9MeYtzhcQhNChUdpUZTS2rccW4kOgaVg8rWC4MfT0aOumy/ih4mZWHEprO4HZ1axcmIDB8LIJFAd5LuYNzhcXiQ9kB0FIMQYusiOgKVkWRWC5NUcxGZZV6u+8Wl5eCNTWdxKSKxipIRyQMLIJEgQY+D4HvEF3FZcaKjGIwQU1PREagMJIUxVtWahxOJ9qXPXITU7DyM23oBlyN56TiiimIBJBLgbNRZTA6YjNRc7srSpRB1pugIVAZ/1puO9Q88K7WMjNx8jN92ATcepegmFJHMsAASVbPrcdfxn+P/QVZelugoBic0MxoSFKJjUAnuug3D1LuddLKstOw8jN16HsEx/EOKqLxYAImqUURqBN49+i7LXxXJzMvEA8fC55Ij/ZDi8gIG3xuq02UmZaowZst5hMWl63S5RIaOBZComsRnxWNKwBQk5fC4paoU4uguOgIVQWXriVceT0ZWvrHOlx2fnovR359HZAIPASAqKxZAomqQocrAtP9Nw6P0R6KjGLwQSxvREegZkpkNpubNRXg5R/yWR0xqNkZ+fw7RKdy6TlQWLIBEVUylVmHW8Vm4nXhbdBRZCFHwurH6RFIYY43tPBxNcKjydT1KzsKE7YFIy1ZV+bqIajoWQKIqJEkSFv29CGejz4qOIhshOfGiI9BTAuq9i28jvaptfcExaZi26zLy8tXVtk6imogFkKgKrb28Fv73/EXHkJXorDikWNiJjkEA7rm9hsl3X6j29Z6+E4+FB29U+3qJahIWQKIqsuv2Lmy/sV10DFkKdWksOoLspbo8D597rwpb/57AB9hw4q6w9RPpOxZAoirwZ/ifWBm4UnQM2QqxcRQdQdbyarljaNzUKhnxWx5f/hmC365GCc1ApK9YAIl0LDAmEAtOL4Ba4jFIogQr+dEmimRqjXfUH+BeZtWN+C1zFgmY+9NVXjeYqAj8lCTSoUfpjzDz+EzkqnNFR5G10Lw00RFkSVIY4Wu7eQiIr/oRv2WVk6fG1B8u43FqtugoRHqFBZBIR1T5Ksw9MZfX99UDYRnRyDMyER1Ddo7WfxdfRTYQHaOQuLQcTN99hSODiZ7CAkikI18EfoEbCRx5qA9y1bm4V7uh6Biycq/+q3j7TmfRMYp1ITwRXxwJFh2DSG+wABLpwB/3/sDekL2iY9BTQhzqiY4gG6nOHTH4/jDRMUr1/en7OHw9WnQMIr3AAkhUSfdS7mHp2aWiY9AzQswtREeQhbxabng1fioy8mvGr5MPfr6G+/EZomMQCVcz3rFEekqdnY2vA5YiM48Xodc3IeBAnKommVpjmvpDhGXWnLKdlpOHd364hKzcfNFRiIRiASSqhNgVn+OdNXcwMqWZ6Cj0jNCsWNERDJqkMMI3dvPwlx6N+C2r4Jg0LD7E43VJ3lgAiSooNSAAyXv3QkpMwqsbb2DtrXYwlcSe+Jb+lZiTjMe16oiOYbCO15+GtXo44res9l18iIBb/COB5IsFkKgCVDExiFn48b8TJAn1fg3Ezt/c0SLXWVww0hJS20t0BIMUXv8VTLzTRXSMSpu//xoS0nNExyASggWQqAKi5s9HfkpKoelGN+9gyeY0vJ3QUkAqelaItb3oCAYnzfk5+NwfITqGTsSn5+KjA9wVTPLEAkhUTkk//YTMs+eKvV1KS0O/zUHYcKUtrCXTakxGzwoxlkRHMCh5NvUxNP6dGjPityyO3IzBL5ceio5BVO0M511MVA1UsY/xeOWXZZrX6chFbPvFGR1zXKs4FRUnJDdZdASDIZlaYTpq1ojfslry201EJWeJjkFUrVgAicohZulSqNPKcZ3ZO+H4YGMcZsa0qbpQVKyIzGhkmVqKjlHjSQojrLObhyNxjqKjVIm07DzM/ekqJIlbjEk+WACJyij1jz+QfuxYue8nZWWhy/ZL2HK+NezVhrf1RJ+pJTXuOjcSHaPGO1H/HayONOxL6/0TloB9Fx+IjkFUbVgAicogLykJMZ9+Vqll1Dp2GZt/rIWeWR46SkVlEWLrIjpCjRZRfwgm3OkqOka1+PxwMJIyeAJxkgcWQKIyiF2+AvmJiZVejhT5CO9ueICPHrTTQSoqi2AzDsSpqPTa7TEw3DBG/JZFUqYKnx8OFh2DqFqwABKVIv30aaT+9pvOlifl5qLND4HYcaoF6uRb62y5VLRQNQ/ur4g8m3p4NfFdZOTJ6+Tm+y49wKWIJNExiKocCyBRCaS8PMQuX1Ely7b4+yq+/a8ZBmYY9rFVooVmREGCQnSMGkVSWmEGPsSdDPkdsypJwMKDN5Cv5oAQMmwsgEQlSNr9I3Lv36+y5UvRsfDdEIZP77WHgr9vqkRGXiYeOrqLjlFjSFBgo8MH+CPOSXQUYW5Hp2L737p/3/v6+kKhUGDq1KmFbps2bRoUCgV8fX01006dOoXBgwfD1dUVCoUCBw8e1EmO6OhojBo1Ct7e3jAyMsLMmTNLnH/Pnj1QKBQYOnRoqcu+fv06evToAQsLC9SrVw/Lli3TGl195coVtGvXDtbW1hgyZAiSkv7d2pqXl4f27dsjMDCwog+NyoEFkKgY+cnJiF+/vupXlJeHJnsv4If/ecMjz67q1ydDISyAZXbKbSpWRjQWHUO4r/53B7Gp2TpfrpubG/bs2YOsrH8PTcjOzsaPP/4Id3ft12lGRgbatGmDdevW6TRDTk4OateujY8++ght2pR8iqqIiAjMnTsXL774YqnLTU1NRd++feHq6orAwEB8++23WLVqFdasWaOZ5+2330bv3r1x+fJlJCcnY/ny5ZrbVq1ahW7duqFjx44Vf3BUZiyARMWIW7+hyMu9VRXlxZtYvV2N11ObVts65SLYspboCDVCZP3BGH+n9F/0cpCek4fVf4XofLnt27eHu7s79u/fr5m2f/9+uLm5oV077cFhL7/8Mj799FO89tprOs3g6emJr7/+GuPGjYOtrW2x8+Xn52P06NFYunQpGjRoUOpyd+3ahezsbPj5+aFly5Z47bXXsGDBAqxZs0azFfD27duYNGkSmjRpgpEjR+LWrVsAgHv37mHbtm347LPKnW2Byo4FkKgIOffuIenHH6t9ver4RAzfeAurg9vDROLbU1dCFPmiI+i9jNpt8XL466Jj6JVfLj/CndhynPi9jCZMmIDt27drvt+2bRsmTpyok2WHh4dDoVDgxIkTlV7WsmXLULt2bbz11ltlmv/s2bPo0aMHzMzMNNP69++PqKgohIeHAwDatGmDgIAA5OXl4ejRo2jdujUAYOrUqVi5ciVsbGwqnZvKhr9hiIoQ+8UXQF6emJWr1XA7cAE//O6Jpir5HoelS6E58aIj6LU8m3oYljRddiN+S5OvlrDyT91vBRw7dizOnDmD8PBwRERE4O+//8aYMWN0smylUglvb29YWlbuCjh///03tm7diu+//77M94mJiYGLi/Z5Nwu+j4mJAQBs2bIFP//8Mxo2bAhTU1PMnz8fO3fuhKWlJTp27Ij+/fujUaNGWLhwYaXyU+lMRAcg0jfpZ/5GxslTomPA6HooPomshT/ebIHtDjdFx6nRorIeI9XCFrWyqm+Xfk0hKS0xS/EBgtN5ybyiBNyKxaWIRHTwcNDZMp2cnODj44MdO3ZAkiT4+PjAyUk3f+zVq1cPwcGVO5dhWloaxowZg++//77cuRQK7RH3Bbt+C6a3aNECJ0+e1NyekJCAJUuW4NSpU3jvvffQtWtX7N+/Hx07dkSnTp0wePDgSj0WKh63ABI9RZIkPF69WnQMDSklFS9vuop119rBXOLfa5UR4syBDc+SoMAmhw/w2+PaoqPotao4OfTEiRPh5+eHHTt26Gz3r66EhYUhPDwcgwcPhomJCUxMTLBz504cOnQIJiYmCAsLK/J+derU0WzpK/D48WMAKLRlsMCsWbMwc+ZM1K9fHydOnMDw4cNhZWUFHx8fnezGpuKxABI9Jf3YMeTcvi06RiHOvwdixwFXdMitKzpKjRVai7vTn/W322R8HtFEdAy9FxiehIBbsTpd5oABA5Cbm4vc3Fz0799fp8uurKZNm+L69esICgrSfA0ZMgS9evVCUFAQ3Nzcirxf586dcerUKeTm/ns5vb/++guurq7w9PQsNP/Ro0cRHByM6dOnA3gy6ESlUgEAVCoV8vN57G5VYgEkekr8ho2iIxRLEXIP875LxPTHrUVHqZGClTy+7WkP6/tgzJ0eomPUGF/+GazTk0MbGxvj9u3buH37NoyNi35tpqenawoYANy/fx9BQUGIjIwsdrmPHj1C06ZNceHChRLXX7Dc9PR0xMXFISgoSDMi19zcHC1bttT6srOzg42NDVq2bAlT0yeXV1y3bh369OmjWeaoUaNgZmYGX19f3LhxAwcOHMDy5csxe/bsQruGs7Ky8O6772Lz5s0wMnpSRbp27Yr169fj6tWr+OWXX9C1qzyuQS0KCyDR/0s7cQLZN/X7WDspIwPdt17G5sA2sJXMRcepUULydD+as6Z6MuL3DdExapTQ2HT4X4vS6TJr1aqFWrWKP0XRxYsX0a5dO83pYWbPno127dph0aJFxd5HpVIhJCQEmZmZJa67YLmXLl3C7t270a5dOwwcOLBc+ePj47V2B9va2iIgIAAPHz7Ec889h2nTpmH27NmYPXt2ofsuW7YMgwYNQtu2bTXTvvnmGwQFBaF79+4YNGgQhg0bVq48VD4K6elTdBPJ2P3X30D2tWuiY5SZwtMNX79qgjPmD0RHqRFMjUxx/n44TNSCRnfriXxrVwzKXobbHPRRbk3r2ODwf14stDWLqCbiFkAiAOmnT9eo8gcAUvgD/GdDFOY9alf6zIRcdS7u15b3dZclpSVmG3/A8ldBwTFp+N/tx6JjEOkECyARgPh11XDJtyog5eSg/c5A+J1uCed8a9Fx9F6IfT3REYSRoMAWx/fxa6yz6Cg12rrjd0VHINIJFkCSvYx//kHW1auiY1SK5ZkgrP/BHP0zS79ck5yFWFiIjiDMWbdJ+CzcW3SMGu/qg2Scu5cgOgZRpbEAkuwlbN0mOoJOSFExeGv9PSy93x4KHtlbpBDklj6TAXpU72WMutNTdAyDsfnUPdERiCqNBZBkLef+fWT884/oGLqTl4dmey7gv8eawj3fTnQavROSJb/jtzKd2mBg5EjRMQzK8ZDHCK2CawQTVScWQJK1pN0/AgY4EN70wg2s3g4MS+Muv6cl5iQhrlbRVyQwRPlWdTAiZTpSVLyKjC5JErD19H3RMYgqhQWQZEudkYGUgwdFx6gyUlw83thwGytD28NE4lu9QEhteRwnKZlY4H2TebiZZiU6ikE6dDUKqdkq0TGIKoy/FUi2Ug4dgjrNwHfjqNXw/OUC/nvYC43zHEWn0QvBVnaiI1Q5CQpsq/0+9nPEb5XJUuXj4JVHomMQVRgLIMlW0u7doiNUG+OrIVi+JQdjk5uLjiJcqInhn8T3vNvb+OR+U9ExDN7u88Vfko1I37EAkixlnDuPnDvyOp+XlJSMwd9dxzfX28FMku91cUNUyaIjVKmoegMw8m5P0TFkITgmDZciEkXHIKoQFkCSJTlt/dMiSajjH4idB+ujda58BkM8LSIjGtlKwzwfYKZTK7wcOQqSZPhbOfXFLm4FpBqKBZBkJy8pCWnHj4uOIZQiOAwfb0rGO3GtRUepdvlSPu46NxIdQ+fyrergjZQZHPFbzX6/Fo2UTA4GoZqHBZBkJ+3IEUDFD2wpPQO9tlzGd5fawkZtJjpOtQqxM6ytn5KJBT4w+RDXOeK32uXkqfHz5YeiYxCVGwsgyU7Kb/6iI+gVh78uYutPTuicXV90lGoTbGpYhdev9lz8EmtYpbYmOXCFBZBqHhZAkhXVo0fIunJFdAz9cy8Cs7+LwfvRbUUnqRahUpboCDpz3u1tLL3fTHQMWbvxKBXh8RmiYxCVCwsgyUqK/+8GeeUPXZCystHR7yK2/dMKjmpL0XGqVGhmNCTU/IES0fX64827vUTHIAC/XY0SHYGoXFgASVZS/X8THUHvWZ+8gu92WaNPlqfoKFUmXZWBh47uomNUSpZTSwyMHM0Rv3rC/1q06AhE5cICSLKRHRwsu3P/VZT0MApT1kdgcUR70VGqTKhDzS2A+VbOeCN1BpI44ldvhMSm4U6sgV9ZiAwKCyDJRqo/B3+Ui0qFFrsv4L/Hm6Fefi3RaXQu2KpmPibJxBwfKufjWqq16Cj0DO4GppqEBZBkI/XIn6Ij1Ehm567jqx3GGJLWWHQUnQoxyhcdoUJ21H4fP8dwxK8+4m5gqklYAEkWcsLCoHrIUzVUlBQbhzEbQ7HibnsYG8DgCQAIzUkQHaHcAt0mYglH/Oqte/EZuBWVKjoGUZmwAJIspJ88JTpCzZefj4Y/XcB/jzRCwzwH0Wkq7VFmLNLMbUXHKLOYen3x+t0+omNQKY6HPBYdgahMWABJFtJPsQDqismV2/h8Sy5GpdT8LVEhLjXjknBZji3g82AMR/zWACdD40RHICoTFkAyePnpGci6dEl0DIMiJSVj6MYb+OpWe5hJxqLjVFiIjZPoCKXKt3LGyLT/ICFXKToKlcGVyCSkZfNSk6T/WADJ4GWc/QcSr/2re5IE118vYMchN7RU1cxBCSGm+n0aFcnYDAtM5yGII35rDFW+hL/v1rzjS0l+WADJ4GVw92+VMrp1F4s3pWJSQivRUcotJE+/z9v2g/Nc7I2uIzoGldOpO9wNTPqPBZAMXvqp06IjGDwpLQ19N1/BxittYS2Zio5TZmGZ0cgz0s+tgJfcJuDj+y1Ex6AKOMXjAKkGYAEkg5YdEoq82FjRMWTD8chFbPvZGc/n1BMdpUxy8nMQXruh6BiFxLq+hOF3XxIdgyroYVIW7j5OFx2DqEQsgGTQMi9dFB1Bfu6G4/2NjzErpo3oJGUSYu8qOoKWbMfmGPhwLEf81nB/340XHYGoRCyAZNCyrgSJjiBLUlYWOm+/hC3nWsNebSE6TolCLCxFR9BQW9bGqPSZHPFrAC5FJImOQFQiFkAyaFlXroiOIGu1jl/G5h9roWeWh+goxQpBrugIAP5/xK/ZPFxO4YhfQ3A5kgWQ9BsLIBmsvLg4Xv5ND0iRj/Duhgf46EE70VGKFJylH1du+NFlNvZE1xUdg3TkYVIWHqdli45BVCwWQDJYmdz6pzek3Fy0+SEQO042R518/drClZiThHgbsecxvOI+Hgvu1bzT6FDJLkcki45AVCwWQDJYPP5P/1j8cw3f7jSFT7p+XYItpLaXsHXHufbG8Dt9ha2fqs4V7gYmPcYCSAaLx//pJynmMcZvvIvPwtrDGPox0jXY2l7IerMdmmLgw/HIl/hRbIh4HCDpM37qkEGScnORfeuW6BhUnLw8NN53ATv/agzPPDvRaRBiUv1FVG3hhFEZsxDHEb8G69rDFKjy1aJjEBWJBZAMUnboHUi5+jG6k4qnvHQLX25T442UpkJzhKqSq3V9krEpFpl/iMspNtW6XqpeOXlqhMbq9+UGSb5YAMkg5YSGio5AZSQlJGLYxptYHdweppKxkAzhGdHIMTGvtvXtdZmDH6JrxtVSqHLuxPKKIKSfWADJIOXcuSM6ApWHJMHtwAXs9PdAc1Xtal99vpSPuy6Nq2VdV93HYh5H/MoGtwCSvmIBJIPELYA1k9GNUCzdnIGJCS2rfd3BtlV/Kpg411547U7/Kl8P6Y87vCYw6SkWQDJIOXfvio5AFSSlpmLA5iCsv9oOlurqGyARYla1u4BzHLzh88iXI35l5g63AJKe4icRGZz89AzkxcaKjkGVVPuPQPgdqIMOudVzdYwQKbPKlq22cMTYzFl4nMMRv3ITmZiJbFW+6BhEhbAAksHJvX9fdATSldD7mLcxAe89blP1q8qMhlQF5yWUjE2xxGI+LiTX0vmySf+pJSAsjruBSf+wAJLByb1/T3QE0iEpMxMvbr2E7wPbwFZddbtp01UZeOTgpvPl/lRnFnZGuep8uVRz3OVxgKSHWADJ4OSGh4uOQFXA9n+XsGWvHV7Mdq+ydYQ4euh0edfdx+CDsKrfekn67V5chugIRIWwAJLBUUVFi45AVUQKf4gZGx5h/qN2VbL8EEvdnZg5oW4PDL0zQGfLo5orOiVLdASiQlgAyeDkPeYAEEMm5eSg3c5A+J1uCed8a50uO8RYN5ftyrFvAp+oCRzxSwCA6JRs0RGICuGnExkcVexj0RGoGlieCcL6H8wxIKOhzpYZkhNf6WWoLRwwLms2YnJMdZCIDEEMCyDpIRZAMjg8BYx8SFExmLghDMvut4dCqvzyHmU+Rpq5bcXzGCmxzGIeznPELz2FBZD0EQsgGRR1ZibU6RxxJyt5eWi65wL+e7Qp3PPtKr24UOdGFb7v/rqz4BdVv9IZyLCk5eQhPSdPdAwiLSyAZFBU3PonW6aBN7Bmm4Rhad6VWk6wrVOF7nfDbTTmhLWt1LrJcMVwIAjpGRZAMih5PP5P1tTxCXhjw218GdIeJhUcgBGqNCn3fRLqdserYQMrtD6Sh6hk7gYm/cICSAaFI4AJajU89l/Af//wgreq/FvzQvLLdwhBrn1jDIqaCJVa91cRIcMRl5YjOgKRFhZAMih58QmiI5CeML4Wgk+3ZGF8Uoty3e9uRhTyFcZlmldt4YDx2bMRzRG/VAoeA0j6hgWQDIo6g2fcp39JySnw+e4qvr3eDuZS2Xbt5uTnILx26aeWkYyU+NTyQ5xNqvioYZIPFkDSNyyAZFDUmZmiI5AecvEPxI4DrmibW6dM8wc7lH7t3gN1Z2LbI91fO5gMU1o2CyDpFxZAMigsgFQcRcg9fLQpCdPiWpc6b4iFVYm333IbidlhVXM5OjJM6Tkq0RGItLAAkkFRZ7EAUvGk9Az03HIZmy+2ga1kXux8oSj+l3Vi3RfxStigqohHBoxbAEnfsACSQeEWQCoLu4BL2LLXAV2yi96FG5xV9GjyXLtG8Il+iyN+qdzSWQBJz7AAkkGRMnmyVSob6X4kZm2MxvtRbQvdlpCThHhrZ61panN7TMiZg+hsjvil8kvjIBDSMyyAZFC4BZDKQ8rORscdF7H971ZwUmsf9xfq3ODf+YxM8JnVPPzNEb9UQVm5+aIjEGlhASSDwgJIFWF16go27rLCS5lemmnB1vaa/x+qOxNbOeKXKiFfLYmOQKSFBZAMipTPv7KpYqSHUZi8/j4WR7SHQgJCTJ4c53fb7U38J6y94HRU06klFkDSLyyAZFAURnxJUyXk5aHF7gvYebwZUjJykFSnK4aEDRadigwACyDpm/Jf9ZxInxmX7RJeRCUxO38ds+7Xxt0WbbFNfUx0HDIAxia1AfQQHYNIgwWQDIqCBZB0RP04DtaPA2AtOggZBLPGjUVHINLC/WVkWFgAiUgf8fAU0jN8RZJB4RZAItJLxvx1S/qFr0gyKCyARKSPFEb8bCL9wgJIhoUFkIj0kJGFhegIRFpYAMmgKEw4romI9I+RjY3oCERaWADJoBhZWZU+ExFRNTO24Xhy0i8sgGRQjO3sREcgIirEyJpbAEm/sACSQTG2tRUdgYioECNuASQ9wwJIBoVbAIlIHxnzGEDSMyyAZFBYAIlIH3EQCOkbFkAyKMZ23AVMRPqHWwBJ37AAkkHhFkAi0kdGtWqJjkCkhQWQDAoLIBHpI2WdOqIjEGlhASSDYuzgIDoCEVEhSldX0RGItLAAkkExsbeHwtJSdAwiIg1jOzteCo70DgsgGRzTevVERyAi0uDWP9JHLIBkcJRubqIjEBFpmLjWFR2BqBAWQDI4pm71RUcgItLgFkDSRyyAZHCU9bkFkIj0h7IuCyDpHxZAMjjK+jwGkIj0h7IudwGT/mEBJINjymMAiUiPmHq4i45AVAgLIBkcZf36gEIhOgYREWBiArOGDUWnICqEBZAMjpG5OQ+6JiK9YOblCYWpqegYRIWwAJJBMm/eTHQEIiKYNfEWHYGoSCyAZJDMmrEAEpF4Zk2aiI5AVCQWQDJI5iyARKQHzLxZAEk/sQCSQTJv3kJ0BCIimHtzFzDpJxZAMkhKF2cYOzmJjkFEMmZka8tzAJLeYgEkg8XdwEQkkjmP/yM9xgJIBosFkIhEsmjbVnQEomKxAJLBMm/B4wCJSBzL5zqIjkBULBZAMliWHdqLjkBEcmVkBIv2/Awi/cUCSAbLxMkJpo14CSYiqn5m3t4wtrERHYOoWCyAZNCsOr0gOgIRyZDlc8+JjkBUIhZAMmiWnZ4XHYGIZIgFkPQdCyAZNMuOHQGFQnQMIpIZDgAhfccCSAbNxN4eZjwTPxFVI1MvL5g4OoqOQVQiFkAyeFbcDUxE1ciqM489Jv3HAkgGz7JTJ9ERiEhGrHv1Eh2BqFQsgGTwLJ/vBIVSKToGEcmAkaUl/+ikGoEFkAyesbUVLJ/nbmAiqnpWXbvCyNRUdAyiUrEAkixY9+ktOgIRyYB1b37WUM3AAkiyYMMPZSKqasbGsO7ZQ3QKojJhASRZUNapA/NWrUTHICIDZtG2LUzs7UXHICoTFkCSjVr9+4mOQEQGzKZXT9ERiMqMBZBkw6Z/f9ERiMiAWffpIzoCUZmxAJJsmLq5wbx5c9ExiMgAmbdqBTMvL9ExiMqMBZBkpdbAl0VHICIDZDv0FdERiMqFBZBkpdaQIYCxsegYRGRAFEolbH18RMcgKhcWQJIVpbMzrF98UXQMIjIg1j17wNjOTnQMonJhASTZsR32mugIRGRAbIcOFR2BqNxYAEl2bHr2hLGjo+gYRGQAjO3tYd29u+gYROXGAkiyo1AqYfsKD9gmosqr5eMDhVIpOgZRubEAkizZcTcwEekAd/9STcUCSLJk1rAhLNq2FR2DiGowizZtYNGyhegYRBXCAkiyZTdiuOgIRFSDOYwfJzoCUYWxAJJs1Ro0iINBiKhCTOrWhU0/Xl+cai4WQJItIzMz2I8eJToGEdVA9qNGQmFiIjoGUYWxAJKs2Y8cCYWFhegYRFSDKCwsYP/666JjEFUKCyDJmom9PexefVV0DCKqQWxfGQJjW1vRMYgqhQWQZM9hgi+vD0xEZaNQwGEcB39QzccCSLJn6uYGm5deEh2DiGoAqxe7waxBA9ExiCqNBZAIgONbE0VHIKIawGnqO6IjEOkECyARAIvWrWHZsaPoGESkx6y6dIFl+3aiYxDpBAsg0f+rPfM/oiMQkR5zmv6u6AhEOsMCSPT/LDt0gFWP7qJjEJEeerL1r73oGEQ6wwJI9BTnWbMAhUJ0DCLSM9xDQIaGBZDoKeZNm6LWwIGiYxCRHrHu0wcWrVuLjkGkUyyARM+oPeM9gJd4IiIAMDJC7RkzRKcg0jkWQKJnmHp4wG7YMNExiEgP1BrkA3PvJqJjEOmcQpIkSXQIIn2jin2MsP79IWVni45CRIIYWVqiweHDULo4i45CpHPcAkhUBKWLMxx8x4uOQUQCOU6dyvJHBotbAImKoc7Kwj2fQVBFRYmOQkTVzNTDAw1+OwSFqanoKERVglsAiYphZGEBl48WiI5BRAI4z5/H8kcGjQWQqAQ2ffrAumdP0TGIqBpZ9+gBG77vycBxFzBRKXIfPsS9QYM5IIRIBhRKJRr4/wZTDw/RUYiqFLcAEpXCtH59OE6eJDoGEVUDB19flj+SBW4BJCoDdW4u7g0eDFVEpOgoRFRFlO7uaHDwAIwsLUVHIapy3AJIVAZGpqao8/Ei0TGIqKooFHBd/hnLH8kGCyBRGVl36wq7EcNFxyCiKmA/dgwsn3tOdAyiasNdwETloM7IwL1XhkL18KHoKESkI6YeHvA6eABGFhaioxBVG24BJCoHIysruH7xOWDEtw6RQTAyQt0Vy1n+SHb4W4yonCw7dIDjxAmiYxCRDjiMHQvL9u1FxyCqdtwFTFQBUm4u7g8fgZzQUNFRiKiCTL284HVgP4zMzUVHIap23AJIVAEKU1O4frkSCqVSdBQiqgilEq5ffM7yR7LFAkhUQebe3nCa8Z7oGERUAS5z58CidWvRMYiEYQEkqgTHt96CVfcXRccgonKw6dcPDuPHi45BJBSPASSqpPyUFNwfNpynhiGqAZTu7vDa/wuMra1FRyESilsAiSrJ2NYW9b/5GgozM9FRiKgECjMz1P9qLcsfEVgAiXTCvHlz1FnES8UR6TOXBQtg3ry56BhEeoEFkEhH7Ia9BrsRI0THIKIi1BoyGPZvvC46BpHe4DGARDqkzs1FxKjRyL5xQ3QUIvp/Zs2awXPXDzCytBQdhUhvsAAS6ZgqKgr3hw1HflKS6ChEsmfi4gLPfXuhdHERHYVIr3AXMJGOKV1dUX/Deih4glkioYwsLeH23UaWP6IisAASVQHLdu3g+uVKwIhvMSIhjI3hunoVzJs1E52ESC/xtxNRFanVty9c5s8XHYNIllw+/BA2vXqJjkGkt1gAiaqQw9gxcJgwQXQMIlmxHzMGDuPGio5BpNc4CISoikmShEezZyPt8BHRUYgMnnWPHk+OwTU2Fh2FSK+xABJVA3VuLiInTkTWxUuioxAZLMuOHeH2/WYYcQAWUalYAImqSX5KCiLGjUdOSIjoKEQGx6JtW7hv3QIjKyvRUYhqBB4DSFRNjG1t4b59G0wbNhQdhcigmLdo8WTLH8sfUZmxABJVIxMHhycl0MNDdBQig2DWpAnct26BsY2N6ChENQoLIFE1Uzo7w32HH5Tu7qKjENVopg0awH37Nhjb2YmOQlTjsAASCaCsUwceO3dA6cESSFQRSnd3uG/fDhNHR9FRiGokFkAiQZ6UwP/C1NNTdBSiGsW0QQN47PCD0sVZdBSiGosFkEggpYsz3HfugGkjDgwhKgvzVq3gsesHKOvWFR2FqEZjASQSTOnsDM9du2DRoYPoKER6zbLzC/Dw2w4Te3vRUYhqPBZAIj1gbGsL921bYdP3JdFRiPSSTb9+cNu0iad6IdIRFkAiPWFkZoZ6X38Nu5Fvio5CpFfsRgxHva/WwsjUVHQUIoPBK4EQ6aH4775D3Fdfi45BJJzjpLfhPGeO6BhEBocFkEhPJf/yC6IXLwHy8kRHIap+SiXqfPQR7N98Q3QSIoPEAkikx9JPncKjOXOhTksTHYWo2hg7OKD+11/BsmNH0VGIDBYLIJGeyw0Px4Pp05F7N0x0FKIqZ9a0KdzWr4OyXj3RUYgMGgeBEOk5U09PeO3dC5t+/URHIapSNv37w3P3LpY/omrALYBENUj85u8R99VXgFotOgqR7igUcJr+LpymTYNCoRCdhkgWWACJapj002cQNXcu8lNSREchqjQja2vUXbEctfr2FR2FSFZYAIlqoNyHD/HwvRnIuX1bdBSiCjNv1Qr11qyGqZub6ChEssMCSFRDqXNzEbdmLRJ37AD4NqaaRKGAw/jxcJ4zGwqlUnQaIlliASSq4TLOnUPUvPnIi4kRHYWoVMZOTnD97FNY9+ghOgqRrLEAEhmA/JQURC9ZgrTDR0RHISqWdY8eqLv8M5g4OoqOQiR7LIBEBiTl118R88mnUKeni45CpKGwtITz3DlwGDVKdBQi+n8sgEQGRvXoEaI+nIfMixdFRyGC1Ysvos7ixTCtz3P7EekTFkAiAyRJEpJ//hlxq1bzdDEkhLGDA1zmz4ft4EGioxBREVgAiQxYXmIiHn+xEim//io6CsmI7dChcP7wA5jY24uOQkTFYAEkkoGM8xcQs3Qpcu/dEx2FDJjSzQ11ly6BVZcuoqMQUSlYAIlkQsrNRcLWrYj/bhOknBzRcciAKMzN4eA7Hk5Tp8LI3Fx0HCIqAxZAIpnJjYzE4y9XIS0gQHQUqukUCtgOGYzaM2dCWbeu6DREVA4sgEQylRUUhNhVq5B18ZLoKFQDWT7/PJw//AAWLVqIjkJEFcACSCRzacePI27NWuTcuSM6CtUApl5ecH5/Lmx69xYdhYgqgQWQiCCp1Ug5cBBx69YhLzpadBzSQya1a8Nx6hTYv/EGFCYmouMQUSWxABKRhjonB0m7diNh+zbkx8WLjkN6QOnqCsdJb8N22DAYmZqKjkNEOsICSESFqHNzkXLwIBK3bkNuRIToOCSAqacnHCdPhu2QwdziR2SAWACJqFiSWo20vwKQsGULsm/cEB2HqoFZkyZwmjoFNgMGQGFkJDoOEVURFkAiKpOMs2eR8P0WZPzzj+gopGsKBSxf6ASHsWNh3asXFAqF6EREVMVYAImoXLJv30bS3r1I9f8d6vR00XGoEoxsbWE3dCjs3nwDZl5eouMQUTViASSiClFnZiL18GEk7/sJWVevio5D5WDesiXsR45ELZ+BvHIHkUyxABJRpWWHhCL5p5+QcugQ1KmpouNQEYysrGAzoD/s3xwJi1YtRcchIsFYAIlIZ9TZ2Uj76y+k+Psj4+w5QKUSHUnWFObmsO7RA7V8BsK6Rw8YmZmJjkREeoIFkIiqRH5yMlIDApB2+DAyLgQCeXmiI8mDUgnrrl1Ry2cgbHr3hpGVlehERKSHWACJqMrlJycj7dhxpP3vf8j4+29IOTmiIxkUhaUlrJ5/HtZ9eqNWv34wtrUVHYmI9BwLIBFVK3VmJjLOnUfGubPIPHsWOXfuio5UI5k1aQKrF7vB+sUXYdm+PRS8SgcRlQMLIBEJlRcXh4xz55Dxz1lknDvHaxEXw9jODlZdOsOqazdYdesGpYuz6EhEVIOxABKRXsm5fx+Z5y8g6/o1ZN+4iZywMPkdP6hUwrxJE1i0aQ2LNm1g3ro1z9NHRDrFAkhEek2dnY2c4GBk3biJ7Bs3kH3zBnLu3Qfy80VH0w0jIyjd6sO8aTNYtGkDi7ZtYN68Oc/PR0RVigWQiGocdWYmcu7dR25EOFSRkciNiERu5JOv/Ph40fGKZGRpCaWnB8w8PaH08IBZg4Ywa9wIpl5ePD0LEVU7FkAiMij56RlQRUYg98FD5MXHIT8xCflJichLTEJ+YuK//09OrvxWRBMTGJmbw9jeHia1a8PEyenJl/OT/xs7OcGkdm0oXVxg4uSkk8dHRKQLLIBEJEuSJEGdng4pNxdSXh4klQpSrurJvyoVJFUuJJUKCmNjKMzMYWRuBoW5xf//aw4jMzMolErRD4OIqEKMRAcgMhSSJOGll15C//79C922YcMG2NraIjIyssLLP3v2LHr37g0rKyvY2dmhZ8+eyMrK0tyelJSEsWPHwtbWFra2thg7diySk5NLXOb+/fvRv39/ODk5QaFQICgoqNA8s2fPhoODA9zd3bFnzx6t2/bt24fBgwdX+DGJpFAoYGxjAxNHRyhdXGBavz7MGnjB3LsJLFq2gGW7drB6/nlYdugAi5YtYNaoEUzr13uyZc/amuWPiGo0FkAiHVEoFNi+fTvOnz+PTZs2aabfv38fH374Ib7++mu4u7tXaNlnz57FgAED0K9fP1y4cAGBgYGYPn06jIz+fQuPGjUKQUFBOHLkCI4cOYKgoCCMHTu2xOVmZGSga9eu+Pzzz4u8/bfffsPu3bvx119/4YsvvsCECROQkJAAAEhOTsZHH32E9evXV+gxERGRONwFTKRjO3bswPTp03Ht2jV4enqiT58+qFWrFg4ePFjhZb7wwgvo27cvPvnkkyJvv337Npo3b45z586hU6dOAIBz586hc+fOCA4Ohre3d4nLDw8Ph5eXF65cuYK2bdtqpq9cuRKXL1/WbPlzcXGBv78/OnbsiMmTJ6NZs2aYNWtWhR8XERGJwS2ARDo2fvx49OnTBxMmTMC6detw48YNbN68udj5fX190bNnz2Jvf/z4Mc6fPw9nZ2d06dIFLi4u6NGjB86cOaOZ5+zZs7C1tdWUP+BJabS1tcU///xT4cfSpk0bXLx4EUlJSbh06RKysrLQqFEjnDlzBpcvX8aMGTMqvGwiIhKHBZCoCmzevBm3bt3CzJkzsWnTJjg7F3/Vhrp165a4a/jevXsAgCVLlmDSpEk4cuQI2rdvjz59+uDOnTsAgJiYmCLX4ezsjJiYmAo/jv79+2PMmDHo2LEjfH19sWPHDlhZWeGdd97Bpk2bsHHjRnh7e6Nr1664efNmhddDRETVy0R0ACJD5OzsjMmTJ+PgwYN49dVXS5x3xYoVJd6uVqsBAFOmTMGECRMAAO3atcPRo0exbds2zf0VCkWh+0qSVOT08liyZAmWLFmi9f1LL70EpVKJTz/9FNevX4e/vz/GjRuHS5cuVWpdRERUPbgFkKiKmJiYwMSk8n9j1a1bFwDQvHlzrenNmjXTjCquU6cOYmNjC903Li4OLi4ulc5QIDg4GLt27cInn3yCEydOoHv37qhduzZef/11XL58GampqTpbFxERVR0WQCI95+npCVdXV4SEhGhNDw0NhYeHBwCgc+fOSElJwYULFzS3nz9/HikpKejSpYtOckiShMmTJ2P16tWwtrZGfn4+VCoVAGj+LdhaSURE+o0FkEiw+fPnY9y4ccXerlAo8P777+Obb77Bzz//jLt37+Ljjz9GcHAw3nrrLQBPtgYOGDAAkyZNwrlz53Du3DlMmjQJgwYN0hoB3LRpUxw4cEDzfWJiIoKCgnDr1i0AQEhICIKCgoo8bvD777+Hs7MzhgwZAgDo2rUrjh07hnPnzmHt2rVo3rw57OzsdPEjISKiKsZjAIkEi46OLvUE0TNnzkR2djZmzZqFxMREtGnTBgEBAWjYsKFmnl27dmHGjBno168fAGDIkCFYt26d1nJCQkKQkpKi+f7QoUOa4woB4M033wQALF68WOu4v9jYWCxfvlxrRPHzzz+POXPmwMfHB87OztixY0f5HzwREQnB8wASERERyQx3ARMRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcywABIRERHJDAsgERERkcz8H2q71vxQh1wQAAAAAElFTkSuQmCC", "text/plain": [ "class=Graph name=Unnamed implementation=class=GraphImplementation name=Unnamed title=Importance Factors from Design Point - LSF inferior to 0 xTitle= yTitle= axes=OFF grid=OFF legendposition= legendFontSize=1 drawables=[class=Drawable name=Unnamed implementation=class=Pie name=Unnamed labels=[M1 : 14.0%,M2 : 14.0%,P : 12.0%,Y : 60.1%] radius=1 center=class=Point name=Unnamed dimension=2 values=[0,0] color palette=[#1f77b4,#ff7f0e,#2ca02c,#d62728] derived from class=DrawableImplementation name=Unnamed legend= data=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=4 dimension=1 data=[[0.139562],[0.139562],[0.119726],[0.601151]] color=blue fillStyle=solid lineStyle=solid pointStyle=plus lineWidth=1]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "alpha_ot = result.getImportanceFactors()\n", "print(alpha_ot)\n", "result.drawImportanceFactors()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "We also compute the importance factors as they are defined in your textbook in order to compare them. " ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The importance factors as defined in the textbook are: [0.392274,0.22648,0.363329,-0.814138]\n" ] } ], "source": [ "alpha = u_star/beta\n", "print(\"The importance factors as defined in the textbook are: \", alpha)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "The values given by OpenTURNS are completely different than the one calculated above! When using built-in methods, it is essential to check how they are defined, even when the method's name is explicit. \n", "\n", "**Bonus:** you can figure out the relationship between the textbook's and OpenTURNS formulation by comparing the package's [documentation](https://openturns.github.io/openturns/latest/theory/reliability_sensitivity/importance_form.html#importance-form) and elements of chapter 6 (ADK). \n", "\n", "
\n", "

\n", "Task 6:\n", "Interpret the importance factors. Which random variables act as loads or resistances? What is the order of importance?\n", "

\n", "
\n", "
\n", "
\n", "From the results printed above:\n", "\n", "
" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Sensitivity factors\n", "\n", "
\n", "

\n", "Sensitivity is covered in HW4 and Week 6; it is included here to give you a hint for how it is used in the interpretation of FORM.\n", "

\n", "
\n", "\n", "We can also access the sensitivity of the reliability index $\\beta$ with regards to the distribution parameters with the built-in method:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The sensitivity factors of the reliability index with regards to the distribution parameters are: \n", "[[mean_0_marginal_0 : -0.00348688, standard_deviation_0_marginal_0 : -0.00358711],[mean_0_marginal_1 : -0.00697376, standard_deviation_0_marginal_1 : -0.00717422],[beta_marginal_2 : -0.000956263, gamma_marginal_2 : -0.000569862],[beta_marginal_3 : 9.47416e-05, alpha_marginal_3 : 0.108925, gamma_marginal_3 : 0.000132624],[R_2_1_copula : 0, R_3_1_copula : 0, R_3_2_copula : 0, R_4_1_copula : 0, R_4_2_copula : 0, R_4_3_copula : 0]]\n" ] } ], "source": [ "sens = result.getHasoferReliabilityIndexSensitivity()\n", "print(\"The sensitivity factors of the reliability index with regards to the distribution parameters are: \")\n", "print(sens)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "**Interpretation:**\n", "\n", "The vectors returned by this method allow us to assess the impact of changes in any distribution parameter on the reliability index, and therefore on the failure probability.\n", "\n", "For instance, let us increase the mean of $M_2$ from 125 to 150. Such change would lead to a decrease of $\\beta$ of $-0.007 \\times 25 = -0.175$. The new failure probability would thus be $ \\Phi(-\\beta) = \\Phi(-(2.565-0.175)) = 0.0084 $, an increase!" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Graphical Interpretation\n", "\n", "The difference between the two probabilities above was expected because FORM tends to underestimate the failure probability.\n", "\n", "We summarize our findings in two plots. Since $M_2$ and $Y$ have the strongest contributions to the failure probability, we choose to position ourselves in that plane first.\n", "\n", "
\n", "

\n", "Task 7:\n", "Complete the code below by filling in the missing values of the design point for the plot. Then take a look at the plots and see if you can learn anything about the limit-state function, and whether it is aligned with your FORM and MCS results. If you were designing a structure using the beam in this proble, would you feel comfortable using the design point from this analysis?\n", "

\n", "
\n", "
\n", "
\n", "In the code cell below, you were required to enter the proper design values from the result \"x_star\".\n", "
\n", "From the figure, note:\n", "\n", "
" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "tags": [ "hide-input" ] }, "outputs": [], "source": [ "def f_m2(m1, p, y):\n", " ''' Computes m2 given m1, p and y. '''\n", " return s2*y - m1*s2/s1 - (s2*p**2) /(y*a**2)\n", "\n", "def f_m1(m2, p, y):\n", " ''' Computes m1 given m2, p and y. '''\n", " return s1*y - m2*s1/s2 - (s1*p**2) /(y*a**2)\n", "\n", "\n", "\n", "y_sample = np.linspace(10000, 50000, 200)\n", "m2_sample = [f_m2(x_star[0], x_star[2], k) for k in y_sample] # For now, take (Y, M2) plane" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAHVCAYAAADcq97KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHsUlEQVR4nOydd5gUVdaH3+rcPaEnB2DIOQsoSUQyShBBQYERkMVVV5E1rNlld1XMrsK36hpRWTG7uiqiKAqCCigKkvMAk0NP6Ol8vz+qu2Z6Agwwwwxw3+fpXafrVt1TRXX1r8859xxFCCGQSCQSiUQikdQLusY2QCKRSCQSieRsQooriUQikUgkknpEiiuJRCKRSCSSekSKK4lEIpFIJJJ6RIoriUQikUgkknpEiiuJRCKRSCSSekSKK4lEIpFIJJJ6RIoriUQikUgkknpEiiuJRCKRSCSSekSKK4lEIpFIJJJ6RIoriUQikUgkknpEiqszjNmzZ6MoCrNnzz4n55eA3+/nqaee4rzzziMiIgJFUVAUhY8++qixTWtwztT7r6nbffHFF6MoCgsXLmxsU+qdpn7tTwf33XcfiqLw2GOPNbYpTYKxY8eiKApff/11g80hxVUjsnDhQu2L8WzgtddeY+HChaxevfqsnLexzq8qCxYs4LbbbmPz5s34fD6Sk5NJTk7GYrE0ql2nQlO5tmcj8tqe2xw+fJinnnqKxMRE/vSnP9U6rmXLltr3kdFoxOPxHPO4mzdvRq/Xa/v06dOnvk2vlV9//RWdToeiKDz11FPHHf/BBx9otj755JPaj4jbb7+dQCDQIDYaGuSokgYjNTWVTp06kZqa2uTmf+211/j2228B9Zfw6eJ0zdtY51eZkpISXnjhBQAee+wxbr/99rNCnNf12jb2/X+yNKbdTeG+lTQe9957L+Xl5fz9738nIiKixjH5+flkZGRof/t8Pnbs2EHPnj1rPe78+fPDhEnfvn3rz+jj0KtXL8aPH88nn3zCP//5T26++WaMRmONY9evX8+MGTMIBALcdNNN3HbbbQCMGTOGL774gjfffJNrrrmm3m2UnqszjEWLFrFjxw4WLVp0Ts5/rrNjxw68Xi8AN9xww1khrE6EM/X+O1PtlpzZHDlyhGXLlmEymbj22mtrHbdp0ybtv9u0aQPAli1bah2/fPly1qxZQ4sWLbRn0OkUVwD3338/ABkZGbz11ls1jtm9ezcTJkzA5XJx2WWX8cwzz2jbrr/+eoAGC5VKcSWRnEE4nU7tvyMjIxvREolE0tR58cUX8fv9XHrppcTFxdU6LiSukpKSuPTSS4HaxZXT6eQvf/kLAHPmzEEIAXBaw4IA559/PqNHjwbgiSeeqLY9NzeXSy65hPz8fC644AL+85//oNNVSJ7QNfn999/5/vvv699AIWk0/vrXvwpAnMg/w6xZswQgZs2aVW3b0KFDBSD++te/Cp/PJ5566inRu3dvERERIRITE8Vll10mNm/erI0vKysT//jHP0S3bt2EzWYTcXFxYurUqWLPnj0nNP+rr76qnUdtr/3799f5HN9++20xduxYkZSUJAwGg7Db7aJ9+/ZiwoQJYsmSJaK8vPyk5i0qKhJvvfWWmD59uujevbuIjY0VZrNZtGzZUlx99dVi/fr1NdpzMueXmZkp7rzzTtGzZ08RHR0tzGazaNOmjZg7d674/fff63wt6mrD0KFDtbGtWrUSgHj11VdrPV5t91HleygQCIh///vf4oILLhBRUVEiMjJSDBgwQLzxxhvHtffQoUPijjvuEL169RLR0dHCYrGItm3biokTJ4qlS5ee9L/hse7/EN9884244oorRLNmzYTJZBLx8fFi+PDh4pVXXhE+n6/GferrvGujrp/b+pz7RK5tfdlQ3/d9VdvcbrdYtGiR6NGjh7DZbCImJkaMHDlSfPbZZ7Xuf6xrf7LPhJpsO9nr1hDXTAghAoGAaNGihQDEO++8c8yxV1xxhQDE2LFjxYsvvigAcemll9Y49v777xeAGDFihHjppZcEIAwGg/aZPp2sWbNGu5cr3wNlZWWif//+AhBt27YV2dnZNe4/b948AYhrrrmm3m2T4qoRaShxdc8994iRI0cKQJhMJhEREaHNExkZKTZs2CDy8vLEeeedJwBhsViE1WrVxiQlJYmDBw/Wef7ly5eL5ORkYTQaBSAiIiJEcnJy2OvQoUN1Or9rr7027OEfGRkpbDZbjV8IJzpv5esdOrbZbNb+VhRFPPPMM9VsOtF5PvnkExEZGakd12g0hv0bmEwmsXTp0jpdj6o2xMbGasepPP/ll1+uja0PcXXfffeJyy67THtwRkdHh127Bx54oNZjv/7668JisYSdr91uD9v/l19+Oalrezxx9ec//zns3zMmJkbo9XrtveHDh4vi4uJq+9XHeR+Lunxu63vuE7m29WFDQ9z3lW27++67xZAhQzTbYmJiwmz761//WuP+x7r2J/tMqGrbyV63hrpmQgjx22+/acfJzMw85tg2bdpo3x0bNmwQgEhLS6s27sCBA8JisQi9Xi+2bNkibrjhBgGIXr16nZSN9UHo3+Diiy8WQgjh9/vFxIkTBSDi4+PFzp07a933jTfe0L7z6hsprhqRhhJXMTExIj4+Xrz77rvC4/GIQCAgfvrpJ9G2bVsBiEGDBonLL79ctG7dWnzxxRfC7/cLv98vvvrqK5GYmCgAMWPGjJOev7aH3PEI/QrR6XTi0UcfFfn5+dq2vLw88cUXX4hZs2aJI0eOnNS8zz33nPjzn/8sfvjhB1FYWCiEUH/d7du3T9xyyy1CURSh1+vFzz//XOP+dZnnxx9/FCaTSQDij3/8o9i+fbvmLTl48KC48cYbtQfwhg0bjn9RqvDNN98c956pD3EVGxsr7Ha7eO2114TT6RRCCJGRkSEmTJig/Rvt2rWr2nE//fRToSiKAMTgwYPFmjVrhN/vF0II4XA4xHfffSfmzZtX7Rd5Xf8Nj3X/LV68WLs21113nfaFUlpaKp5++mlhMBgEIKZNm1Zt31M97+NRl89NQ81dl2t7qjY05H0fss1utwuz2Syef/55zUty6NAhzesCiP/+97/V9j/Wta+vZ8LJXLeGflYsWbKkVpFUmYKCAu36vffee6K8vFz7rBQVFYWNnTJligDETTfdJIQQmndozpw5J2xfffHll19q9v/000/iT3/6kwDVafD9998fc99du3Zp+27fvr1e7ZLiqhFpKHEFiDVr1lTbvmrVKm271WoVu3fvrjbm5Zdf1rZ7PJ6Tmv9kxdWjjz4qADF69OgT2u9U5w0R+lDOnTv3pOc5//zzBSDuv//+WsfMnz9fAOKyyy47YRtPl7gCxNdff11tP5fLJZo1ayYA8eCDD4Zt83q92i/gCy+8ULjd7jqf16mKK6fTKeLi4gQgrr766hr3ffbZZ7Vzq/pldSrnXRfq+rltiLlPRFydrA0Ned9Xtu3ll1+utt3v94uLLrpIAKJr167VttcllFwbdX0mnMx1a+hnRXp6ugDE+PHjjznuq6++0s5h3759QgghunXrJgCxdu1abdzXX3+teYPy8/OFz+fTIh5Lliw5YfvqkwEDBghAC4MqiiLefffdOu0b8hy+8sor9WqTTGg/C7nwwgu58MILq70/dOhQzGYzAFdccQXt27evNmbMmDEAlJeXs3v37oY1tAoxMTGAmojo9/tP69wA48aNA2Dt2rUntf+vv/7Khg0bMBqN2nLfmggt+/3qq68a5TzrwuDBgxk2bFi1981ms3aP/Pbbb2HbvvnmG/bv3w/A008/jclkanhDg3z55ZcUFBQA1FoI88Ybb9RKIdS2uuhkzru+aMy5T8WG03Xfp6WlMWfOnGrv63Q67rvvPgC2bdt2zFVuJ0pdnwknet1OxzU7evQoAImJiccc9/PPPwMQGxurrRTs3bs3UJHU7vf7ueWWWwD4+9//TlxcHNu2baO8vBw4/SsFqxL69z98+DCgJrhfccUVddo3Pj4eqLhe9YWsc3UWcsEFF9T4vl6vJyEhgSNHjnD++efXOCY5OVn778LCwgaxrzZGjhyJxWLhl19+YciQIcydO5fhw4drH/j6YN++ffzrX//im2++Ye/evZSUlFQrIhf6gJ4ooQdwIBCgU6dOtY4LPSTLysrIz88nKSnppOZrSPr371/rtmbNmgFoYibEunXrAEhJSaFfv34NZ1wNbNy4EVC/gDt27FjjGL1ez/Dhw1m2bJk2vionc971RWPOfSo2nK77PlRFviYuuugiDAYDPp+PjRs30qNHjzoftz6eCSd63U7HNcvNzQU45ipBqFgpeN5552nv9e7dm2XLlmni6vnnn2fLli306NGDP/7xj2H76fV6evXqpe37888/8+abb7Jq1Sr2799PIBCge/fu3HzzzcyYMaPO9p8I48aNIzExkdzcXCZPnsytt95a533j4uI4ePCgdr3qCymuzkKioqJq3WYwGI45JrQd0OopnS7atm3LSy+9xPXXX8/69etZv349oP7yGjZsGNOnT2fixIknXdvpww8/5Oqrr8btdmvvRUdHY7FYUBQFj8dDYWEhZWVlJ3X80C8fv99PdnZ2nfapXFqhKVGXe6jq/ZGVlQVAq1atGs6wWsjJyQGgefPmxxzXokWLsPFVOZnzri8ac+5TseF03ffH+rc1m83Ex8eTnZ1d679tTdTXM+FEr9vpuGYulwtAi1bURshzVbmUQkhobdmyhYKCAh544AEAnnnmGfR6fdh+Xbp0wWq1avs+9thjrFq1iilTpvCnP/2J0tJSXn31VWbOnMmePXv461//ekLnURccDgd5eXkAjBgx4oT2Ddkeul71hQwLSpoUM2bM4ODBgzz//PNMmzaNtLQ0cnNzeeedd5g0aRJDhw6luLj4hI+bn5/P7NmzcbvdDB8+nNWrV+N0OnE4HGRnZ5OVlcW77757SraHfmV27twZoeYzHvfVunXrU5qzKdKYhU3rOve5Vny1ITld9319/5udjmdCbZyOaxYKdx0rAlFcXMyePXuAcHEVCgtu3bqV+++/n4KCAqZMmRIW+gyJq6ohwfnz55ORkcHzzz/Pddddx6233spPP/1Ex44deeihhxokIvLLL7+cdL2tkEcxdL3qCymuJE2OuLg4/vjHP7J8+XIOHTrEnj17uOuuu1AUhTVr1pxUc9nPPvuM4uJiYmNj+eSTTxg6dGjYry2o8LycLCkpKYAaZjhZ71d9EPqlfKxfYg6Ho97nDeUzhfKuTiehcEnlFh41EQrvHC8PRVJ3Ttd9f6zQnNvtJj8/H6DOobPT8UyojdNxzUL3+LFCybWJkvj4eFq0aEFhYSHPPfccFoslrFBnIBBg8+bN1fYDGDRoULU+p1arlfHjx+P1etm5c+cpnVdNhIRe1RBlXQhdn/p+JkhxJak3QtVvQx/W+qJdu3YsWrSI6dOnA2ry8onOG/rS7dSpEzabrcYxX3311THtON48gwcPBsDj8fDhhx8e81gNSWxsLFC70AgEArXmHJ0KgwYNAiA7O/uEj3+q904ox+vw4cPs2rWrxjF+v59vvvkGoNacw7ORhvpchjhd9/23335b6zmsWbMGn88HUOd8v/p4Jpwsp+Oade3aFVAFXG2ERElkZGS1XMWQ90oIwe233x7mOdu5c6cmCuuazF7XBPuTIXQenTt3riaQj0VJSYkWTuzSpUu92iTFlaTeiI6OBqCoqOik9q+c91AToQ9NKOZ/IvPa7XYAdu3aVaNHZ/PmzfznP/855vzHm6dfv35arsK999573ATJhkpODv1y+/DDD2v8Mlq6dOlJJ+0fi2HDhtG2bVsA/vznP+PxeOq876neO6NGjdLc+rV5Nl944QXtAX/11Vef1DxnIqd6bY/H6brvDx06xNKlS6u9HwgEePjhhwH1C7Kuyez18Uw4WU7HNbvooosAdWVibc/WUFJ67969q4Vdr7vuOm677TbuuOMO7rrrrhr30+l0mgg7Ftu2beODDz5gwIABtGvX7kRP5bjUlDdWFzZu3EggEMBgMGiCt76Q4qqJkJeXd8xXQz0Y65Pu3bsDqrv9yJEjJ7z/TTfdxNSpU3n//ffDklJLS0t5/vnnef311wG03lcnMu/o0aPR6XQUFBQwY8YMbZzH4+Gdd95h9OjRx0xKrcs8iqLw/PPPYzabOXToEP379+e9994LS0Q9cuQIb775JqNGjeLOO+883iU5KULCYfv27Vx33XVauKS4uJinn36a66+//rgriE4GvV7PkiVLUBSFtWvXMmLECNauXautvCouLmb16tXMnDmTbdu2he17qveO1WrVRNVbb73F9ddfryUKO51OFi9ezIIFCwCYNm1aoy8dP52c6rU9Hqfrvrfb7dxwww28+OKLmhjKyMjg6quv1jySDz30UJ2PVx/PhJPldFyzwYMHYzAY8Hg8WgivKscSJRMmTOCJJ57gscceIyIiosb9OnXqVG1bVYqLi7nyyivR6XS88MILNY45cOAAiqKgKMoJp304nU7NW32i4urHH3/U9qvvXq1SXDUREhMTj/m6+OKLG9vE4zJr1iwsFgt79uyhZcuWpKSk0Lp1a1q3bl0nT4nX6+Xdd9/liiuuIDk5maioKGJjY4mKiuKGG27A4/Fw4YUXcu+9957wvB06dOCOO+4A4IMPPqBFixbExMQQGRnJtGnTiIyM5Nlnnz3l87vgggv45JNPiI+PZ//+/Vx55ZVER0eTkJBAREQELVq0ID09vcHCDaCulgnVx3nppZdISEggNjaW2NhYbr31Vq677jomTJjQIHNfcsklvPbaa5jNZtauXcuQIUOw2WzExsZit9sZNmwYy5Ytq+bVOtV7B1Rx/uc//xlQvVSpqanExcVht9uZP38+Xq+XYcOG8eKLL9b7eTdl6uPaHo/Tcd/feOON9OvXj+uuu47o6Gji4uJo2bIl77zzDqDWOrr88svrfLz6eCacCg19zaKjo7U6XR9//HG17WVlZVr+04mKkpDn6ng/UsrLy5kwYQK7du1i+fLl9OzZ84TmqQubN2/WFgic6HmErkso5aQ+keJKUm906NCBb775hokTJ5KYmEh+fj4HDx7k4MGDWj7Esbj//vt59tlnufzyy+ncuTMGg4HS0lKSkpIYNWoUr7zyCqtXr672S6mu8z7yyCO8/vrrXHDBBVitVrxeL+3bt+eee+7hl19+0erRnOr5jRo1ij179rBo0SIuvPBC7HY7RUVF6HQ6unbtyty5c/n4449ZvHjxCV7huvPKK6/wzDPP0Lt3b6xWK4FAgMGDB/P222836LygFj7csWMHCxYsoGvXrtqv53bt2jFp0iTeeOONavkNp3rvhHjqqaf4+uuvmTJlCsnJyZSWlhIVFcWwYcN45ZVX+PLLLxvMG9FUqa9rezwa+r43mUysWrWKhx9+mE6dOuF2u7Hb7YwYMYJPP/2Uf/zjHyd8zFN9JpwqDX3NQjWp/vOf/1RLEdi8ebPmVT4RUSKEqDWZvTIej4fLL7+ctWvX8sYbb3DZZZfVOrayR3XAgAF1tgXUpHxQvYF1CVGG2L9/P+vXr8dqtWo/RuuVeq33LpFIJBJJPVJf7a3ORfx+v2jXrp0AxLfffnva5vV6veKyyy4TiqLUqa3MP/7xD61t1unib3/7W4P2RZSeK4lEIpFIzkJ0Op3m0XvkkUdOy5yBQICZM2fy3//+l//7v/+rsWVRVb7++msAbWFCQ1NWVsbixYsxm80NUtQUZIV2iUQikUjOWq666ir++c9/8vnnn/Pjjz8es1VPfXD77bfz9ttvc9FFFxEVFcWbb74Ztn3QoEHaqmJQV4mvX7+esWPHMmTIkAa1LcSSJUvIy8vjjjvuaLCOElJcSSQSiURylqIoCi+88AIfffSRVtOpIQmtJPzuu+/47rvvqm1/9dVXw8SV2WzWGkCfLiIiIli4cKG2grghaHJhwYULF2pLMkOvUDVbUJPpFi5cSLNmzbBarVx88cX8/vvvYcdwu93cfPPN2qqLiRMnVlsVU1hYSHp6Ona7HbvdTnp6erVyB4cOHWLChAlERESQkJDA/PnzT6h2j0QikUgkjU3v3r1ZuHChtnqwIVm9evUx2/jMnj27wW04HjfddBN//etftVpnDUGTE1cA3bp1IzMzU3uFOnOD2hTyqaeeYsmSJWzYsIGUlBRGjRpFSUmJNmbBggV8+OGHLF++nLVr11JaWsr48eO15ZqgLr3cvHkzK1asYMWKFWzevJn09HRtu9/vZ9y4cZSVlbF27VqWL1/O+++/z2233XZ6LoJEIpFItC/rk2l7JZE0Gg2SJn8K/PWvfxW9evWqcVsgEBApKSnikUce0d5zuVzCbreL559/XgghRFFRkTAajWL58uXamCNHjgidTidWrFghhBBi27ZtAhA//PCDNmb9+vUCEDt27BBCCPHZZ58JnU4njhw5oo156623hNlsFg6Ho97OVyKRSCQSydlFk8y52r17N82aNcNsNtO/f38efvhh2rZty/79+8nKymL06NHaWLPZzNChQ1m3bh1//OMf2bRpE16vN2xMs2bN6N69O+vWrWPMmDGsX78eu90eltg3YMAA7HY769ato1OnTqxfv57u3buH1TkZM2YMbrebTZs2hXUHr4zb7Q5rNRAIBCgoKCA+Pr7eu7pLJBKJRCJpGIQQlJSU0KxZM61HZ11pcuKqf//+vP7663Ts2JHs7GwefPBBBg0axO+//651KE9OTg7bJzk5mYMHDwJqF3OTyaQ1r608JrR/VlZWjZ3Tk5KSwsZUnSc2NhaTyXTMTumLFi3ib3/72wmetUQikUgkkqZIRkYGLVq0OKF9mpy4uuSSS7T/7tGjBwMHDqRdu3YsXbpUq9xa1QMkhDiuV6jqmJrGn8yYqtx9993ceuut2t8Oh4OWLVuSkZGhNVCVSCQSieRcQwhwB1OfzXpoisGcRYsWaTXBhgwZwpo1a06qq0OTE1dViYiIoEePHuzevZtJkyYBqlcpNTVVG5OTk6N5mVJSUvB4PBQWFoZ5r3Jychg0aJA2JtTUtTK5ublhxwk1dQxRWFiI1+ut5tGqjNlsxmw2V3s/OjpaiiuJRCKRnLM0dXH1t7/9TRNWo0ePpk+fPqxZs+akUnqa5GrByrjdbrZv305qaipt2rQhJSWFL7/8Utvu8Xj49ttvNeHUt29fjEZj2JjMzEy2bt2qjRk4cCAOh4OffvpJG/Pjjz/icDjCxmzdupXMzExtzMqVKzGbzcdtVimRSCQSieTM4W9/+5u2InXUqFGaFjhZmpzn6vbbb2fChAm0bNmSnJwcHnzwQYqLi5k1axaKorBgwQIefvhhOnToQIcOHXj44Yex2WxaV2u73c7cuXO57bbbiI+PJy4ujttvv50ePXowcuRIALp06cLYsWOZN28eL7zwAgDXXXcd48ePp1OnToCqWrt27Up6ejqPP/44BQUF3H777cybN096oCQSiUQiOUv4+9//rgmr0aNHn7KwgiYorg4fPszVV19NXl4eiYmJDBgwgB9++EErUf+Xv/yF8vJybrzxRgoLC+nfvz8rV64Mi4k+/fTTGAwGpk6dSnl5OSNGjOC1115Dr9drY5YtW8b8+fO1VYUTJ05kyZIl2na9Xs+nn37KjTfeyODBg7FarUyfPp0nnnjiNF0JiUQikUgkDcnf//53rb9gfXisQihCCFEvR5LUSHFxMXa7HYfDUavHKxAIyMrvkhPCaDSG/ViQSCSSpk5Ty7n6xz/+wQMPPACowmrw4MFh210uF4888sgxv79ro8l5rs41PB4P+/fvJxAINLYpkjOMmJgYUlJSZP00iUQiOUGOJ6xOFSmuGhEhBJmZmej1etLS0k64SJnk3EQIgdPpJCcnByBs5axEIpFIjs2DDz7YoMIKpLhqVHw+H06nk2bNmmGz2RrbHMkZhNVqBdQSI0lJSTJEKJFIJHWgco7VyJEjG0RYwRlQiuFsJtRI2mQyNbIlkjORkCD3er2NbIlEIpE0fRYuXBiWvH7hhRc22FxSXDUBZM6M5GSQ941EIpHUjYULF2qt6RoqFFgZGRaUSCQSiURyViKEYOHChfz9738H6q+O1fGQ4koikUgkEslZhxCCBx54gAcffBCAMWPGMHDgwNMytwwLSk6Y2bNna30eq/LLL78wfvx4kpKSsFgstG7dmmnTppGXlwfAgQMHUBSl2mvmzJmn8QwkEolEcjYjhOD+++9vFGEF0nMlqUdycnIYOXIkEyZM4IsvviAmJob9+/fz8ccf43Q6w8Z+9dVXdOvWTfs7tPpNIpFIJJJTQQjBfffdx8MPPwzA2LFjGTBgwGm1QYqrJkSoflFjYLPZTjlBet26dRQXF/PSSy9hMKi3Vps2bRg+fHi1sfHx8aSkpJzSfBKJRCKRVEYIwb333suiRYuAxhFWIMVVk8LpdBIZGdkoc5eWlhIREXFKx0hJScHn8/Hhhx9yxRVXyNVsEolEIjltCCG4++67efTRRwG45JJL6N+/f6PYInOuJPXGgAEDuOeee5g+fToJCQlccsklPP7442RnZ1cbO2jQICIjI7XXL7/80ggWSyQSieRsQAjBXXfdpQmrSy+9tNGEFUjPVZPCZrNRWlraaHPXBw899BC33norX3/9NT/88APPP/88Dz/8MN999x09evTQxr399tt06dJF+zstLa1e5pdIJBLJuYUQgjvvvJPHH38cgHHjxnH++ec3qk1SXDUhFEU55dBcUyA+Pp4rr7ySK6+8kkWLFnHeeefxxBNPsHTpUm1MWloa7du3b0QrJRKJRHKmI4Tgjjvu4MknnwSahrACKa4kDYzJZKJdu3aUlZU1tikSiUQiOYsQQnD77bfz1FNPATB+/Hj69evXyFapSHElOSkcDgebN28Oe++3335j5cqVXHXVVXTs2BEhBJ988gmfffYZr776auMYKpFIJJKzDiEEt912G08//TSgeqyairACKa4kJ8nq1as577zzwt5LT0/HZrNx2223kZGRgdlspkOHDrz00kukp6c3kqUSiUQiOZsQQvDnP/+ZZ555BmhaHqsQUlxJTpjXXnuN11577aT2bd26NUKI+jVIIpFIJOcEVYXVxIkT6dOnTyNbVR0priQSieQMRQiB1y/w+AVen8AXUF+BgCAgQAAK6v/oFNArCga9gkGnYDIomPQ69DpkTTrJGYEQgltuuYXFixcDMGHChCYprECKK4lEIjmjCAhBuSdAuTeAyxsgcBxHsAj+j1+AH1WIVUavA6tRh82kx2xQpNCSNEmEEMyfP58lS5YATddjFUKKK4lEImniCCFw+wSlbj/lngCV5ZECqhfKoMOgU71SIW9USCYJVE+WP+jZ8vkFHp8qtPwBKHUHKHUH0CkQYdITZdFj0EuRJWkaCCG4+eab+b//+z8URWnSHqsQUlxJJBJJE0UIgcsbwFHuD/M4GXQKNpMOq1GHqU7eppq3B4LHL/cGKPeoXrASt58Stx+rUYfdqsdkkI08JI2HEIKbbrqJf/3rXyiKwsSJE6stpmqKSHElkUgkTRC3L0BhmU8TVQpgM+uIMusx6usnfKdTFGwmPTaTHmFThVaJ24/LK1TB5Q1gM+mItRnQ66QnS3J6CQQC3HTTTTz33HMoisJll11G7969G9usOiHFlUQikTQhAkJQ5PRR6g4AqqiKtOiJtugbVOAoioLVpMdq0uPxqd6ycm8ApydAuddDjNVApFknc7Ikp4VAIMCNN97ICy+8gKIoTJo0iV69ejW2WXVGiiuJRCJpIrh9AfJLvfhUXUWESUdMI3iNTAYdiVE6PL4ABUHvWaHTR7lXR3yE9GJJGpZAIMANN9zAv//97zNSWIEUVxKJRNLoCCEodQcodPoAdQVffIQRi/Hk851C5RgURX3pTsLjZDLoSI42UuoOUOT04fIGyHJ4SIg0Yj4F2ySS2ggEAlx//fW8+OKLKIrC5ZdfTs+ePRvbrBNGiiuJRCJpRIQQFDr9lLr9gFoWIT7CgK6O3qFAQF1FWOLyUe5RyzN4/dVLNOh1YNLrsJp0WE16oiwGbKbjh/kURSHKopZpyCv14QsIsku8xEcYiDDrT+qcJZKaCAQC/PGPf+Sll146o4UVgPzpcTbg98Pq1fDWW+r/+/2NbVG98NprrxETE9PYZtSJAwcOoChKtX6LEsmxEEKQV+rThFWMVU9C5PGFVSAgKCzzsjfHyeaMEnZnO8lyeHCU+3D7aq595Q9AuVcN8x0pdLMjs4zfMko5mFdOqct33M4JJoOOFLsRa9BjlV/mo8R1djxrJI1PIBBg3rx5mrCaPHnyGSusQHquznw++ABuuQUOH654r0ULeOYZmDy5QaacPXs2S5cuBcBgMBAXF0fPnj25+uqrmT17Njpd/Wj2adOmcemll9bLsRqatLQ0MjMzSUhIqPM+Cxcu5KOPPpKC7BwlJKzKvWqCVV08Qf6AILfYQ3axB18lBWXUK0RbDNjMeqxGHcZgzavQRzEQUCu5u31qyYWyoKfLFxDklXrJK/ViNepIsZuJjTDU6s3SKQoJkQbN0xYKY0ZZpAdLcvL4/X6uvfZaXn/9dU1Y9ejRo7HNOiWkuDqT+eADuOIKqPqL88gR9f333mswgTV27FheffVV/H4/2dnZrFixgltuuYX33nuPjz/+GIPh1G8tq9WK1WqtB2sbHr1eT0pKSmObITlDEEKQX1YhrBKjKjxCtY3PK/FypMiNPyiqjHqFuAgjcZHqvscK7+n0CgY9WE16YmwVxyxx+Sko9VLo9FLuDbA/r5xMh460OAvR1po/w4qiEGvTo1Og2KUKLEWBSBkilJwEPp+PWbNm8Z///AedTseUKVPo1q1bY5t1ysiw4JmK3696rGpy5YfeW7CgwUKEZrOZlJQUmjdvTp8+fbjnnnv473//y+effx7W1NnhcHDdddeRlJREdHQ0w4cP59dff9W2//rrrwwbNoyoqCiio6Pp27cvGzduBGoOCz744IMkJSURFRXFH/7wB+66666wuiezZ89m0qRJPPHEE6SmphIfH8+f/vQnvF5vreeycOFCevfuzQsvvEBaWho2m40rr7ySoqIibUwgEODvf/87LVq0wGw207t3b1asWKFtrxoWXL16NYqisGrVKvr164fNZmPQoEHs3LlTO7e//e1v/Prrr2olbUU56WbYkjMPR7kfpycorCINxxRWTo+f7ZllHCpw4Q8ILEYdrRMs9GgRSYs4CzaT/qTKIyiKQrTVQOtEKz1aRJEaY0avA5c3wO5sJ/tynPj8gVr3tVv1mseqoJJQlEjqis/nY+bMmZqwuvLKK88KYQVSXJ25rFkTHgqsihCQkaGOO00MHz6cXr168cEHHwRNEIwbN46srCw+++wzNm3aRJ8+fRgxYgQFBQUAzJgxgxYtWrBhwwY2bdrEXXfdhdForPH4y5Yt46GHHuLRRx9l06ZNtGzZkueee67auG+++Ya9e/fyzTffsHTpUl577bXjCpc9e/bwzjvv8Mknn7BixQo2b97Mn/70J237M888w5NPPskTTzzBb7/9xpgxY5g4cSK7d+8+5nHvvfdennzySTZu3IjBYODaa68F1JDnbbfdRrdu3cjMzCQzM5Np06Yd81iSs4Myt5/iYK5SfIQBq6lmj48QgpxiDzuOllHuCaDXQVqcha7NIoiPNB1TUKmV3f04PerL4wscM6fKoFdoFmOme/MoEqPUz1+h08e2o2WUuHw17qMoCjFWPTaT+jWSV+rFW4sYk0iq4vV5ueqqq3j77bfR6/VMnTqVLl26NLZZ9YYMC56pZGbW77h6onPnzvz222+AKnK2bNlCTk4OZrMZgCeeeIKPPvqI9957j+uuu45Dhw5xxx130LlzZwA6dOhQ67EXL17M3LlzmTNnDgAPPPAAK1eupLS0NGxcbGwsS5YsQa/X07lzZ8aNG8eqVauYN29ercd2uVwsXbqUFi1aaHONGzeOJ598kpSUFJ544gnuvPNOrrrqKgAeffRRvvnmG/75z3/yf//3f7Ue96GHHmLo0KEA3HXXXYwbNw6Xy4XVaiUyMhKDwSDDiecQXr+aUA4QbdHXmmMVEIKDeS4KylSPq91qoFWCBaO+5t/DpW4fmcVuCpweCpxenF5/Nae2QacQYdITZzOREGEkNdpSrbWNQa/QMt5KQqSJfbnluH0BdmU5aRlvITHKVG1eRVGIjzDgD3hx+9QcsuRo40mVfZCcW1yTns7777+PXq9n2rRpdOzYsbFNqlek5+pMJTW1fsfVE0II7Rf1pk2bKC0tJT4+nsjISO21f/9+9u7dC8Ctt97KH/7wB0aOHMkjjzyivV8TO3fu5IILLgh7r+rfAN26dUOvr/jSSk1NJScn55h2t2zZUhNWAAMHDiQQCLBz506Ki4s5evQogwcPDttn8ODBbN++/ZjHrbzaJTX4b3E8WyRnJ0II8kt9CMBsUMNqNeEPCPZmOzVh1SLWTLskazVh5QsI9uaV8dXOXFbsyOXXo8VkFLko81QIK52ivkLjHS4f+wucbMhw8Mnv2azdV8BRh6uaV8tm1tOlWQRxEerv70P5Lo4WVh8HQYEVaUSngNcvcDjlCkLJ8fnkk08wGAxcddVVZ52wAum5OnMZMkRdFXjkSM15V4qibh8y5LSatX37dtq0aQOoeUqpqamsXr262rhQLtXChQuZPn06n376KZ9//jl//etfWb58OZdffnmNx68aCqnpYV81rKgoCoHAiYUrQvNUnq+muY+X61LZltDYE7VFcnYQar6sUyA+0ljjveMPCPZkOyl1+9Ep0DbJhr1KYnkgINidV8au3DLcvooWOYmRJhIjTcTZTESZDViMOs2D5A8InF4/xS4f+WUeskvcOFw+skrcZJW4sVsMdEuJIjXarNml1ym0TrBiNnrILHKT6fAQENA81lzNdoNO9WDllvoocfuxmXSyyKikGm63CwwWQF1pPmXKFNq1a9fIVjUMTfruX7RoEYqisGDBAu292bNnawnAodeAAQPC9nO73dx8880kJCQQERHBxIkTOVwlP6mwsJD09HTsdjt2u5309PSwBGaAQ4cOMWHCBCIiIkhISGD+/Pl4PJ6GOt0TQ69Xyy2AKqQqE/r7n/9Ux50mvv76a7Zs2cKUKVMA6NOnD1lZWRgMBtq3bx/2qlyyoGPHjvz5z39m5cqVTJ48mVdffbXG43fq1Imffvop7L1Q8vupcujQIY4ePar9vX79enQ6HR07diQ6OppmzZqxdu3asH3WrVt3SjkCJpMJ/1lSk0xybLz+gJZnFWszYKihjpUQgv255ZS6/egV6JBcXVjllLr5clcuWzJLcPsC2Ex6ejWLZny3ZC5qF0+X5CiSo8zYTPqw0JxepxBlNtDcbqFns2hGdUpkdKdEOiZGYNApOFw+1h0oZN2BQso8FTlWiqLmYqXFqV+I2cUecoprfgZaTXoigvlXBc7j182SnFuUl5czdepU7e9p06adtcIKmrC42rBhA//+979rLCI2duxYLQk4MzOTzz77LGz7ggUL+PDDD1m+fDlr166ltLSU8ePHh32RTZ8+nc2bN7NixQotgTk9PV3b7vf7GTduHGVlZaxdu5bly5fz/vvvc9tttzXcSZ8okyer5RaaNw9/v0WLBi3DAKqAzcrK4siRI/z88888/PDDXHbZZYwfP55rrrkGgJEjRzJw4EAmTZrEF198wYEDB1i3bh333XcfGzdupLy8nJtuuonVq1dz8OBBvv/+ezZs2FCrYLn55pt5+eWXWbp0Kbt37+bBBx/kt99+q5dGshaLhVmzZvHrr7+yZs0a5s+fz9SpU7V8qDvuuINHH32Ut99+m507d3LXXXexefNmbrnllpOes3Xr1uzfv5/NmzeTl5eH2+0+5fOQNE0Kg6Eyi1FXa55VRoEbR7kPBWifbCPSUiGshBBszSzmu70FlLj9mA06+qXZGds5kQ6JEZgNJ/4oj7YY6Nksmku7JNEpKQJFgcxiN1/uzONIUXnY2KRoE81j1bzJw4VuCstqXn0bYzNo4UFZYFQSwul0MmHCBFatWqW917p168Yz6DTQJMOCpaWlzJgxgxdffJEHH3yw2vZQGYCacDgcvPzyy7zxxhuMHDkSgDfffJO0tDS++uorxowZw/bt21mxYgU//PAD/fv3B+DFF19k4MCB7Ny5k06dOrFy5Uq2bdtGRkYGzZo1A+DJJ59k9uzZPPTQQ0RHRzfQ2Z8gkyfDZZepqwIzM9UcqyFDGtxjtWLFClJTUzEYDMTGxtKrVy+effZZZs2apRURVRSFzz77jHvvvZdrr72W3NxcUlJSuOiii0hOTkav15Ofn88111xDdnY2CQkJTJ48mb/97W81zjljxgz27dvH7bffjsvlYurUqcyePbuaN+tkaN++PZMnT+bSSy+loKCASy+9lH/961/a9vnz51NcXMxtt91GTk4OXbt25eOPPz5mAv7xmDJlCh988AHDhg2jqKiIV199ldmzZ5/yuUiaFuVetSUNQKyt5s9lfqmH3BLVI9Qm0RomrLz+AD8eLCKrRBXfbeKs9GgWjalKDpbL5+dgoYuDhU4KnF6Kyn14/QEUBcwGPbFWIwkRRtrG22gRbdGqwJsMOnqkRtMq1srGDAcFTi/rDxbRxeWja3Kk9uMlOdqExyfILfFwIK8cq0mHxRh+PnqdQozNQEGZD0e5nwizXjZ5PscpLS1lwoQJrF69+ozpuFEfKKIJ+m5nzZpFXFwcTz/9NBdffDG9e/fmn//8J6CGBT/66CNMJhMxMTEMHTqUhx56iKSkJEANTYWW+sfGxmrH7NWrF5MmTeJvf/sbr7zyCrfeemu1MGBMTAxPP/00c+bM4YEHHuC///1vWE2mwsJC4uLi+Prrrxk2bFiNtrvd7jAPRHFxMWlpaTgcjmqCzOVysX//ftq0aYPFYjmVS3bOMmrUKFJSUnjjjTdO+hhnaqV0ef80fYQQZBV78foFUWY9sRHVf8+6gnWsAgJS7SaaxVb8W3p8AdbsK6Cw3Itegb5pMbSMtYYd/1CRiw0ZRezMLaux7U1NWAw6eqZGcX5aDHG2irzAgBD8drSEPXllALSNt3Fe82hNYAkh2JWl5oRZjTo6p0ZUa9UTds4WPbG2JvkbXnIaKCkpYdy4caxZswaz2cycOXN4erFaPuepxx4+Zv3BpoDL5eKRRx6p8fv7eDS5u3758uVs2rSp1lyaSy65hCuvvJJWrVqxf/9+7r//foYPH86mTZswm81kZWVhMpnChBVAcnIyWVlZAGRlZWlirDJJSUlhY5KTk8O2x8bGYjKZtDE1sWjRolo9L5JTw+l08vzzzzNmzBj0ej1vvfUWX331FV9++WVjmyaR1Ei5N4DXL1AUiK5hdaAQggN5LgJCbSGTGmPWtnn9AdbsV4WVSa/jwraxxNkqyiFkFrv5YlcuGUUu7b04m5E2sVZSoszYrUYsBh1CCJzeAIXlXo44XOwrcFLuDfBThoOfMhz0So1iRId4IkwGdIpC7+bRRFsM/HzYwb58JwrQOyiwFEWhTaKV7UfLKPcGyHS4aR4bLuxD9a9yS32UuvxEW6T36lykuLiYSy65hHXr1mE2m0lPTyctLa2xzTptNClxlZGRwS233MLKlStr/SVeudBi9+7d6devH61ateLTTz9l8jFyjKqu7KopT+dkxlTl7rvv5tZbb9X+DnmuJKdOKMz44IMP4na76dSpE++//74W/pVImhrF5WreUVQt4bHcEg9lHnVlYOsEa8WKUiFYf6CQQqcXk15haLs47FbVw+QPCFbtyePHQw5AXanXKzWKvml2kiPN1eaoSkAI9hc4+emQgz35Tn7NLGFHbhljOyXQM1X9dd423oZegQ0ZDvbmO7Ea9XROjgTUMGLLeAv7csvJcniIjTBiq1II1WLUYdQrWu5VjPRenVMUFRUxduxYfvzxRywWC+np6TSvmht8ltOk7vhNmzaRk5ND3759tff8fj/fffcdS5Yswe12h9UvArV2UKtWrbRK2SkpKXg8HgoLC8O8Vzk5OQwaNEgbk52dXW3+3NxczVuVkpLCjz/+GLa9sLAQr9dbzaNVGbPZrBXMlNQvVquVr776qt6Pu3DhQhYuXFjvx5Wc27h9ATx+NU5XU2Njrz/A0UI1haBFbHhBz98zS8gp9aDXKQxpG68Jq1K3j/e2ZGneqm7JkYzskEC0pe6Pcp2i0C4+gnbxERx2uPh8Ry5ZJW7++3sORx1uRnVMQK9TaBVnwxsQbD5SzNasEmJsRlKi1GdbbISRmDIvRU4fGQUuOibbqv0wtVv15JX6KHX7ibbqZWHRc4TCwkJGjx7Nxo0bsVqtpKena3nL5xJNSlyNGDGCLVu2hL03Z84cOnfuzJ133llNWAHk5+eTkZGhFWjs27cvRqORL7/8Ulv2mZmZydatW3nssccAtUCkw+Hgp59+0opQ/vjjjzgcDk2ADRw4kIceeojMzEzt2CtXrsRsNoeJP4lEIqmJ0Go5m0lXo9cqs8iNX4DVpCMhqiLv6Wixi525as5TvxZ2YoM5UQVOD29sOkqx24dZr+Oy7sl0SowIO2aB08vPhx0cLCjnaLEbl9ePoihEmvSkxVppG2/lvObRWiJ6C7uFuRe0YM3+Qr7bV8CGww7ynB6m9UrFqNfRPiECR7mX/QXl/HSwkFGdErGG9o2z4CgvpdTlx1HuI8YWXl/OatSh14E/AE5PQDZ2PgfIz89n1KhR/PLLL9hsNq655ppztgNFkxJXUVFRdO/ePey9iIgI4uPj6d69O6WlpSxcuJApU6aQmprKgQMHuOeee0hISNCKTtrtdubOncttt91GfHw8cXFx3H777fTo0UMLH3Xp0oWxY8cyb948XnjhBQCuu+46xo8fT6dOnQAYPXo0Xbt2JT09nccff5yCggJuv/125s2b13RWCkokkiaJPyC0xsw1ea08vgB5JWoyb1qsRfP6eHwBNmWo4b72CTbSgsnrReVe3vxZFVbxNiPTeqUSH6HmXwkh+OVIMf/7PYcd2WXUltP+69ESAK2Mw4TuSbSKtaJTFIa2jSMlysxHW7PYX1DOu79lMbVXKgadQu/mdgrL1dWHmzIcDG4Ti6IomA06kqNNZDk8HC10Y7caqnmvIs16HOV+ytx+Ka7OcnJzcxk1ahS//vorNpuNWbNmHTPKc7bTpMTV8dDr9WzZsoXXX3+doqIiUlNTGTZsGG+//TZRUVHauKeffhqDwcDUqVMpLy9nxIgRvPbaa2Ger2XLljF//nxGjx4NwMSJE1myZEnYXJ9++ik33ngjgwcPxmq1Mn36dJ544onTd8ISieSMJCSsjHoFk7661yrL4UEAkRY9UZUKhf6WWYzbFyDKbKBHMP/J6fGz7OejOFyqsLqmb3MizcG2NIXlvPrTYXZkl2nH6JBoo0tyJM3tFiLNegICHOVeDha62HK0hKwSN9/vL2Td/kKGdYjnqvNSibIY6JQYwdW9m7Hsl6PszXfy39+zmdw9Gb1O4fyWMazalUdWiZvDRS5N9CVHm8kp9lDuDVDk9BEbEe69ijCp4srtE/j8AkMN10Jy5pOTk8OIESPYunUrERERzJo1q8ZFY+cSTV5cVW6dYrVa+eKLL467j8ViYfHixSxevLjWMXFxcbz55pvHPE7Lli353//+V2dbJRKJBFRBBBBh1lVbAOPzB8gvVWtapdor8jMLnV4OFKjFO/um2dHrFIQQ/Pf3bArKvdgtBmb2qRBW3+zO59WfDuP1C4x6hUs6JzKqUwIJkdUbLIcQQrA3z8n/tuXw40EHX+/O59cjxSwY2pr2iRG0jLUyrVcqb20+yrbsUppHmxnQKha7xUjnpEi2ZZfyW2YxzewW9DoFg14hKei9yin2VBNXBr2CxaDg8gnKPP5qFeclZz5ZWVmMGDGCbdu2ERkZyaxZs0hMTGxssxqdJluhXSKRSM5E/AGB26cG56quogPIK/USCOZaVQ4ZbsksBiAtxkJCMOT3U4a6os+gU5jaK5VoiwEhBEt/Osy/12fg9Qt6N4/i6UlduLpvs2MKK1BDde0TI1gwtA1/HdOelCgz+U4vf/9iDz8cKALUlYJjOqpfjqv25JNZrCbdd0qKxGrUUe4NaHWwABKjTChAqduP0129KrstGA4MefMkZw9Hjx7l4osvZtu2bURFRTFnzhwprILInxFNEIfDgdPpPG3z2Ww27Hb7aZtPIjmbKQ9WYzfplWo9BIUQWq5VUpRJ82rllXrIKfWgAN1T1RSHAqeHr/fkAzCqYwIpUWaEELy58SgrduShAFf2TuGyHslhK/G8/gC7c0rZlllCqcuHTqcQZzPRs0U0abEV5R46J0fy0LiO/GvtQTYdLmbxmgPoda05v2UMfVtEs7/QyY6cMj7els0fLkhDr1PolhLFxgwHO3PKaBdvw6DXYTLoiLEZKHT6yCv10NJcUeQUwGbUUYDaEkeGBs8eDh8+zPDhw9m9ezd2u10r/i1RkeKqieFwOFiyZAk+n+/4g+sJg8HATTfddFoE1muvvcaCBQu06vhnanX04zF79myKior46KOPGtsUyWkm1OrGYqweGChz+3H7AugUwkJoO3NLAWgdZyXCpD6Wv9iZhy8gaB1rpW9zNf/q0225fLY9F4B5A9MY1iFeO8bRIhdvbzzMJ79laWHJqiRHm5natzmXn9cMm0mPzaTn1ovb8Py6Q6zZV8jiNQd5YLSR9okRXNo5iUOFB8kp9bDxsIP+LdXq8DuySyn1+NlfUE6H4GrF+CgThU4fBWVeWsRZwsSeTqdgNii4fYJyb4Co09hMXtIwHDp0iGHDhrFv3z5iYmKYNWtWtcLd5zoyLNjEcDqdp1VYAfh8vhPylM2ePVur1lz5tWfPnuPuO23aNHbt2nUq5p4RPPPMM7z22muNbYbkNCOE0DxXVlP1x2uhU/1sx9gMWnmGUrdPC711TFILde4vcLIn34lOgUs7J6IoCtuySvjPpqMAzOzXTBNWvoDguW/3ceULP/L2xiM4PX6iLQYGto1jQs8ULu2eTO8Wdox6hexiN4u/2cflz/3Al9tyAFX8/HFQS/q0iMbrFzy5ej/FLh8RJj3D2qtzrNlfQLnXj05RNEG1N6+MUPe0aIseg17BH4Di8urPr5DQDAlPyZnLgQMHGDp0KPv27SM2NpbZs2dLYVUD0nMlOSnGjh3Lq6++GvZeXWLtVqsVq9V63HEngsfjwWQ6dq5JXfB6vRiNxuMPrAMyzHpu4vEJhACdQrVVgkIIisrUkGBspZpQ+wvUHzbJUWaigsnq3+4rAKBvczvxESZcXj/Pr8tAAEPbxXFpF/Wzllfq5r6PtrP5sFq+4fzWMczsn8YFrWOrJdK7vH5Wbsvh9R8yOFxYzv0fb+f3o8XcNKwtBr2Om4e04r7PdnHE4eb1DUe4aUgreqdG89MhB7llHjZkOLiobRytYq1sySyh1OMnt9RDUpQZRVGIizCSU+yhsKx6zSuLURdcNRg4bpcLSdNl3759DBs2jEOHDhEXF8esWbPks64WpOdKclKYzWZSUlLCXnq9nqeeeooePXoQERFBWloaN954I6Wlpdp+r7322jE7o1988cUsWLAg7L1JkyYxe/Zs7e/WrVvz4IMPMnv2bOx2O/PmzQNg3bp1XHTRRVitVtLS0pg/fz5lZWXUxsKFC+nduzevvPIKbdu2xWxWc1ocDgfXXXcdSUlJREdHM3z48LAG3gAPPvggSUlJREVF8Yc//IG77rqL3r17a9tnz57NpEmTtL/dbjfz588nKSkJi8XChRdeyIYNG7Ttq1evRlEUVq1aRb9+/bDZbAwaNIidO3fWar+k6eHyqZ4Zs6H6KsFyj1qxXadAdHDVnBCCQ4XqCsE2ceqPjoyicjKKXOgVGNxG9Qi8+2sWuaUeEiKMzL6gOYqikF/q4fo3N7P5sAObSc9Dk7qy+Kpe9G8TV6N4sRj1TOyVyvJ55zNrYEsAlm88wr0fbcMfEFiMem4Y3ApFge/3F/LL4WJ0OoUhQRt+yijC4w9g0OtIi1FtPRC0HdBa3DjKfZpHK4RJr6AAAaHmXknOPHbv3s3QoUM5dOgQ8fHx2vNXUjNSXEnqFZ1Ox7PPPsvWrVtZunQpX3/9NX/5y1/qfZ7HH3+c7t27s2nTJu6//362bNnCmDFjmDx5Mr/99htvv/02a9eu5aabbjrmcfbs2cM777zD+++/r+V9jRs3jqysLD777DM2bdpEnz59GDFiBAUFqjdh2bJlPPTQQzz66KNs2rSJli1b8txzzx1znr/85S+8//77LF26lJ9//pn27dszZswY7Zgh7r33Xp588kk2btyIwWDg2muvPfmLJDnthFYJmo3VxY0jGC6LshjQBUOC+WVeyr0BjDqF1Gi1n+pPwSKiPVOjiTIbyCx28UUwz2rugDQsRj0ur5873t/K4SIXqXYLr83uw4jOdVulZdAp3DC0DY9O7oZJr/Dt7nwWf7MXgHYJNs0r9sbGI/gDgi7JkcRajZR7A2zNUguRtgoKwaMOF/6Aes6RZj16JbyAaghFUTAZlLBrJDlz2L59O0OHDuXw4cMkJCQwe/ZsWUz7OEhxJTkp/ve//xEZGam9rrzySgAWLFjAsGHDaNOmDcOHD+cf//gH77zzTr3PP3z4cG6//Xbat29P+/btefzxx5k+fToLFiygQ4cODBo0iGeffZbXX38dl8tV63E8Hg9vvPEG5513Hj179uSbb75hy5YtvPvuu/Tr148OHTrwxBNPEBMTw3vvvQfA4sWLmTt3LnPmzKFjx4488MAD9OjRo9Y5ysrKeO6553j88ce55JJL6Nq1Ky+++CJWq5WXX345bOxDDz3E0KFD6dq1K3fddRfr1q07pv2SpoMQAk8lz1VVQrlIlWs9HXaonp/UYN2oMo+fHTmqp7dfmuoVeP/XbPwCzmseTe9gYvtDn+1kW2YJ0RYDz0zrQcs4WzVbdhwt5vudufy0J5/D+dVzKod2TOCB8Z0BWL7hCB//mgnA5J4pRJn1ZBa7Wbu/EJ2i0LeFOu/PR9RyEfE2I1ajDl9AkF2i5ospikJksMdhiat63lXomoSukeTM4LfffmPo0KFkZmaSlJTE7Nmzw4p2S2pG5lxJTophw4aFeWsiItQk12+++YaHH36Ybdu2UVxcjM/nw+VyUVZWpo2pD/r16xf296ZNm9izZw/Lli3T3hNCEAgE2L9/P126dKnxOK1atQrLFdu0aROlpaXEx8eHjSsvL2fvXvXX/c6dO7nxxhvDtl9wwQV8/fXXNc6xd+9evF4vgwcP1t4zGo1ccMEFbN++PWxsz549tf8O9bTMycmhZcuWNR5b0nQICPUFamX28G2CsmANqChrxWq5rGAie3O76rXanl1KQEBqlFmtQVXmYf2BQkAtuwDw3e48vtyei16n8NiUbmHCqqDUzf99sZtPfznC4YKKkB1Ar1YxXNG/JTMubK01iR7ZJYlDBeX8e80B/rlqLwPbxpEYZWZ8tyTe+jmTT3/P4aK2sfRMjdZqXuWXeYiPMNEs2sLefCdZJW6aBe2PsuhxlPsodfmhSsQo5LnyyLDgGcPPP//MqFGjKCgoIDU1lfT0dGw22/F3lEhxJTk5IiIiaN++fdh7Bw8e5NJLL+X666/nH//4B3Fxcaxdu5a5c+fi9XrrdFydTlctX6OmfasKtUAgwB//+Efmz59fbeyxhElNx0lNTQ3rDBCicq5Y1ZyWqjbXtK2mfaq+VzmhPrQtEJC/9M8EPMFwl0GnhJUiACj3+BGAXqdoHpxSt49Sjx8FSAoW/9yWrYbduqWoqwa/2pVPQECX5AjaxNtw+wI89aW6KnfGBS3onRajzfHd9hzmv7aJvKAnyWLU0zLBhscX4FBeGb8eLOLXg0W898MhXph3AS3i1S/J2YNa8v3efH4/WsLib/bx94ldGN4hng9+yyajyMW27FK6pUTRNs7G3nwn27JLGdI2juRoM3vznZrnCtR2Puq5+avd3yFB5/ULmdR+BvDjjz8yduxYioqKaN68OTNnzqz3xUhnMzIsKKk3Nm7ciM/n48knn2TAgAF07NiRo0ePntAxEhMTyczM1P72+/1s3br1uPv16dOH33//XQsTVn6dyErCPn36kJWVhcFgqHachIQEADp16sRPP/0Utt/GjRtrPWbIhrVr12rveb1eNm7cWKtHTXLm4Q1U9BOsSplb3RZh1muiIjfYAicuwohRr6Pc6+dQkRoC7pIUSSAg+G6vmpM3upPqXf3wl6NkFbtJijJz7eBW2vHfXLOfGUvWkVfipmNqFC9edwFbHr+Er+8fwdq/jWLTorEsvKIHMRFGfj1UxNhHvuGXoEdMpyjcMboDACu35bA7p5RIs4ELg4ns3+4pCNqk/hDZHazOnhisIl/m8Wt1tawmPQpq3pWnSm6VXoGQnpJJ7U2btWvXMmrUKIqKimjZsiXp6elSWJ0gUlxJ6o127drh8/lYvHgx+/bt44033uD5558/oWMMHz6cTz/9lE8//ZQdO3Zw4403agVHj8Wdd97J+vXr+dOf/sTmzZvZvXs3H3/8MTfffPMJzT9y5EgGDhzIpEmT+OKLLzhw4ADr1q3jvvvu0wTUzTffzMsvv8zSpUvZvXs3Dz74IL/99lutv8QjIiK44YYbuOOOO1ixYgXbtm1j3rx5OJ1O5s6de0L2SZouvqBgqElclQfFh61S7av8MlVchVrd7C8oRwT/jrEa2Z5TSoHTS4RJT9+0aNy+AEvXHwJg7oWtsBhVL9F323O4Z/mvCAHTB7fi0zsv5pLezbCaKgITidEW/jC8HSvuGkavljEUlXm59vkfyHGoYq5zSpSWEP/K9wcBuKidWm37p0MO3L4A7eJVcXWk2I3T48eo1xETzB8LnYtOUbT6XmVVCpkqioIxmMgvxVXT5euvv2bMmDGUlJTQunVrZsyYgcViaWyzzjikuGpi2Gw2DIbTG601GAz1Ekfv3bs3Tz31FI8++ijdu3dn2bJlLFq06ISOce211zJr1iyuueYahg4dSps2bRg2bNhx9+vZsyfffvstu3fvZsiQIZx33nncf//9Wt5SXVEUhc8++4yLLrqIa6+9lo4dO3LVVVdx4MABkpOTAZgxYwZ33303t99+O3369GH//v3Mnj37mA+gRx55hClTppCenk6fPn3Ys2cPX3zxhSy+dxYRytOuqb2LVljUWJFvVViuhrvjbaq4Ohgsa9A2uBJv4yF11WC/NDtGvY7vduVR6PSSFGVmXHf1XswsKufmVzcSEDB1QEsend4baw39DEO0iLfxzoIL6dwsmtxiN7cs3UQgmCgW8oR9tyuPvFI3HRJtJEQYcfsCbA0mzycEq8ofKlJtjQvaHjoXqOinWF5DlfjQtfEFpLhqinzxxReMGzcOp9NJu3btmDFjBmaz+fg7SqqhiGMli0hOmeLiYux2Ow6Ho9rSVZfLxf79+2nTpk3YF7PsLXjmMWrUKFJSUnjjjTdO25y13T+SxuFokQdfQJAUZazW+mbzoRK1rEFqBDazHn9A8NGWLARwaZckbCY9//7hENmlHqb0SKFrciR//nA7WSVubr1Y7fe34O3f+GF/IXMHt2LekNYAzH3hR774NZNuLex8dPtFxxRWldmTVcIlj6ym3OPnwWk9mT20LQDz3viFLUfUwqIz+6fx6o+HWbkzj5Ed45k7II1Pt+fw85FiBrSMYVTHBPbnO9l02EFipImh7dRFINnFbg4XuImxGWiXFP6jrcjpo9jlJ8KsIz6ifgr2SuqH//3vf0yZMgWPx0OnTp244oor6q2ocgij0citf7kHgKcee7jOubiNhcvl4pFHHqnx+/t4yIT2JojdbpdipwnjdDp5/vnnGTNmDHq9nrfeeouvvvqKL7/8srFNkzQSQgit3pO+SjzAH6jYZjZWJLML1BCi1ajD6w+QEwytNbebKXB6ySpxoyjQLSWKYpeXDQeLABjTLQmAbYcdfPFrJooCz87uW2dhBdA+JYp7L+/GfW//xuIVu7h6UCvMRj1juyWz5Ugxq3fmMrN/Gt1TI1m5M4/t2aVB2yz8fKSYzGI1nBgqK1FcqfSCxaDa4a6h1U2okbVfrtFoUrz//vtcddVV+Hw+unbtyuTJk097BOVsQ4YFJZITJBQ6HDJkCH379uWTTz7h/fffZ+TIkY1tmqSREAJCIYBQz8AQoX56Bp2ibStxBwuKmg0oikJuqQchwGbUE202sCtHTRpvFWvFZtLz475C/AFB2wSbVnrh36vUVYMT+jSnU7MTL+h49aBWpMRYyHa4+GTTEQCGdlS9T1uPllBQ5qFzsNfhEYebEpeP1Cg1RJRV4kEIQXSwXY/bF8AdqvFlVLT3qgZGQsLTL8OCTYa33nqLadOm4fP56NGjB1OmTJHCqh6Q4koiOUGsVitfffUVBQUFlJWV8fPPPzN58uTGNkvSiPiDIkKnUK0MQ02FRUuD+UiRQXGSG/RaJUWaUBSF/cGin+0SVCG1Mei16t9GTTJ3OD3872d1Je7c4e1OymazUU/6kDYAvLVOTWJPiDTTPtiY+edDRURZDCRHqXlVBwrKSYgwoSjg9gcocfsx6HVYKpWWADAFFVRAVPdQhcRlQIqrJsHSpUuZOXMmfr+f3r17c/nll6PX190DKqkdKa4kEonkFAmJiKrCCsAT3BgqoglopQtswQT3PGf4ysFQcnvrYHL7r8HGzH1aqukCK3/LwuX10zE1ij6tqy+KcHl8PP7uz9yw+Btuf3Ety77eWWMttisHtERR4Mc9+RwNztm3VQwAm4NteFrFWjWb9DqFWKuah5MftDkkEEPnpNMpWvjPW0Vdhdr++MWxa8NJGp5///vfzJkzh0AgQN++fZk4cSI6nZQE9YX0/TUB5ENGcjLI+6bpUFu+FVQu0VCxURNXwTypUN/BUGmDzEqV28vcPg4GPVldg+G/lb+pteDGndesWgmQnCInl//9M37ekxv2/je/HubftwzXBA5As1grfVrHsWl/Aau2ZJF+URu6pKqtTXZWyrMCh2ZTrNVIgdOr2WwN5pGVeytWBxr0Cr6AwOsXVK6OVDliKgBZRrRxWLx4sVZwuX///owdO1YWda1npExtRELuV4/H08iWSM5EQitK63tFj+TECUW5avJchWo6VS7R4PIFi24GhUkoIdxuMeIPCC1MmBJlZn++U61/FWkiPsKEEIJ1u/IAGN49JWyuYqeHcfd/ws97comPsnDPVX25YXwPDHody77Zxb1L11ezb0SwrMP3u1Qx1ilZzbPak1OKEIKUaDXPKlSJ3R7sH+hwqSu9QvW2yiv1DAx5rnxV6llVvjqy8UDj8MQTT2jCatCgQVJYNRDSc9WIhOpL5ebmYjQapUtWUieEEDidTnJycoiJiZE5Ek2AQKWcq6qEvFqGShvdVfKwKnKw9BQ6vQih5ifZrQZ+2KeG61oGQ4SHC5w4nF6MeoVuLcJXFS/5+De2HiwgJdbGl4suo32zGADO75jEtU+t4p8f/srI3mmMOC9N26dvWzWPa8uhIgBaxFrRKWptrvwyj1bbKr9MFVMRQW9bqEhoTQ2ZQ0KyauK6oijoFFWMCum7Ou089NBD3HfffQAMHTqUiy++WAqrBkKKq0ZEURRSU1PZv38/Bw8ebGxzJGcYMTExpKSkHH+gpMEJRWhr+p6qCBlWbAw1Lw4lfzu9FTlYRcGCnDEWAzpFITtY9iA12Bx5T5YarmubFKn161NtEPznm10APDxnoCasAK6+uCNrtx7llZXbefu73WHiKrTS8FC+E7fXj9moJyHSTE6Jm+xiN3GRqucq5KnSxFXQ5tA5eCrlV+mVUG5V9dC1ogCVmlxLGh4hBA888AAPPvggoHbCuOiiixrZqrMbKa4aGZPJRIcOHWRoUHJCGI1G6bFqQoR0Qk1egJC4CjmmK9fEMuoVhBCaJ8ti0FHqVkVLVDD8VhD0GMUHk90zgvlXLRPCm45vO1TA3kwHZqOeCf3bVLNj6kUdeGXldj7fcJBAQGi5V/GRJqwmPeUeP0cKymmbHEl8hImcEjf5ZR5aBRs8l3sD+PwBzKE6Vr6KEhMQXnU9dK41rQpUUNWVTBk8PQghuPPOO3n88ccBGD16NIMGDWpkq85+pLhqAuh0OllhWyI5gwktLqgpwCKq5GNVDpXpFSWsz57JoKvoQxjMZSoJ5WMFV+nlBj1ZyfbwZ8bGXTkADOySQqS1eh7eoK4pmAw68opdZOSW0CpZ9VgpikKy3cKB3DJyS1y0TY7UioOWunyaHaAKLFMw5BfyVFUUBq04j5DIrMk7FdKfUlw1PEIIFixYwLPPPgvApZdeygUXXNDIVp0byCQfiUQiOUUqPFfVtwWqhAwr53jrdAreSgrEoFNwa6UbgiFDT3BVXjAcV+QMhg2DnqwQ2w4VAtCtVVyNNhoNejo0jwFgx+HCsG2hYzmCxw6tYnR6/GGlFdy+gNaYOpSsrqtBXIUioDXpp9AlEjVuldQXgUCAG264QRNWEyZMkMLqNCLFlUQikZwqddAJmqgQlUWIoiXDh/6uSIBX3wuJLy23KRRCrNK/sLBU9WilxIWHCyuTFGMNjnWHvV81Kd0QnCvkVdPrKnKodFW8UhViqTo1eqdk/nSD4/f7mTt3Li+88AKKojBp0iT69u3b2GadU8iwoEQikTQBQpqjwgEUEjHBkKNC2N9Vyz64gwnmxpqKbQUxhfKlPP6w9/VVSidUn6u6nbX9HY70Tp1ufD4fs2bN4j//+Q86nY7LL7+cHj16NLZZ5xxSXEkkEsmpUgdvTE1J70KIMM+PEKKiRYwIebBUsRRKGA+FCz1Vqp/HBlf1FVXxSlUm5LGKCY4NobXoCXrDfFVqc2lJ+YpSLcypnVcN8yk1vSv1VoPh8XiYMWMG7733HjqdjiuvvJIuXbo0tlnnJFJcSSQSySlyLG1VNYG7shcoIMJLNAQEGLXWMeoOoZCdK1SuwaQ+tsuCie4hmgXDgQeyi2u15VBuCQCpVUKHZe7wvK7K/RCFEFpo0qBTtPIKeqVmz1rlcz3WhZHRwfrF5XJxxRVX8Omnn6LX65k2bRodO3ZsbLPOWaS4kkgkklNGlQo15Rhpyd01hPMCQoSF8bz+gJZLFariHmEO1pUKlmiIj1STz/NKwj1U57VPBOCnndk1Wng4r5SsAid6nVIt6T0/eKyEKNWjFWrCHGE24PFXlE2wGnWa6DNW8Wrpwzxy4edemWOVrZCcHGVlZVx22WWsWrUKg8HA1VdfTbt2J9fQW1I/yIR2iUQiOUWqhsjCt4UngOuUCq+NLyDQKxUixO0PhK3Ug4oSDI5gcdHEaLUEQ7bDFTbPBZ2S0ekU9mUVs/eoo5odq389DECP1vFEWCpKNXj9AU2ohY4dmivaYtAqsSuK6skKebVCCfY1FUmtLS8MZAmG+sbhcDBmzBhWrVqFyWRi5syZUlg1AaS4kkgkklOkqneqMqGWghXhM0XLZfL6AyiKgjVYS8rlDRBlVgMKJUFPVUKwTEJeqVpouHWiGtI7mFcWNo89wszwXi0AWPbNzrBtfn+A177cAcD4/q3Dth3OdxIQao/ApGAfwdBciZFmrc5WlNmAoiiUBz1qIQ+bVyuIWvF1cqx2QOIY2yQnRkFBASNHjuT777/HYrGQnp5O69atG9ssCVJcSSQSySlTfaVfBVoZg0r55xUtY9QdLIaKNjihxsglLh++gCAxGKrLChYPbZukNlY+UlBOabAlTYjpw9Qcmyfe/4UVGytaat3z2g98vy0Ts1HPjGGdwvbZnaXmYbVOjEBRFJwev9ZIOjHKrLW9CdlV7lVPJCQIvaG6XJUaU4fOVV+DggpdBhkVPDWys7O5+OKL2bhxIzabjVmzZpGWlnb8HSWnBZlzJZFIJKdIKPxVU8hLX0N7GJNBR5nHr4XYIs0G8p1eyjx+WsVaMegUfAFBodNLWqxamyqjQG3gHBtpIjXGSmZROb8dKmJQx0TtuFOHtOezDQd5b80epj28ghnDO5FX7OKTH/YD8O9bhtE6JTrMvl/2qwVFe7WKCc6jtteJsRqJshi0hs3xwQbOoXysSFN4G5zKfQ5rChWq10dUq1gvOXEOHz7MiBEj2LVrF5GRkVxzzTUkJSU1tlmSSkjPlUQikZwiVetCVcZQpaI5VHiqQknrUcGk9WKXD52iaEImt9RDWpwVJbgtPxiuO7+dmpD+/c68sLn0eh2v/Hk4Ewe0weML8OrK7Zqw+tvMC5h6UYdq9n2/Kzd4zHgA9uUFexfGWzUboKK3YWkwBysyGL50V1pZGMJXm7iq9N9SW50c+/btY8iQIezatQu73c6cOXOksGqCNGlxtWjRIhRFYcGCBdp7QggWLlxIs2bNsFqtXHzxxfz+++9h+7ndbm6++WYSEhKIiIhg4sSJHD58OGxMYWEh6enp2O127HY76enpFBUVhY05dOgQEyZMICIigoSEBObPny8bLEskkmpU1Kaqvk1rbFwpLmgJFvMMhdiig0KlOOgVSg6GArNL3FiMetLiVKGzO6cUgKFd1S/T1duqrww0GvQsu3M0T153ITdO6MGdU/uw/O4x3HFln2pjC8s8bD6geq4u6qIec09wjg7B8GNWMNk9JWhTbWHC0Dmp5xpeJytE5esjtdWJs2PHDi666CIOHDhAXFwcc+bMIT4+vrHNktRAkxVXGzZs4N///jc9e/YMe/+xxx7jqaeeYsmSJWzYsIGUlBRGjRpFSUmJNmbBggV8+OGHLF++nLVr11JaWsr48ePx+yuqEk+fPp3NmzezYsUKVqxYwebNm0lPT9e2+/1+xo0bR1lZGWvXrmX58uW8//773HbbbQ1/8hKJ5Iwi5KDx16CujFVayYBa0gAqalfFBFcEFgVX6aUGE8uPBFcEdk6JAmBbpvqcG9Y1GUWBXw8WcSQYxquMQa/jxvE9eHLehSyc2Z/LBratsfTByt8yCQjo3CyaZsHwY2iOTsmRYTakRpsRQlBUHmwkrYkrf9g5CSE0z5WxiucqEKhIZpelGE6M3377jaFDh3LkyBESExOZM2cOMTExjW2WpBaapLgqLS1lxowZvPjii8TGxmrvCyH45z//yb333svkyZPp3r07S5cuxel08p///AdQl6W+/PLLPPnkk4wcOZLzzjuPN998ky1btvDVV18BsH37dlasWMFLL73EwIEDGThwIC+++CL/+9//2LlTXWWzcuVKtm3bxptvvsl5553HyJEjefLJJ3nxxRcpLq69SJ9EIjn3qOy5qrpi0GgILwoKlRojB70+cTZVXBUEGye3iFFLImQUqcKmWzNVXG05oj57kuwW+rdXPRb/3XjkpO3+eJO67/g+zQDVu7Y9mODeo3k0/oDgqMOt2VTi9uMLCBQF7BYjQghNXIXOqXL4szbPlcy3OjE2bNjAxRdfTE5ODikpKcyePZuoqKjGNktyDJqkuPrTn/7EuHHjGDlyZNj7+/fvJysri9GjR2vvmc1mhg4dyrp16wDYtGkTXq83bEyzZs3o3r27Nmb9+vXY7Xb69++vjRkwYAB2uz1sTPfu3WnWrJk2ZsyYMbjdbjZt2lSr7W63m+Li4rCXRCI5u6ladb0yFSsDA5rwshlDtaxUL1C8Tc1nKiz34g8IWgW9SAcKyhFC0LuFHYBfDzu08OLl56srw95ef7DGEhDH42iBk++25wBwWT+1hMO2zBJc3gB2q4FW8TaOOFz4AgKrUUdipIl8p5oWEWs1otcplHsDBIQa4gutHvRUKjJa1TsVykk7RvtDSRXWrl3LiBEjKCwspEWLFsyaNYuIiNqbc0uaBk3uFl++fDmbNm1i0aJF1bZlZWUBkJycHPZ+cnKyti0rKwuTyRTm8appTE0JgElJSWFjqs4TGxuLyWTSxtTEokWLtDwuu90ul8ZKJOcAiqLUGhoMea6EqEj0jgh6eco8foQQRJn1mPRq374Cp5dWsVZ0iprEXuD00iE5kmiLAafHz+/BsN1l/ZpjM+vZm13Kmh25J2zzy6v3IQQM7JBAm2B+1caDRQD0aRmDTlHYn6+GHFV7FC25PUFLbvdp5xPyRlUtMlqZUNqZ9FzVja+++ooxY8ZQUlJC69atSU9Px2q1NrZZkjrQpMRVRkYGt9xyC8uWLcNisdQ6ruqvISHEceP3VcfUNP5kxlTl7rvvxuFwaK+MjIxj2iWRSM4OtHpWVZxIukpFQz2+oOfKpEdRVC+X0+tHURQSg21tckrdmAw60mLUL9E9eU50ikL/NuoPxnV7CwCItBi5amArAB78cGuN+V61cSivjFdX7wPg+pHttffX7skHYEBbdTXi7lxVXLUPFi7NDjZ+TgraqpVlMFdU9dHElaH6c7KiREOdTT1n+d///sf48eNxOp20b9+eGTNmYDabj7+jpEnQpG7xTZs2kZOTQ9++fTEYDBgMBr799lueffZZDAaD5kmq6jnKycnRtqWkpODxeCgsLDzmmOzs6qtscnNzw8ZUnaewsBCv11vNo1UZs9lMdHR02EsikZz96GvxXAGYQ6HBoPBQFIVIU0WxUIDkyGCx0ODqvI5JqqDZka2u3hsczLFas7ui/MKfL+2M3WZk2+FiXvlmb53sFELwwDu/4fEFuKhzIsO7q8+z3BK3lsw+KCiuduSoVeA7JtqCtnnCbC12hUpJVIgrrTSDsSbPVc0lGiThvPvuu1x++eW43W66dOnCVVddhdFoPP6OkiZDkxJXI0aMYMuWLWzevFl79evXjxkzZrB582batm1LSkoKX375pbaPx+Ph22+/ZdCgQQD07dsXo9EYNiYzM5OtW7dqYwYOHIjD4eCnn37Sxvz44484HI6wMVu3biUzM1Mbs3LlSsxmM3379m3Q6yCRSM48KiqxVxdXJqO6LSQ8QO3bBxXlF0IrBDOD4qpbihqq25oVFFft4jHqFfblOdkVFFyxkSbumdQNgEc/3s6+YBmFY/HBT4f5ams2Rr3Cwit7aJ74L7ap+Vc9mkeTGGWmqNzLEYcLBeiUFInPHyAn6LlqFrS1xFXRgzCE21u97lUIKa6Oz9KlS7nqqqvw+Xz06NGDK664AoNB1vs+02hS4ioqKoru3buHvSIiIoiPj6d79+5azauHH36YDz/8kK1btzJ79mxsNhvTp08HwG63M3fuXG677TZWrVrFL7/8wsyZM+nRo4eWIN+lSxfGjh3LvHnz+OGHH/jhhx+YN28e48ePp1MntTXE6NGj6dq1K+np6fzyyy+sWrWK22+/nXnz5klvlEQiqcaxxFVIaISEB1QIEkewtEGzYNPkow43ASHomhyJAhwuclHg9BBlMXBRhwQA/vtrxY++6YNbcWGnRFxeP1c/+z37smsXWJ/+coTb3vgZgJvGdKRjqvosE0LwcfCY43qonqwtR4NtceKsRFsMZJd6CAiwGXVaGQZH0OtWWVy5vLV7rkLa0iDFVY08//zzzJ49m0AgQJ8+fbj88svR6/XH31HS5GhS4qou/OUvf2HBggXceOON9OvXjyNHjrBy5cqwZalPP/00kyZNYurUqQwePBibzcYnn3wSdpMuW7aMHj16MHr0aEaPHk3Pnj154403tO16vZ5PP/0Ui8XC4MGDmTp1KpMmTeKJJ544recrkUjODLRioYHq2yxaXauKjaHaVo5gbaukCBMmvYLbHyC3VBVT7RLUcNwvh1WhM6l3KgCfb82mLOjxUhSFp2f1oW1SJEcKypn81Bq+3ZYTtoLQ5fXz4qo93PjyRnwBwaTzW3DLJRU9BjccLOJQQTk2k55RwWKiPx9WVzr3aq4KsIwitf1OC7sVRVFwef24gicbElf+gNBWC1qriKvK9a+kuKrOU089xQ033ABA//79GT9+PDrdGfcVLQnS5H2Nq1evDvtbURQWLlzIwoULa93HYrGwePFiFi9eXOuYuLg43nzzzWPO3bJlS/73v/+diLkSieQcRa+v3XNlCZYpCBdXFd4ff0Cg1yk0t1vYX1DOoaJykqPMnNcimj15TjZmOBjRMZ5+rWJoHW/jQL6T//6ayfQL1NXIqTFWPrhtCDOXrGNrhoMZS9bRMTWKC9rF4/EF+GZbNrnFakhvygVpPHVNn7DQ3PINageLS7snE2E24PUH+PWoKq76tFDF1cFgza1QDa5QMdFIk14rlBo6P4NOwVAla71yor9MaK9ACMGDDz7IAw88AMCQIUMYPny4LLJ6hiNvcYlEIqkHKtrciGp1p0KeK19A4A3WI7AZ9ZgNOgQVldkr17cCuKBlDABbMktwetRVhdMvUGtSvbXhsJYgD5AQZebdBRcy66I22Mx6dmWW8ObaA7zzwyFyi900j7Pyj6k9qwmr3TmlrNtbgE6Baee30OYr9waIsxlpl2AjIASHClWbWgdtLCwP1ryyVSRahyrOW001hARDLXF0sjp7CCEEd999tyashg8fzogRI+T1OQto8p4riUQiORMI5W8LVC9N5UoEep2CyaDg8QnKPQGMVh2KohBnM5JZ7Cbf6SE+wkSbOBur9xZwoLCcQEDQIsZCc7uFIw4XPx0q4uL28YztlsyLaw6QW+Jh+YbDXDOwpTZPlNXIQ1f14s7LuvLxpiPkOFyYDDpaJUQwtneq5mEKIYTgn1+pqwyHd04kLSic1u0vAuCClnZ0isIRhwuXL4BZryM12GMwv0wVhHHBAqgA5Z5gn8Ea861kSLAygUCAW265hSVLlgAwduxYBgwY0MhWSeoL6bmSSCSSekBRlDDvVVVC7WHKPRU9TkOV2UNCpVm0GYtBh8sX4EixGoYb3CYGgDV71fIyJoOOGy9uC8Ar6w5yNJgLVZloq5GZF7bm1nGduWlMRyb0bV5NWAF8tT2XTYeKMBt03DhUPabT42djhkOdu61aW2tvsJhomzgrOp2CEIKCYLX2+IgKz1Xo3Kym6knYXq2Zs/za8fv9zJs3jyVLlqAoCuPHj5fC6ixD3uUSiURST4SKhXqPIa6clcRVqNJ5XpkHIQQ6RaFdvJrEvitPrTE1pG0cigLbsks5Esx7GtstifPS7Li8AR7+fNdJtb9xlHt56qs9AFwzII1mwVyqNfsKcPsCNLebq9nSPphgX+zy4fGreWKhxHwhBM6g58pWQ1jQW6ktzrmMx+Ph6quv5pVXXkFRFCZNmkS/fv0a2yxJPSPFlUQikdQTxjqIqzJ3RZ5UrM2ITlHrX5W4VdHVMVgNfWewgGdCpIm+waTyL3aqBUQVReGeSzthNujYeLCIV9cdOiE7vf4A9360jUKnl3aJEVpoMSAEK4NzjOqUgKIoFLt8ZAaT4TskqLaF2uDE24xaKxuvv2I1YKjPYNU5K1+jcxGn08mkSZN499130ev1TJ06lV69ejW2WZIGQIoriUQiqScqxFX1egwRZlVwuH0BrfmyXqdoocHcYIHO9gk29ArkO71a0c4xnRMB+HZPPsXB2lJpsVZuGdEOgH+vOcBHm4/WycaAEPzj051sPFiEzaTnr+M7ayHDXw4Xc9ThxmrUMSRYpX17sDBpmt2itbnJ0drgVLRjKQuKQ6tRh65KXlVACK2v4LkqroqLi7nkkkv4/PPPMRqNTJ8+nS5dujS2WZIGQooriUQiqScqe66qhuoMekUrJhoSIgBJUaGegqo3yGLQ0zYYjvs9WBC0W0okbeKsePyCLyo1aZ58XjNmD1K9To+u2M2yHzMIHCNEWOLycf9/t7NyWw56ncKiy7vSMVmtBC+E4JOtapX2kR0TNE/b79lqja2uwXEBIcgtU20N9UOsfE4hEVmZkCdPp5yb1dnz8/MZMWIE3333HWazmZkzZ9KuXbvGNkvSgEhxJZFIJPWEKSiuAqJ6A2eASHMoNFghrpKDq++yS9yaMOqeohZF3ppZojWLnxjsAbhie67mvQL445DWTD6vGQJY/M0+blz2K9syi8PEnccX4OsduaS/spFVO3LRK3D/uE70bxOnjfn1aAk7c8sw6hTGdlE9ZflOD0ccbhQqxFWB04vXLzDq1dWOIUrrIK7ORa9VZmYmQ4cOZePGjdhsNmbNmkWrVq0a2yxJAyNLMUgkEkk9oSgKRr2C1y/w+AIYqqyaizDryS/zakIEINZqxKTX4fEHyCvzkBRpplNiBCa9QpHLx6EiF61irVzQyk6rWAsHC128szmTPwxI0+a8Y3R7OiZH8MyqvWw+7ODapb+QEm2mdYINn1+wM6uUkmBF9+YxFv42sQvdm1W08fL5A7yx8QgAozonaKLpt2Aj57bxNi0kmBXMv0qONGv1mAIBgTN4TpEWKa5C7N+/n5EjR7Jv3z6ioqK45pprSExMbGyzJKcB6bmSSCSSesR0jKT2kPAoc/s1z5KiKFrT5qMOVbgY9Tq6Bb1Xmw6rZRF0isKsYAHRr3flszfPqR1XURQm9W7Gm3P7MapLIlajjqxiNz/sK2TjwSJK3D4So0xcMyCN1+f0DRNWAJ9vz+Oow020xcDlwd6CgYDQqrT3albRXiwzWCIi1R6ebyVQxVNNDZu9wWKnpnOoDMOOHTsYMmQI+/btIzY2lmuvvVYKq3MI6bmSSCSSeiTknfH4amqDo0OvA39ALckQEfQGNYs2c7CwnKPFLno1i0JRFPo2j+aXI8Vsz1G9TlFmA12SI7mwbSxr9xXy4voMHhzXMawoZ/MYK/+4rCsur5+fDxVR6PRi0CkkR5vp0dxeY75Tdomb93/LAuDqPqmah2p7biklbj8RJj2dEtWQYKnbh8PlQwFSoizaMUqCYcpIi75adXEhKvoNGg3nhufql19+YfTo0eTl5ZGYmEh6ejrR0dHH31Fy1nDu/IyQSCSS04Ap6LmpacWgoihEBZscl5RXyruKtqDXKTg9fq1nX2q0hTS7hYBAK+oJMKNvMyJMeg4WlrMsGMqrisWoZ1C7eMb1SGFMt2R6p8XUKKw8vgDPfHsAty9A5+QILmqn5mAJIfjxUBEAfZtHawLucLDOVmKkKcxDFSojETq3yvgDag4aVHj1zma+//57hg0bRl5eHqmpqcyePVsKq3MQKa4kEomkHgl5rnwBNbRWlZAAqZyUbtApWluZjEoV1/sHewtuPOzAHQytxViNXB9cIbhiRx7f7M4/KTuFEPx7fQb7C8qJNOu56cJWWs2qQ0Uujjjc6BXo28Ku7ROyrUWMVXsvEBCUuULiqnq+ladSfauzvWfel19+yejRo3E4HLRs2ZJZs2YRERHR2GZJGgEpriQSiaQe0esUrc+gp4a8q2irKkBKXX78lcRXWrBCekZRuZaP1SkpgjibEZcvwM9HKrxX/VrauaJXCgAv/3iYTZU8W3VBCMF/fs7k+/2F6BRYMLQ18REVZRW+P6C22undLFoLExa7vFpIsLm9UkjwOPlW7mB41HyWhwQ//PBDxo8fj9PppH379sycOROLxXL8HSVnJVJcSSQSST0TCg2GvE2VMRt0mAwKgopcJYCUaAtGnUK5N6BVQNcpCoNbqf39vj9QiMtXEUqc3DOZga1j8AcET67ez8odeXWyzRcQPPf9If73u1rTavYFLbTkeYCDheXszXeiKDAwOHfofdVOc5iIKg6GMaOthho9U6FrYKpBeJ0tvPHGG1x55ZV4PB66du3KVVddhclkOv6OkrOWs/dul0gkkkbCFPTSuGtIalcUBbtV9QY5nBXiSq9TSItVw20HCitCgz1To4i3GSn3Bli7vzDsODde2Iph7eMQAl796TDPfndAE2Y1sSO7lPs+3cWafarH6vpBaYzqlKBtF0Lw5W5VpPVpFk1ssCRDQAgOFqg2tYq1ho0PnUPonCojhNAS+y1nqbj617/+xTXXXIPf76d3795MmTIFg0GuFTvXkXeARCKR1DOqZ8ePxxfQioBWxm41kFvixVHuC9veOs7Kvnwnh4vK6d0sGpNBbSUzskMCb/+ayY+HijivebTWMsegU5g3MI2ESBPvbc5i/YEiNh5ycEGrGHo0iyI50oRfCA4VutiU4eD3LLXie4RJz40XtqRPpXwqUAuJZha7MekVLmpbUWA0q9iNyxfApNeRGl0R6nJ5A7h9ARRUz1VVQsJKrcx+ype1yfHII49w9913A9C/f3/GjBmDTncWnqjkhJHiSiKRSOoZk15BQV0l5/ULzZMVIspiQKeo28o9AWzBquaxViMxFgNFLh8HCpx0TFJLIHRIsNEu3sbefCdf7Mzj6t6pmiBTFIXJPVM4r3k0b246yrasUr7fX8j3lbxcIRRgWId4pp2XSnSVlX1Oj59Ve9Tk+Ivaxmm5VgB789WaWq3jrGGrDouCXqsoq6HG1YihkKDZoDurktmFENxzzz088sgjAAwdOpSLL774rDpHyakhxZVEIpHUM4qiYDYouHwCt09gqvKk1ekUoq0Gipw+ipxeTVwpikK7hAg2HXawJ89J+8QIdIq6ym5MxwRe+OEQe/Od/HykOGwVH0CbeBv3jWrHzpwyfj1awu+ZJZR6/OgUhVirgd4toumXZtfa7VRGCMGn23Nwev0kRJi4IC1G21bs8pFdohY3DfU8DFHk9AIQY6v5q+RsTGYPBALcfPPN/Otf/wJg9OjRDBo0qJGtkjQ1pLiSSCSSBsBs1OHy+XF5AzWWKIixqeKq0OkjNaYiNNgy1sqWzGKcXj9HHS6t7EF8hIkRHRJYuSuPlbvyaGG3VBNKiqLQOTmSzsmRcF5qnW395UgxO3LL0CkwqVtSmBdqT14ZoBY6rezN8vgCOD2h8hA151tV9lydDfh8Pq699lreeOMNFEVh/Pjx9O3bt7HNkjRBzo47XiKRSJoYlkorBis3UQ4RYzOioOYtlXsrVhXqdar3CmBnTlnYvhek2Wkfb8MXELy3JYtyr7/qYU+YIw4XX+xSk9iHtYsPy6kq9/o5UKCGBDsEq7SHKCxTvVaRZj3Gmlre+AUBoYYiq4ZFz0TcbjdTp07ljTfeQKfTMXnyZCmsJLUixZVEIpE0ACZDRd6Vr4Zionqdgj0YTiso9YZta58QgV6nUFjuJbukYvWfoihc1i2ZaLOBAqeX//xytMZyD3Ulp9TNW5uP4gsIOiTYGNgqJmz77twyAgLibEYSIoxh2wqC4iq2yvshKocEz/RcpJKSEsaNG8eHH36IwWBg2rRp9OjRo7HNkjRhpLiSSCSSBkBRFM1j4/JWF1cAcUFhUlDmDfNQmQ062sap+U2/Z5WEbbOZ9Fx9XipWo46jxW6Wbz45gZVT6ubNn49S7g3QPNrM5d1TwkRQudevJbJ3SY4M3+bxayHB2Iias0tC3jiL8cz+msnPz2fkyJGsWrUKk8nE9OnT6dSpU2ObJWninNl3vUQikTRhQsLC5a1Z/NitBvTBVYMlrvAQX6ekCu9VqKdfiKRIMzPOa4ZZr+NQkYuXfsogK5h0Xhe2ZpXwyk+HKfP4SY40cfV5zarlRW3LKsEfEMTZjKRUye0Kea3sVgPGGmosCCFwnwXi6siRI1x00UX89NNPWK1WrrnmGtq2bdvYZknOAM7cu14ikUiaOJq4qiXvSqdTtLBafpXQoMWop1Oimnu1JSh0KpMabWFm32ZaiPCVDYdZvTf/mHlY+WUePtiSxYdbs/EGBG3irMzs0xyrMTzh3lHuZX+waGjPZtFhXishhGZrfGTtIUGBWt/KeIY2a96zZw8XXngh27ZtIyoqijlz5tCiRYvGNktyhiBXC0okEkkDYdIr6BQ178rtE1iM1YVGfKSRvFIvhU4vaX4LhkpipGNiBPvynTg9fnblltElOTypvFm0hXn90/h4Wza785ys2V/Ij4eK6JwUSVqMBbvFQECoomp/QTl7C5yENN6g1jEMaxevNWsOIYRg89FiQO0hmBAR3sbFUe7D6xdhOWNVcVXyWp2J+Va//vorY8aMITs7m7i4ONLT04mNjT3+jhJJECmuJBKJpIFQFAWLUYfTo64IrClEFmHWYzXqKPcGyC/zkBxdEYIz6HX0bBbNT4eK2J5dQgu7hagqxT9tJj3TeqWyPaeMNfsLyCn18FtmCb9lltRoU4cEGxe3i68W6gtxsLCc3FIPOkVtvVOVvJIKr1VVYRYilG9lPQNDgt9//z3jxo3D4XCQnJxMeno6kZGRx99RIqmEFFcSiUTSgFhD4soTINZWfbuiKCREmcgocJFb7CUpyhTm7UmLsXCwwER2qYcNGUVc3L66t0lRFLomR9IlKYIDheUcKCzncJGLcq8fnU4h0qSndayVtvE2kiJrFlUAZR4fm4+oXqtuKVFEmMO/ItzeAI5go+bEWkKCvoDA6w/2EzzDxNWKFSuYPHky5eXlpKWlMX36dKxW6/F3lEiqIMWVRCKRNCBWkw7KQqIjUGMCeHykkSOFLty+AMXlPuy2CuGiKAp902L4cmcuBU4vO3JK6Zpc3aMUGtsmzkabuBpU3HEQQrAxw4EvIIi3GekYzPeqTE6wLES0RY/FVL0wKoAruIrQpFdqbInTVFm+fDnp6en4fD7at2/P1KlTMZlMx99RIqmBM+tnhUQikZxh6IKtcICwYqGV0etU7xVAdrGn2nabSU/vFtEAbMsqJavYVW3MqbIls4TcUg96nUK/ljHVcqX8AUFeUFwlRdcuOpyhkKDpzPl6ef7555k+fTo+n4/u3btz1VVXSWElOSXOnLtfIpFIzlBCQqPcU3s9qpBgKXH5cbqrr/hrGWOldZwaovrhYBGOcm+1MSfLgQInu3LVNjd9W9iJMlcPauSWeAgINdQXXUO7G4BAQGjJ7LYzQFwJIXj44Ye54YYbEEJw/vnnM3nyZAwGGdSRnBpN/+6XSCSSMxxbsNSB2yeqlVQIYTbotKKimY7qNasURaFPczsJESZ8AcHa/QWUun2nbNtRh4tNGQ4AOidF0jK2eo5RICDIdqheq+RoU60rAEOeOYNOqTH82ZQQQnDHHXdw7733AnDRRRdx6aWXotM1bbslZwbyLpJIJJIGxqBXtHpPtYUGAVLsqveqyOmj3FPde6XTKQxqHUuUWU+5N8A3e/IpOgUP1sECJ+sPFCJQE+e7pdS8Ki6v1IMvIDDplVprW0HFuTV1r5XP5+MPf/gDTz75JABjx45l+PDhZ2TZCEnTpGl/AiQSieQsISQ4ymoI+YWwmvTEBmtHHS2queK6yaBjaLt47BYDbl+A1XvyySgqPyFbAgHBlsxiNmQ4EECrWCvn15BnBWquVWaR6rVKiTHXKkACQmhhz6acb+VyuZg6dSqvvPIKiqIwadIkBgwY0NhmSc4ymu4nQCKRSM4iIkzHDw0CpMaopRKKnD5KXTWH/SxGPUPbx2shwh8PFrH+QCFlnmOHCYUQ5JZ6WLU7j505ao5Vh8QI+qXZa61ZlV0c9FoZjuO18gQQgF6nrhRsipSUlDB+/Hg+/PBD9Ho906ZNo3fv3o1tluQspMmJq+eee46ePXsSHR1NdHQ0AwcO5PPPP9e2z549G0VRwl5Vf3W43W5uvvlmEhISiIiIYOLEiRw+fDhsTGFhIenp6djtdux2O+np6RQVFYWNOXToEBMmTCAiIoKEhATmz5+Px1N9JY9EIpEcD4Ne0USHs4aQXwirSa+JmMOF7hrb5gCY9DouahunNlUGjjhcfL49l/UHCskoKqfM4yMgVCHnKPeyN6+Mb/bk8+3efBwuHya9joGtYuhVpb1NZby+ANnB/K/msZZaBZh6TqrXKsKkb5LhtaoNmGfOnEnnzp0b2yzJWUqTWxLRokULHnnkEdq3bw/A0qVLueyyy/jll1/o1q0boMbHX331VW2fqktmFyxYwCeffMLy5cuJj4/ntttuY/z48WzatAm9Xv31OH36dA4fPsyKFSsAuO6660hPT+eTTz4BwO/3M27cOBITE1m7di35+fnMmjULIQSLFy9u8OsgkUjOPiLMOjxOP2XuAFGW2sc1jzFTWOalzO2noMxLfGTNZQF0OoVuKVE0i7awJbOYnFIPRxwujjhqL9WgU9QwYLeUKCzGmmtVhThS5CYgVMEUW0urG1BDh0053+rIkSOMHj2abdu2YbPZmDFjBs2bN29ssyRnMU1OXE2YMCHs74ceeojnnnuOH374QRNXZrOZlJSUGvd3OBy8/PLLvPHGG4wcORKAN998k7S0NL766ivGjBnD9u3bWbFiBT/88AP9+/cH4MUXX2TgwIHs3LmTTp06sXLlSrZt20ZGRgbNmjUD4Mknn2T27Nk89NBDREdHN9QlkEgkZyk2k55Cpx+PX61iXltTY6NBR4rdzNEiN4cL3NitxrCeg1WJtRm5qF18sOGyk/wyL0Uur9ZHUK9TiLcZSYw00ybOelxRBVDi8mkNmtPia8+1ggqvlVGvYDI0LXG1e/duRo0axcGDB4mKiiI9PZ2kpKTGNktyltPkxFVl/H4/7777LmVlZQwcOFB7f/Xq1SQlJRETE8PQoUN56KGHtA/Lpk2b8Hq9jB49WhvfrFkzunfvzrp16xgzZgzr16/HbrdrwgpgwIAB2O121q1bR6dOnVi/fj3du3fXhBXAmDFjcLvdbNq0iWHDhtVos9vtxu2uSEQtLi6ut+shkUjObPQ6BYtRweUVlLn9xBzDG5RsN1FQ5sXlDZBR4KJN4vHbsNitRno3twOqN8kvBApqaYQTCdUFAoKDeWqSfEKksVobnKqEkvQjzE1LWG3evJkxY8aQk5MjGzBLTitN65MQZMuWLURGRmI2m7n++uv58MMP6dq1KwCXXHIJy5Yt4+uvv+bJJ59kw4YNDB8+XBM0WVlZmEymah+g5ORksrKytDE1/XJJSkoKG5OcnBy2PTY2FpPJpI2piUWLFml5XHa7nbS0tJO/EBKJ5KwjlNhe5vbXmk8FamX3VvFq7LCgzEuR88RKLuh1Cia9DqNed8I5UEeK3Lh9qmetRdwx4peAxxfAE+wlGFFLS5zGYO3atVx88cXk5OSQkpLCtddeK4WV5LTRJMVVp06d2Lx5Mz/88AM33HADs2bNYtu2bQBMmzaNcePG0b17dyZMmMDnn3/Orl27+PTTT495TCFE2AOmpofNyYypyt13343D4dBeGRkZxz1fiURy7mAz6dAp4BfHrnkFEGkxkBys3H4wz4XHd+zx9YHD6SUn2IKnVbz1uP0By9zB8gtGXZPpJfjxxx8zatQoHA4HLVu2ZNasWURG1lzDSyJpCJqkuDKZTLRv355+/fqxaNEievXqxTPPPFPj2NTUVFq1asXu3bsBSElJwePxUFhYGDYuJydH80SlpKSQnZ1d7Vi5ublhY6p6qAoLC/F6vdU8WpUxm83aSsfQSyKRSEIoikKEWfXwlLqPL5aaxZixmnT4AoJ9ueUEjuHtOlXc3gD7g+HAxCgj9mOELUGtbVUaXPkY2URCgq+++iqTJ0/G5XLRsWNHZs6cidV6/JCqRFKfNI1Pw3EQQoTlMVUmPz+fjIwMUlNTAejbty9Go5Evv/xSG5OZmcnWrVsZNGgQAAMHDsThcPDTTz9pY3788UccDkfYmK1bt5KZmamNWblyJWazmb59+9b7OUokknOHkBBxeQP4/McWSzqdQrtEG3pFDSVm5LuOGU48WfwBwd4cJ/6AGt47XjgQ1ER2IdTaVhZj436dCCF47LHHuPbaa/H7/fTu3Ztp06bJBsySRqHJJbTfc889XHLJJaSlpVFSUsLy5ctZvXo1K1asoLS0lIULFzJlyhRSU1M5cOAA99xzDwkJCVx++eUA2O125s6dy2233UZ8fDxxcXHcfvvt9OjRQ1s92KVLF8aOHcu8efN44YUXALUUw/jx4+nUqRMAo0ePpmvXrqSnp/P4449TUFDA7bffzrx586Q3SiKRnBJGvQ6zQcHtE5QeJ7EdwGzU0SbRyp6ccvJKvRj0Cs2OUS39RAkEBHuynZR7Axh0Cm2TrMesaQWqmClxqV6rKHPj1rYKBALccccdPPXUUwAMHjyYkSNHNsl6W5JzgyYnrrKzs0lPTyczMxO73U7Pnj1ZsWIFo0aNory8nC1btvD6669TVFREamoqw4YN4+233yYqKko7xtNPP43BYGDq1KmUl5czYsQIXnvtNa3GFcCyZcuYP3++tqpw4sSJLFmyRNuu1+v59NNPufHGGxk8eDBWq5Xp06fzxBNPnL6LIZFIzlqiLHrcpT5K3X6irfrjihm7zUhanCCjwEWWw4OiKKTaa2+iXFcCQY9VqduPToH2ybY6lVNw+9RyEgpoYc7GwOv1cu211/Lmm28C6g/jUARCImksFNEQ/mWJRnFxMXa7HYfDIT1eEolEQwhBpsODLwCxNgNRlroJlGyHm8OFappEQqSRtPhjV04/Fh5fgL05TpyeADoFOiTbiLTU7Td3bomXcm+ACLOO+Ija2+I0JGVlZVx55ZV8/vnn6HQ6LrvsMnr16tUotkiOj9Fo5Na/3APAU489jNd78k3HTwcul4tHHnnkpL6/m5znSiKRSM4FFEUhymKg0OmjxOUj0ly3kgnJdrX34OFCN3mlqsBpk2DFfII5T8XlPg7kleP1C/Q6hXZJ1joLK68/oK10jGokr1VBQQHjxo3jhx9+wGg0MnXqVDp06NAotkgkVZHiSiKRSBqJCLMORzn4AmpyeF3Da8l2Mxajjv255ZS5/fx+tJRUu5mkaNNxyyF4fAGOFLopKFO9BhajjvZJthMSZ8Xlaq6V1ahrlIrshw8fZsyYMWzbtk1L2ZA1BSVNCSmuJBKJpJHQKQpRFj2Ocj/FLj82U90LftptRjo303Ew30Wpy8/RIjdZDjdxEWoJBZtJj1GvIAR4/AHK3H4Ky3w4yn3aMRKjjDSPtZxQfSqfX1AWbHcTXcdQZn2yY8cORo8eTUZGhmxnI2mySHElkUgkjUikWU9xuR+vX21+bDuBKucWo56OyTYKy3wcLXLh9gnySr3klR47lyXKoqd5rOWkEtGLXao4MxuUEw5Fnio//vgj48aNIz8/n/j4eNLT04mJiTmtNkgkdUGKK4lEImlE9DrVe1Xs8uMo92M1nli7GkVRiIs0EhthoNTlJ7/MS5nbj6tS9XdFUZtGR5r1JEQZ69S4uSZ8fqEVPrVbT+/XxxdffMHkyZNxOp00b96c6dOnExERcVptkEjqihRXEolE0shEW/SUuFXvVZknQORJeJQURSHKaiAqKHoCQhAIqMJKp9TczutECYUULQbltBYNfeutt7jmmmvw+Xy0a9eOqVOnYjabT9v8EsmJckZUaJdIJJKzGZ1OwR7MX3KU++qlxY1OUTDoFfQ6pV6ElccX0HKtjtcWpz559tlnmT59Oj6fjx49enD11VdLYSVp8khxJZFIJE2ASIsevQ78AbTK500FIQSFTtVrZTPpMJ+GFYJCCO69915uueUWAPr378/ll1+OwSADLpKmj7xLJRKJpAmgUxRirAbyy3wUl/uJMOkx6JtG+xanJ4Dbp1ZjjzkNuVY+n48bbriBl156CYARI0Zw4YUXynY2kjMGKa4kEomkiWAz6Sh1qz0HC50+EqMap/J5ZQJCUBT0WkVbG17wuVwurr76aj766CMURWHChAn06dOnQeeUSOobKa4kEomkiaAoCrE2A1nFauV1p8d/QqUZGoIipw+/AENwVWNDUlhYyKRJk/juu+8wGAxcccUVdO7cuUHnlEgaAimuJBKJpAlhMuiIDpZmKCjzYTboTqjIZ31S7g1opRfiIgwn3cOwLhw+fJixY8fy+++/Yzabufrqq2ndunWDzSeRNCQyoV0ikUiaGHarWl09IKCgzIeoh9WDJ4o/ILQWOZFmXYOWXvj9998ZOHAgv//+O1FRUcyZM0cKK8kZjRRXEolE0sRQFIX4CDWwUO4NUOI+vasHhRDkl/nwB9RwYEwDll5Ys2YNF154IYcPHyYhIYG5c+eSkpLSYPNJJKcDKa4kEomkCWIy6IgNipoipx93pYrrDU2xq6LCe0Jkw4UDP/jgA0aNGkVRURFpaWlce+21sp2N5KxAiiuJRCJpokSaddhM6mM6t9SLz9/w4UGnR23DAxBnM2BqoJpW//rXv7jiiitwu9107tyZa665BpvN1iBzSSSnGymuJBKJpImiKApxEQYt/yqnxIM/0HACy+UNkFeqll2INOuIMNf/V0SoOOif/vQnhBD069ePqVOnYjQ2ftkJiaS+kKsFJRKJpAmjUxSSooxkFXvwBSCnxEtSlLHeVxC6vQFyS9UEdqtRDUnWd9FOr9fLH//4R1599VUAhg8fzpAhQ2RxUMlZhxRXEolE0sTR61SBlV3sxesXZBd7SIoy1VtBz3KPn7xSHwIwGxTiI+tfWJWVlXHllVfy+eefo9PpGD9+vCwOKjlrkeJKIpFIzgCMeh3J0SZySlQPVlaxh/hII9ZTKJEghKDE5acomGNlMeoaJIE9NzeXcePGsWHDBoxGI1deeSUdO3as1zkkkqaEFFcSiURyhmDUK6REm8gpUT1YuSVeoix67Fb9CQsin19Q4PTi8qo5XBEmHXER9e+x2rdvH2PGjGHPnj1YrVamT59OWlpavc4hkTQ1pLiSSCSSMwi9TiE52kiR00epO0CJy4/T7cduNRBh1h1XHPkDqreqxOVHAAoQa6vbvifKpk2buPTSS8nJySEmJoaZM2eSkJBQr3NIJE0RKa4kEonkDEOnKMRFGLEY/RQ61WKfBU4fheVgM6rV1I16RfNm+QICr19Q7g1o9atAza+KbaByCytXrmTKlCmUlpaSkpLCjBkziIqKqvd5JJKmiBRXEolEcoZiM+mxGnWUuP2UlPvxCyjzBCjzHLvgqEmvEG1V922IlXpvvvkmc+bMwefz0aZNG6ZNm4bFYqn3eSSSpooUVxKJRHIGoygK0RYDUWY9bp/A6Qng9Qfw+gWhloQ6nZoQb9IrRJh1GPUNU+JQCMHjjz/OnXfeCUCPHj247LLLMBjkV43k3ELe8RKJRHIWoCgKFqPSoA2Wj4Xf7+eWW27h//7v/wAYNGgQI0eORKeTtaol5x5SXEkkEonklHA6nUyfPp3//ve/AIwZM4aBAwc2slUSSeMhxZVEIpFITprc3FwmTJjAjz/+iMFgYPLkyXTt2rWxzZJIGhUpriQSiURyUuzevZtLLrmEvXv3YrVaueqqq2jVqlVjmyWRNDpSXEkkEonkhFm/fj0TJkwgPz9f1rCSSKogxZVEIpFITogPP/yQ6dOn43K5aNasGdOnTycyMrKxzZJImgxyGYdEIpFI6syzzz7LlClTcLlcdOzYkdmzZ0thJZFUQXquJBKJRHJcAoEAd9xxB0899RQA559/PmPHjkWv1zeyZRJJ00OKK4lEIpEcE5fLRXp6Ou+99x4AI0eOZPDgwQ1S3V0iORuoc1jwzjvvxOv1NqQtEolEImli5OfnM3LkSN577z30ej1XXHEFF154oRRWEskxqLO4evzxx+nbty//3969x0VZ5/0ff4HCiIgjiJwUW/OAGqgJCmjlMdBENC01i7BMszzEQ926q3tN2/Ww2mF71GZteZtlRt1rZq1G6paaechQE9Nc82yKmOKgJgPC9/eHt9evUTpoyMzg+/l4zKO4rg/j52MBb75zzff6+uuvr2Y/IiLiIfbs2UPnzp354osvqFWrFvfeey+xsbHubkvE4/3mcPXkk0/y7bff0rFjR6ZOnUp5+S/fGPRKzZ49mzZt2lC3bl3q1q1LcnIyH3/8sXXeGMPkyZOJiooiICCArl278s0337g8h9PpZOzYsYSGhhIYGEh6ejqHDh1yqSksLCQjIwO73Y7dbicjI4OTJ0+61Bw4cIC+ffsSGBhIaGgo48aNo6Sk5KrMLSLiSTZu3EhycjI7d+7Ebrdz//33aw8rkd/oN4erP//5z6xbt47mzZszadIkOnXqxK5duyq9oUaNGjFjxgy++uorvvrqK7p3706/fv2sADVz5kyee+45XnrpJTZu3EhERAS33norp06dsp4jKyuLRYsWkZ2dzZo1azh9+jRpaWmUlZVZNUOHDmXLli3k5OSQk5PDli1byMjIsM6XlZXRp08fzpw5w5o1a8jOzmbhwoVMmDCh0mcWEXGrsjJYuRLeeQdWruRfixfTtWtXCgoKiIiIYPjw4YSFhbm7SxGv4WPMhfum/zYlJSVMmjSJZ599Fn9/f2bMmMHYsWOvVn8AhISEMGvWLO6//36ioqLIysqy7rrudDoJDw/nr3/9Kw8++CAOh4MGDRrw1ltvMXjwYAAOHz5MdHQ0S5cuJTU1lR07dtC6dWvWr19PYmIiAOvXryc5OZlvv/2WmJgYPv74Y9LS0jh48CBRUVEAZGdnM2zYMAoKCqhbt+5v6r2oqAi73Y7D4fjNnyMiUmXefx8eeQR+srp/EHgEyGvWjDvvvBObzea29qT68PPzY/yjTwDw3MxpHn8dd3FxMTNmzLiin9+Xvc/VhUC1Zs0aGjduTFZWFg0bNuT666+/5NG0adPLfXoXZWVlZGdnc+bMGZKTk9m7dy/5+fmkpKRYNTabjS5durB27VoAcnNzKS0tdamJiooiNjbWqlm3bh12u90KVgBJSUnY7XaXmtjYWCtYwfmbkTqdTnJzc3+2Z6fTSVFRkctDRMQjvf8+3HGHS7ACaAj8E3i6XTsFK5ErcMVbMTRo0ICQkBCMMRw5cqQyeyIvL4/k5GSKi4upU6cOixYtonXr1lbwCQ8Pd6kPDw9n//79AOTn5+Pv709wcPAlNfn5+VZNRUvcYWFhLjUX/znBwcH4+/tbNRWZPn06U6ZMucyJRUSqWFnZ+RWrCl688AUMcNuyZexq3Rrjq/2mRS7HFX3FvPzyy7Rt25b169czbtw4fvzxR8rLyyt8XImYmBi2bNnC+vXreeihh8jMzGT79u3W+YvfAmyM+dW3BV9cU1H9ldRc7PHHH8fhcFiPgwcP/mJfIiJu8fnnl6xY/ZQPYC8qovH//eIqIr/dZa1cHTp0iPvvv59///vfREdH89FHH9G1a9dKb8rf359mzZoBkJCQwMaNG3nhhRes66zy8/OJjIy06gsKCqxVpoiICEpKSigsLHRZvSooKKBTp05WzdGjRy/5c48dO+byPBs2bHA5X1hYSGlp6SUrWj9ls9m0jC4inu83vuIQdPr0VW5EpPr5zStXb7zxBnFxcaxYsYLMzEzy8vKuSrCqiDEGp9NJkyZNiIiIYPny5da5kpISVq1aZQWn+Ph4/Pz8XGqOHDnCtm3brJrk5GQcDgdffvmlVbNhwwYcDodLzbZt21xe8ly2bBk2m434+PirOq+IyNW2pYJfMCtySvcNFLlsv3nl6v777yc8PJw333yTvn37XrWGnnjiCXr37k10dDSnTp0iOzublStXkpOTg4+PD1lZWUybNo3mzZvTvHlzpk2bRu3atRk6dCgAdrud4cOHM2HCBOrXr09ISAgTJ04kLi6Onj17AtCqVSt69erFiBEjePXVVwEYOXIkaWlpxMTEAJCSkkLr1q3JyMhg1qxZnDhxgokTJzJixAi9609EvNqbb77JyD/+kV2cv3i9ot+yDVBUty4HtLeVyGX7zeFq4MCBvPLKK9SvX/9q9sPRo0fJyMjgyJEj2O122rRpQ05ODrfeeisAjz76KGfPnuXhhx+msLCQxMREli1bRlBQkPUczz//PDVr1mTQoEGcPXuWHj168MYbb7jcYPTtt99m3Lhx1rsK09PTeemll6zzNWrUYMmSJTz88MN07tyZgIAAhg4dyjPPPHNV5xcRuVoubML89NNPA/BsdDTPHzyI4fw1Vlbd//0zp1cvXcwucgUue58ruTza50pEPIHT6eT+++9nwYIFANx8881069aN1t9+S6+cHOw/2TbGUbcuOb168W3r1u5qV6qha2mfqyveikFERLzD8ePHuf322/n888/x9fUlPT2ddu3aAfBt69bsbNmSxvv3E3T6NKfq1OHAdddpxUrkd1C4EhGpxnbt2kWfPn3YtWsXtWrVYvDgwTRp0sSlxvj6sv+iYyJy5RSuRESqqc8//5z+/ftz4sQJ6tWrx9ChQ3WPQJEqoHAlIlINLViwgPvuu4+SkhIaNmzIXXfdRR1tqyBSJfSiuohINWKM4c9//jN33303JSUltG7dmszMTAUrkSqklSsRkWqipKSEkSNHMm/ePAA6d+5Mjx498NXF6SJVSuFKRKQa+OGHHxgwYID1jsDbbruNhIQEd7clck1SuBIR8XLbt2+nb9++7NmzB5vNxqBBg2jatKm72xK5ZilciYh4sU8++YRBgwZRVFREcHAwd911l94RKOJmeiFeRMRLvfTSS/Tp04eioiIaN27MAw88oGAl4gG0ciUi4mXOnTvHI488wssvvwxAu3btSEtLo2ZNfUsX8QT6ShQR8SInT55k8ODBLFu2DB8fH3r27EmnTp3w8fH59U8WkSqhcCUi4iV2795NWloa3377LX5+fgwcOJCWLVu6uy0RuYjClYiIF1i9ejUDBgzg+PHjBAUFMXToUCIjI93dlohUQOFKRMTDzZ07lwcffJDS0lKioqIYMmQIdevWdXdbIvIzFK5ERDxUWVkZjz/+OLNmzQLghhtuoF+/fvj7+7u5MxH5JQpXIiIe6PTp09xzzz0sXrwYgC5dutClSxfdykbECyhciYh4mIMHD9K3b1++/vpratasSb9+/YiLi3N3WyLyGylciYh4kC+//JJ+/fqRn59PYGAgQ4YMITo62t1tichlULgSEfEQ8+fP54EHHsDpdBIWFsbQoUOpV6+eu9sSkcukcCUi4mZlZWU88cQTzJw5E4AWLVowcOBAbDabmzsTkSuhcCUi4kYOh4OhQ4eydOlSAG6++Wa6deumC9dFvJjClYiIm3z33Xekp6ezY8cOatasSf/+/YmNjXV3WyLyOylciYi4wYoVKxg0aBCFhYUEBQUxZMgQGjZs6O62RKQSKFyJiFQhYwwvvvgi48ePp6ysjIYNGzJkyBCCgoLc3ZqIVBKFKxGRKuJ0Ohk9ejRz5swBoG3btqSlpeHn5+fmzkSkMilciYhUgYKCAgYMGMAXX3yBj48PKSkpJCUl4ePj4+7WRKSSKVyJiFxlW7ZsIT09nYMHD1KrVi3uuOMOmjVr5u62ROQqUbgSEbmK/vnPf5KZmcmPP/5I/fr1ueuuuwgNDXV3WyJyFWkjFRGRq6C8vJzJkydz55138uOPP9K0aVMeeOABBSuRa4BWrkREKllRURH33nsvixcvBiA5OZmePXtSo0YNN3cmIlVB4UpEpBLt3LmT/v378+2331KjRg369u1Lu3bt3N2WiFQhhSsRkUryr3/9i7vvvpuioiKCgoIYPHgwjRo1cndbIlLFdM2ViMjvVF5ezp///GfS09MpKiqicePGPPjggwpWItcorVyJiPwOp06d4t577+WDDz4AoEOHDqSmplKzpr69ilyrPG7lavr06XTo0IGgoCDCwsLo378/O3fudKkZNmwYPj4+Lo+kpCSXGqfTydixYwkNDSUwMJD09HQOHTrkUlNYWEhGRgZ2ux273U5GRgYnT550qTlw4AB9+/YlMDCQ0NBQxo0bR0lJyVWZXUS8y3/+8x8SExP54IMPqFGjBv369aNPnz4KViLXOI8LV6tWrWL06NGsX7+e5cuXc+7cOVJSUjhz5oxLXa9evThy5Ij1WLp0qcv5rKwsFi1aRHZ2NmvWrOH06dOkpaVRVlZm1QwdOpQtW7aQk5NDTk4OW7ZsISMjwzpfVlZGnz59OHPmDGvWrCE7O5uFCxcyYcKEq/uXICIeb8mSJXTs2JEdO3YQFBTEfffdx4033ujutkTEA3jcr1c5OTkuH8+dO5ewsDByc3O55ZZbrOM2m42IiIgKn8PhcDBnzhzeeustevbsCcD8+fOJjo5mxYoVpKamsmPHDnJycli/fj2JiYkAvPbaayQnJ7Nz505iYmJYtmwZ27dv5+DBg0RFRQHw7LPPMmzYMKZOnUrdunWvxl+BiHgwYwzTpk3jT3/6E8YYoqOjGTRokG68LCIWj1u5upjD4QAgJCTE5fjKlSsJCwujRYsWjBgxgoKCAutcbm4upaWlpKSkWMeioqKIjY1l7dq1AKxbtw673W4FK4CkpCTsdrtLTWxsrBWsAFJTU3E6neTm5lbYr9PppKioyOUhItXDqVOnuOOOO/jv//5vjDF06NCBzMxMBSsRceHR4coYw/jx47npppuIjY21jvfu3Zu3336bTz/9lGeffZaNGzfSvXt3nE4nAPn5+fj7+xMcHOzyfOHh4eTn51s1YWFhl/yZYWFhLjXh4eEu54ODg/H397dqLjZ9+nTrGi673U50dPSV/wWIiMfYtWsXSUlJvP/++9SoUYP09HRdXyUiFfLo7wpjxoxh69atrFmzxuX44MGDrX+PjY0lISGB6667jiVLljBgwICffT5jjMsd6Cu6G/2V1PzU448/zvjx462Pi4qKFLBEvNzHH3/MXXfdhcPhICgoiEGDBunrWkR+lseuXI0dO5YPP/yQzz777Ff3iomMjOS6665j165dAERERFBSUkJhYaFLXUFBgbUSFRERwdGjRy95rmPHjrnUXLxCVVhYSGlp6SUrWhfYbDbq1q3r8hAR73Rh/6o+ffrgcDiIjo5m5MiRClYi8os8LlwZYxgzZgzvv/8+n376KU2aNPnVzzl+/DgHDx4kMjISgPj4ePz8/Fi+fLlVc+TIEbZt20anTp2A8/f6cjgcfPnll1bNhg0bcDgcLjXbtm3jyJEjVs2yZcuw2WzEx8dXyrwi4pkKCwtJT09n0qRJGGNISEjQ9VUi8pt43MuCo0ePZsGCBSxevJigoCBr5chutxMQEMDp06eZPHkyAwcOJDIykn379vHEE08QGhrK7bffbtUOHz6cCRMmUL9+fUJCQpg4cSJxcXHWuwdbtWpFr169GDFiBK+++ioAI0eOJC0tjZiYGABSUlJo3bo1GRkZzJo1ixMnTjBx4kRGjBihFSmRamzLli0MHDiQPXv2ULNmTdLS0nR/QBH5zTxu5Wr27Nk4HA66du1KZGSk9Xj33XcBqFGjBnl5efTr148WLVqQmZlJixYtWLdunctvlM8//zz9+/dn0KBBdO7cmdq1a/PRRx+53JX+7bffJi4ujpSUFFJSUmjTpg1vvfWWdb5GjRosWbKEWrVq0blzZwYNGkT//v155plnqu4vRESq1Lx580hOTmbPnj3Uq1eP4cOHK1iJyGXxMcYYdzdRnRUVFWG323E4HFrtEvFgTqeTRx55xFrJbt68OQMGDCAgIMDNnYlUD35+fox/9AkAnps5jdLSUjd39MuKi4uZMWPGFf389riXBUVEqtqBAwe444472LhxIz4+PnTt2pWbb74ZX1+PW9wXES+gcCUi17QVK1YwZMgQjh8/TkBAAAMHDqRZs2bubktEvJh+LRORa1J5eTnTpk0jNTWV48ePExkZyciRIxWsROR308qViFxzTp48SWZmJh9++CEA7du3p3fv3vj5+bm5MxGpDhSuROSasnXrVgYMGMDu3bupWbMmt912G+3bt3d3WyJSjShcicg1Y/78+YwcOZKzZ89it9sZPHiwy43ZRUQqg8KViFR7xcXFjB8/ntmzZwPQtGlTBg4cSO3atd3cmYhURwpXIlKt7dmzhzvvvJNNmzYB0KVLF7p06aJtFkTkqlG4EpFqa9GiRdx33304HA5tsyAiVUbhSkSqnZKSEv7rv/6L559/HoDo6GjuuOMO7Ha7mzsTkWuBwpWIVCsHDhxg8ODBrF+/HoBOnTrRo0cPl/uKiohcTQpXIlJtLF26lIyMDE6cOEGtWrW4/fbbiYmJcXdbInKNUbgSEa937tw5Jk2axPTp0wGIiorizjvvJDg42M2dici1SOFKRLzakSNHuOuuu1i1ahUAHTt2JCUlhZo19e1NRNxD331ExGt9+umn3HXXXRQUFODv70+/fv244YYb3N2WiFzjFK5ExOuUlZUxdepUJk+ejDGGsLAwBg0aRGhoqLtbExFRuBIR73L48GHuvvtuVq5cCeimyyLieRSuRMRrLF26lMzMTH744Qf8/f1JS0ujTZs27m5LRMSFwpWIeLySkhKeeOIJnn32WQAiIiK444479DKgiHgkhSsR8Wh79uxhyJAhbNy4EYDExERuvfVWvRtQRDyWvjuJiMd69913GTlyJEVFRQQEBNC/f39tCioiHk/hSkQ8zo8//khWVhavvfYacP7egAMHDqRevXrubUxE5DdQuBIRj/LNN98wePBgvvnmG3x8fLjlllu45ZZbdG9AEfEaClci4hGMMbz++us88sgjnD17ljp16jBw4ECaNGni7tZERC6LwpWIuJ3D4eDBBx/k3XffBaBp06bcfvvt1KlTx82diYhcPoUrEXGrNWvWcM8997B//358fX3p2bMnSUlJ+Pr6urs1EZEronAlIm5x7tw5nn76aaZOnUp5eTn16tVj4MCBREdHu7s1EZHfReFKRKrc7t27ueeee1i/fj0Abdu2pXfv3tSqVcvNnYmI/H4KVyJSZYwxvPXWW4wePZrTp09Tq1Yt0tLSiI2NdXdrIiKVRuFKRKrEyZMnGTVqlHXReuPGjRkwYID2rhKRakfhSkSuus8//5x77rmHAwcO4OvrS7du3ejcubMuWheRaknhSkSumtLSUp5++mmmTZtGeXk5wcHBDBw4kEaNGrm7NRGRq0bhSkSuit27d3P33XezYcMGAG688UZ69eqFzWZzc2ciIleXwpWIVCpjDPPmzWPs2LHWRevp6em0bt3a3a2JiFQJhSsRqTQ//PADo0aNYuHChQBcd911DBgwALvd7ubORESqjsddTTp9+nQ6dOhAUFAQYWFh9O/fn507d7rUGGOYPHkyUVFRBAQE0LVrV7755huXGqfTydixYwkNDSUwMJD09HQOHTrkUlNYWEhGRgZ2ux273U5GRgYnT550qTlw4AB9+/YlMDCQ0NBQxo0bR0lJyVWZXcSbLVmyhNjYWBYuXIivry89evQgMzNTwUpErjkeF65WrVrF6NGjWb9+PcuXL+fcuXOkpKRw5swZq2bmzJk899xzvPTSS2zcuJGIiAhuvfVWTp06ZdVkZWWxaNEisrOzWbNmDadPnyYtLY2ysjKrZujQoWzZsoWcnBxycnLYsmULGRkZ1vmysjL69OnDmTNnWLNmDdnZ2SxcuJAJEyZUzV+GiBc4ffo0I0eOJC0tjaNHj9KgQQNGjBjBzTffrHcDisg1yccYY9zdxC85duwYYWFhrFq1iltuuQVjDFFRUWRlZfHYY48B51epwsPD+etf/8qDDz6Iw+GgQYMGvPXWWwwePBiAw4cPEx0dzdKlS0lNTWXHjh20bt2a9evXk5iYCMD69etJTk7m22+/JSYmho8//pi0tDQOHjxIVFQUANnZ2QwbNoyCggLq1q37q/0XFRVht9txOBy/qV7Em3zxxRfce++97NmzBx8fH5KSkujevTt+fn7ubk1EPIyfnx/jH30CgOdmTqO0tNTNHf2y4uJiZsyYcUU/vz3+10qHwwFASEgIAHv37iU/P5+UlBSrxmaz0aVLF9auXQtAbm4upaWlLjVRUVHExsZaNevWrcNut1vBCiApKQm73e5SExsbawUrgNTUVJxOJ7m5uRX263Q6KSoqcnmIVDdOp5PHH3+cW265hT179mC327n33ntJTU1VsBKRa55HX9BujGH8+PHcdNNN1u0x8vPzAQgPD3epDQ8PZ//+/VaNv78/wcHBl9Rc+Pz8/HzCwsIu+TPDwsJcai7+c4KDg/H397dqLjZ9+nSmTJlyuaOKeI28vDzuuecetm7dCkC7du3o1auX7gsoIvJ/PHrlasyYMWzdupV33nnnknM+Pj4uHxtjLjl2sYtrKqq/kpqfevzxx3E4HNbj4MGDv9iTiLcoKytj1qxZJCQksHXrVmrXrs2QIUPo37+/gpWIyE947MrV2LFj+fDDD1m9erXLbs4RERHA+VWlyMhI63hBQYG1yhQREUFJSQmFhYUuq1cFBQV06tTJqjl69Oglf+6xY8dcnufCBogXFBYWUlpaesmK1gU2m02bJEq1s3v3bu677z4+//xzAGJiYujbty916tRxc2ciIp7H41aujDGMGTOG999/n08//ZQmTZq4nG/SpAkREREsX77cOlZSUsKqVaus4BQfH4+fn59LzZEjR9i2bZtVk5ycjMPh4Msvv7RqNmzYgMPhcKnZtm0bR44csWqWLVuGzWYjPj6+8ocX8TDl5eW89NJLtGnThs8//xx/f3/S09MZMmSIgpWIyM/wuJWr0aNHs2DBAhYvXkxQUJB1bZPdbicgIAAfHx+ysrKYNm0azZs3p3nz5kybNo3atWszdOhQq3b48OFMmDCB+vXrExISwsSJE4mLi6Nnz54AtGrVil69ejFixAheffVVAOvt5DExMQCkpKTQunVrMjIymDVrFidOnGDixImMGDFC7/yTam/v3r3cf//9rFy5EoA//OEP9OvX75JrGUVExJXHhavZs2cD0LVrV5fjc+fOZdiwYQA8+uijnD17locffpjCwkISExNZtmwZQUFBVv3zzz9PzZo1GTRoEGfPnqVHjx688cYb1KhRw6p5++23GTdunPWuwvT0dF566SXrfI0aNViyZAkPP/wwnTt3JiAggKFDh/LMM89cpelF3K+8vJxXXnmFRx99lDNnzuDn58ett95KQkKC9q0SEfkNPH6fK2+nfa7Em+zbt4/hw4fz6aefAudvX9OvXz9rKxQRkSt1Le1z5XErVyJS9Ywx/OMf/2DixImcPn1aq1UiIr+DwpXINW7//v088MADrFixAoDGjRvTr18/6tev7+bORES8k8KVyDXKGMPrr7/OhAkTOHXqFH5+fvTs2ZMOHTpotUpE5HdQuBK5Bu3evZuRI0da11ZFR0fTv39/rVaJiFQChSuRa0hZWRl/+9vf+NOf/sTZs2fx8/Oje/fuJCYmarVKRKSSKFyJXCPy8vIYPnw4GzduBM7vW5Wenq53AoqIVDKFK5Fqzul0Mm3aNKZNm8a5c+ew2WykpqZy4403/ur9OEVE5PIpXIlUY+vWrWP48OHs2LEDgJYtW3LbbbdpzzURkatI4UqkGjp9+jRPPvkkL774IsYYAgMD6dOnD61atdJqlYjIVaZwJVLNLFu2jJEjR7J//34A2rVrR0pKCrVr13ZzZyIi1waFK5Fq4tixY0ycOJE333wTOH8D8759+9KsWTM3dyYicm1RuBLxcsYY5s6dyx//+EdOnDiBj48PHTt2pHv37thsNne3JyJyzVG4EvFiO3bsYNSoUaxevRqA8PBw0tLSiI6OdnNnIiLXLoUrES909uxZpk6dysyZMyktLcXPz49u3bqRmJhIjRo13N2eiMg1TeFKxMssX76chx56iN27dwPQvHlz+vTpQ7169dzbmIiIAApXIl7j6NGjjB8/ngULFgAQFBTEbbfdRsuWLbW9goiIB1G4EvFw5eXlvP766zz22GOcPHnSumC9W7du1KpVy93tiYjIRRSuRDxYXl4eo0aNYu3atQBERkaSlpZGw4YN3dyZiIj8HIUrEQ/kcDiYPHkyL774ImVlZfj7+9O9e3c6dOigC9ZFRDycwpWIBzHGMH/+fP74xz9y9OhRAFq1akWvXr2w2+1u7k5ERH4LhSsRD/H1118zevRovvjiCwDq169P7969tcO6iIiXUbgScbOTJ08yadIk/v73v1NeXo6fnx9dunQhKSmJmjX1JSoi4m30nVvETcrLy5k3bx6PPfYYx44dA+CGG24gJSVFLwGKiHgxhSsRN9i0aRNjxoxh3bp1AISGhnLbbbdx/fXXu7kzERH5vRSuRKrQiRMn+O///m9eeeUVjDH4+/vTpUsXEhMT9RKgiEg1oe/mIlXg3LlzvPbaa/zpT3/i+PHjAMTFxXHrrbdSt25dN3cnIiKVSeFK5Cr797//TVZWFtu2bQOgQYMG3HbbbTRp0sTNnYmIyNWgcCVylXz33XdMnDiRxYsXAxAQEEC3bt2Ij4/XRqAiItWYwpVIJSsqKuIvf/kLL7zwAiUlJfj6+tKhQwe6dOlC7dq13d2eiIhcZQpXIpWkrKyMuXPn8uSTT1JQUABA06ZNSU1NJSwszM3diYhIVVG4EqkEq1evJisri82bNwPnd1fv1asXzZo1w8fHx83diYhIVVK4Evkddu7cyWOPPWZdV2Wz2ejatSsdOnTQ1goiItcoffcXuQIFBQVMmTKFV199lbKyMnx9fWnfvj3dunUjMDDQ3e2JiIgbKVyJXIazZ8/yt7/9jenTp3Pq1CkAYmJi6NmzJw0aNHBzdyIi4gkUrkR+g/LycubPn8+TTz7JoUOHAIiMjCQlJUX7VYmIiAtfdzdwsdWrV9O3b1+ioqLw8fHhgw8+cDk/bNgwfHx8XB5JSUkuNU6nk7FjxxIaGkpgYCDp6enWD8QLCgsLycjIwG63Y7fbycjI4OTJky41Bw4coG/fvgQGBhIaGsq4ceMoKSm5GmOLB/v0009JSEggMzOTQ4cOYbfbGThwICNGjFCwEhGRS3hcuDpz5gxt27blpZde+tmaXr16ceTIEeuxdOlSl/NZWVksWrSI7Oxs1qxZw+nTp0lLS6OsrMyqGTp0KFu2bCEnJ4ecnBy2bNlCRkaGdb6srIw+ffpw5swZ1qxZQ3Z2NgsXLmTChAmVP7R4pK+//prbbruNHj16sHnzZmw2G7feeitjxowhLi4OX1+P+/IREREP4HEvC/bu3ZvevXv/Yo3NZiMiIqLCcw6Hgzlz5vDWW2/Rs2dPAObPn090dDQrVqwgNTWVHTt2kJOTw/r160lMTATgtddeIzk5mZ07dxITE8OyZcvYvn07Bw8eJCoqCoBnn32WYcOGMXXqVN0PrhrbvXs3kyZNYsGCBQD4+vrSsWNHbr75Zl2sLiIiv8orf/VeuXIlYWFhtGjRghEjRlgbNgLk5uZSWlpKSkqKdSwqKorY2FjWrl0LwLp167Db7VawAkhKSsJut7vUxMbGWsEKIDU1FafTSW5u7s/25nQ6KSoqcnmId8jPz2f06NG0bNnSClZxcXGMHj2aXr16KViJiMhv4nErV7+md+/e3HnnnVx33XXs3buXP/3pT3Tv3p3c3FxsNhv5+fn4+/sTHBzs8nnh4eHk5+cD53+IVrRjdlhYmEtNeHi4y/ng4GD8/f2tmopMnz6dKVOm/N4xpQo5HA5mzZrF888/z48//ghAs2bN6NGjB5GRkW7uTkREvI3XhavBgwdb/x4bG0tCQgLXXXcdS5YsYcCAAT/7ecYYl52yK9o1+0pqLvb4448zfvx46+OioiKio6N/fiBxm7Nnz/L3v/+d6dOnc+LECQAaNWpEjx49dKG6iIhcMa8LVxeLjIzkuuuuY9euXQBERERQUlJCYWGhy+pVQUEBnTp1smqOHj16yXMdO3bMWq2KiIhgw4YNLucLCwspLS29ZEXrp2w2Gzab7XfPJVdPaWkp8+bNY/LkyXz//fcANGjQgJ49e9KiRQvdrkZERH4Xr7zm6qeOHz/OwYMHrZdv4uPj8fPzY/ny5VbNkSNH2LZtmxWukpOTcTgcfPnll1bNhg0bcDgcLjXbtm3jyJEjVs2yZcuw2WzEx8dXxWhSyc6dO8ebb75Jq1atGDFiBN9//z12u53bb7+dhx56iJiYGAUrERH53Txu5er06dN899131sd79+5ly5YthISEEBISwuTJkxk4cCCRkZHs27ePJ554gtDQUG6//XYA7HY7w4cPZ8KECdSvX5+QkBAmTpxIXFyc9e7BVq1a0atXL0aMGMGrr74KwMiRI0lLSyMmJgaAlJQUWrduTUZGBrNmzeLEiRNMnDiRESNG6J2CXqasrIz33nuPKVOmsHPnTgBq167NzTffTEJCAn5+fm7uUEREqhOPC1dfffUV3bp1sz6+cP1SZmYms2fPJi8vjzfffJOTJ08SGRlJt27dePfddwkKCrI+5/nnn6dmzZoMGjSIs2fP0qNHD9544w1q1Khh1bz99tuMGzfOeldhenq6y95aNWrUYMmSJTz88MN07tyZgIAAhg4dyjPPPHO1/wqkkpSXl7Nw4UImT57M9u3bAQgICKBz58507NgRf39/N3coIiLVkY8xxri7ieqsqKgIu92Ow+HQilcVMcawePFinnrqKbZu3QpArVq16NSpEx07dqRWrVpu7lBE5Nrj5+fH+EefAOC5mdMoLS11c0e/rLi4mBkzZlzRz2+PW7kSuVLGGJYuXcqkSZPYtGkTcP4NBsnJySQmJhIQEODmDkVE5FqgcCVe70Koevrpp603Kfj5+ZGcnExSUhK1a9d2c4ciInItUbgSr1VeXs4HH3zAX/7yFzZv3gxAzZo1SUxMpFOnTtpRXURE3ELhSrzOuXPneO+995g6dap1obqfnx8dO3YkKSnJ5c0NIiIiVU3hSrxGaWkp8+fPZ9q0adZ2HTabjaSkJBITE/Xyn4iIeASFK/F4xcXFzJ07l7/+9a/s378fOL+lQnJyMh06dNCF6iIi4lEUrsRj/fjjj/zjH/9g1qxZHD58GIDAwEA6d+5MfHy8bjMkIiIeSeFKPM4PP/zA3//+d1588UWOHz8OQFBQEDfddBPt27fXjuoiIuLRFK7EY+zdu5fnnnuOOXPmcPbsWQDq1avHzTffTNu2balZU/+7ioiI59NPK3G7zZs3M3PmTN577z3Ky8sBiIyMpHPnzrRq1crltkUiIiKeTuFK3MIYw7///W9mzpzJ8uXLreNNmzalc+fONGnSBB8fHzd2KCIicmUUrqRKnTt3jn/+85/MnDnT2vjT19eXG264gU6dOhEZGenmDkVERH4fhSupEqdOneKNN97g+eefZ+/evcD53dTj4+NJSkoiODjYzR2KiIhUDoUruar27t3Liy++yJw5cygqKgKgdu3aJCYmkpCQoFvUiIhItaNwJZXOGMPq1at54YUXWLx4sXWRev369UlKSqJt27b4+/u7uUsREZGrQ+FKKo3T6SQ7O5u//e1vbNmyxTretGlTkpKSaNq0Kb6+vu5rUEREpAooXMnvlp+fzyuvvMLs2bMpKCgAzl9P1a5dOzp27EhYWJibOxQREak6CldyxTZv3swLL7zAO++8Q0lJCXB+J/XExETat2+vGymLiMg1SeFKLovT6eSf//wns2fP5osvvrCON2rUiOTkZFq2bKlNP0VE5JqmcCW/yZ49e3j11Vf5n//5H3744Qfg/P5UrVu3JjExkejoaDd3KCIi4hkUruRnlZWVsXTpUl5++WU++eQTjDHA+Zf+EhISuPHGG6lbt66buxQREfEsCldyifz8fObMmcM//vEPDhw4YB1v2rQpCQkJtGjRQi/9iYiI/AyFKwH+/95UL7/8Mu+//z7nzp0DICAggPbt29O+fXvq16/v5i5FREQ8n8LVNa6wsJD58+fzyiuvsH37dut4o0aN6NChA61bt8bPz8+NHYqIiHgXhatrUHl5OStXrmTOnDksXLgQp9MJgJ+fH23atCEhIUE3UBYREblCClfXkO+//5433niD//mf/2HPnj3W8fDwcOLj42nTpg21atVyY4ciIiLeT+GqmistLWXJkiW8/vrrfPzxx9Z9/mw2G3FxcbRv357IyEh8fHzc3KmIiEj1oHBVTW3bto158+bx1ltvcfToUet448aNiY+Pp1WrVrp5soiIyFWgcFWNHDt2jAULFvDmm2+yadMm63hgYCA33ngj7dq1IzQ01I0dioiIVH8KV16upKSEf/3rX8ybN4+lS5daWyj4+voSExNDmzZttC+ViIhIFVK48kLGGL766ivmzZvHO++8w4kTJ6xzUVFRtGvXjhtuuIHAwEA3dikiInJtUrjyIt999x3vvPMOCxYs4Ntvv7WOBwUF0bZtW9q0aUNYWJgbOxQRERGFKw+Xn5/Pe++9x9tvv82XX35pHa9ZsyatWrWibdu2XH/99fj6+rqxSxEREblA4coDFRUVsWjRIhYsWMCKFSus7RN8fHy4/vrriYuLo2XLltqTSkRExAMpXHmI4uJicnJyWLBgAR999BHFxcXWuYYNG9KmTRtuuOEG6tSp48YuRURE5Nd43GtJq1evpm/fvkRFReHj48MHH3zgct4Yw+TJk4mKiiIgIICuXbvyzTffuNQ4nU7Gjh1LaGgogYGBpKenc+jQIZeawsJCMjIysNvt2O12MjIyOHnypEvNgQMH6Nu3L4GBgYSGhjJu3DhKSkoqbdbi4mI+/PBD7rnnHsLCwrj99tv53//9X4qLiwkNDaV79+6MGzeOESNGkJiYqGAlIiLiBTxu5erMmTO0bduW++67j4EDB15yfubMmTz33HO88cYbtGjRgr/85S/ceuut7Ny5k6CgIACysrL46KOPyM7Opn79+kyYMIG0tDRyc3OtLQmGDh3KoUOHyMnJAWDkyJFkZGTw0UcfAVBWVkafPn1o0KABa9as4fjx42RmZmKM4cUXX7zi+ZxOJ8uWLeO9995j8eLFnDp1yjpXt25dYmNjiYuLIyIiQrumi4iIeCGPC1e9e/emd+/eFZ4zxvC3v/2NJ598kgEDBgAwb948wsPDWbBgAQ8++CAOh4M5c+bw1ltv0bNnTwDmz59PdHQ0K1asIDU1lR07dpCTk8P69etJTEwE4LXXXiM5OZmdO3cSExPDsmXL2L59OwcPHiQqKgqAZ599lmHDhjF16lTq1q17WXPl5OTwr3/9i8WLF1NUVGQdr1u3LjfccAOtW7emYcOGujBdRETEy3lcuPole/fuJT8/n5SUFOuYzWajS5curF27lgcffJDc3FxKS0tdaqKiooiNjWXt2rWkpqaybt067Ha7FawAkpKSsNvtrF27lpiYGNatW0dsbKwVrABSU1NxOp3k5ubSrVu3Cnt0Op04nU7rY4fDAcDgwYOtY3Xq1KFly5a0bNmShg0bWitUlfmSo4iIiCcpKyuzFheKi4spLS11c0e/7MLPcmPMZX+uV4Wr/Px8AMLDw12Oh4eHs3//fqvG39+f4ODgS2oufH5+fn6F+0GFhYW51Fz85wQHB+Pv72/VVGT69OlMmTLlF+c4ffo0X331FV999dUv1omIiFQnf/7zn93dwmU7deoUdrv9sj7Hq8LVBRdfi2SM+dXrky6uqaj+Smou9vjjjzN+/Hjr4/Lyck6cOEH9+vU97hqqoqIioqOjOXjw4GW/zOkNNJ9303zeTfN5N813/uf9qVOnXF7B+q28KlxFREQA51eVIiMjreMFBQXWKlNERAQlJSUUFha6rF4VFBTQqVMnq+bo0aOXPP+xY8dcnmfDhg0u5wsLCyktLb1kReunbDYbNpvN5Vi9evUuY8qqV7du3Wr5xXOB5vNums+7aT7vdq3Pd7krVhd41dXTTZo0ISIiguXLl1vHSkpKWLVqlRWc4uPj8fPzc6k5cuQI27Zts2qSk5NxOBwuO55v2LABh8PhUrNt2zaOHDli1SxbtgybzUZ8fPxVnVNERES8l8etXJ0+fZrvvvvO+njv3r1s2bKFkJAQGjduTFZWFtOmTaN58+Y0b96cadOmUbt2bYYOHQqcT5nDhw9nwoQJ1K9fn5CQECZOnEhcXJz17sFWrVrRq1cvRowYwauvvgqc34ohLS2NmJgYAFJSUmjdujUZGRnMmjWLEydOMHHiREaMGFGtU7yIiIj8TsbDfPbZZwa45JGZmWmMMaa8vNw89dRTJiIiwthsNnPLLbeYvLw8l+c4e/asGTNmjAkJCTEBAQEmLS3NHDhwwKXm+PHj5u677zZBQUEmKCjI3H333aawsNClZv/+/aZPnz4mICDAhISEmDFjxpji4uKrOX6VKi4uNk899VS1mumnNJ9303zeTfN5N833+/gYcwXvMRQRERGRCnnVNVciIiIink7hSkRERKQSKVyJiIiIVCKFKxEREZFKpHAlIiIiUokUrq4B6enpNG7cmFq1ahEZGUlGRgaHDx92qTlw4AB9+/YlMDCQ0NBQxo0bd8mNpPPy8ujSpQsBAQE0bNiQp59++opuaFmZ9u3bx/Dhw2nSpAkBAQE0bdqUp5566pLevXU+gKlTp9KpUydq1679s7v9e/N8FXn55Zdp0qQJtWrVIj4+ns8//9zdLf0mq1evpm/fvkRFReHj48MHH3zgct4Yw+TJk4mKiiIgIICuXbvyzTffuNQ4nU7Gjh1LaGgogYGBpKenc+jQoSqc4udNnz6dDh06EBQURFhYGP3792fnzp0uNd484+zZs2nTpo21a3dycjIff/yxdd6bZ6vI9OnT8fHxISsryzrmzTNOnjwZHx8fl8eFO7tAFc92VTZ4EI/y3HPPmXXr1pl9+/aZL774wiQnJ5vk5GTr/Llz50xsbKzp1q2b2bRpk1m+fLmJiooyY8aMsWocDocJDw83Q4YMMXl5eWbhwoUmKCjIPPPMM+4YyfLxxx+bYcOGmU8++cTs3r3bLF682ISFhZkJEyZYNd48nzHGTJo0yTz33HNm/Pjxxm63X3Le2+e7WHZ2tvHz8zOvvfaa2b59u3nkkUdMYGCg2b9/v7tb+1VLly41Tz75pFm4cKEBzKJFi1zOz5gxwwQFBZmFCxeavLw8M3jwYBMZGWmKioqsmlGjRpmGDRua5cuXm02bNplu3bqZtm3bmnPnzlXxNJdKTU01c+fONdu2bTNbtmwxffr0MY0bNzanT5+2arx5xg8//NAsWbLE7Ny50+zcudM88cQTxs/Pz2zbts0Y492zXezLL780f/jDH0ybNm3MI488Yh335hmfeuopc8MNN5gjR45Yj4KCAut8Vc6mcHUNWrx4sfHx8TElJSXGmPM/EHx9fc33339v1bzzzjvGZrMZh8NhjDHm5ZdfNna73WXDtenTp5uoqChTXl5etQP8ipkzZ5omTZpYH1eX+ebOnVthuKou813QsWNHM2rUKJdjLVu2NP/1X//lpo6uzMXhqry83ERERJgZM2ZYx4qLi43dbjevvPKKMcaYkydPGj8/P5OdnW3VfP/998bX19fk5ORUWe+/VUFBgQHMqlWrjDHVc8bg4GDz+uuvV6vZTp06ZZo3b26WL19uunTpYoUrb5/xqaeeMm3btq3wXFXPppcFrzEnTpzg7bffplOnTvj5+QGwbt06YmNjXe78nZqaitPpJDc316rp0qWLy02pU1NTOXz4MPv27avSGX6Nw+EgJCTE+ri6zXex6jRfSUkJubm5pKSkuBxPSUlh7dq1buqqcuzdu5f8/HyX2Ww2G126dLFmy83NpbS01KUmKiqK2NhYj5zf4XAAWF9v1WnGsrIysrOzOXPmDMnJydVqttGjR9OnTx/rlnAXVIcZd+3aRVRUFE2aNGHIkCHs2bMHqPrZFK6uEY899hiBgYHUr1+fAwcOsHjxYutcfn4+4eHhLvXBwcH4+/uTn5//szUXPr5Q4wl2797Niy++yKhRo6xj1Wm+ilSn+X744QfKysoq7NWT+rwSF/r/pdny8/Px9/cnODj4Z2s8hTGG8ePHc9NNNxEbGwtUjxnz8vKoU6cONpuNUaNGsWjRIlq3bl0tZgPIzs4mNzeX6dOnX3LO22dMTEzkzTff5JNPPuG1114jPz+fTp06cfz48SqfTeHKS1V04d7Fj6+++sqq/+Mf/8jmzZtZtmwZNWrU4N5773W5mNnHx+eSP8MY43L84poLn1/R5/5elzsfwOHDh+nVqxd33nknDzzwgMu56jDfL/G0+X6vinr1xD6vxJXM5onzjxkzhq1bt/LOO+9ccs6bZ4yJiWHLli2sX7+ehx56iMzMTLZv326d9+bZDh48yCOPPMLbb79NrVq1frbOW2fs3bs3AwcOJC4ujp49e7JkyRIA5s2bZ9VU1Ww1L6taPMaYMWMYMmTIL9b84Q9/sP49NDSU0NBQWrRoQatWrYiOjmb9+vUkJycTERHBhg0bXD63sLCQ0tJSK+VHRERcktwLCgqAS38TqAyXO9/hw4fp1q0bycnJ/OMf/3Cpqw7z/RJPnO9KhYaGUqNGjQp79aQ+r8SFdy3l5+cTGRlpHf/pbBEREZSUlFBYWOjy23NBQQGdOnWq2oZ/wdixY/nwww9ZvXo1jRo1so5Xhxn9/f1p1qwZAAkJCWzcuJEXXniBxx57DPDu2XJzcykoKCA+Pt46VlZWxurVq3nppZesd35684w/FRgYSFxcHLt27aJ///5AFc52WVdoSbVw4MABA5jPPvvMGPP/L4g+fPiwVZOdnX3JBdH16tUzTqfTqpkxY4ZHXBB96NAh07x5czNkyJAK39Hh7fNd8GsXtHv7fBd07NjRPPTQQy7HWrVqVW0uaP/rX/9qHXM6nRVeUPvuu+9aNYcPH/aIi4WNOT/D6NGjTVRUlPnPf/5T4Xlvn/Fi3bt3N5mZmdVitqKiIpOXl+fySEhIMPfcc4/Jy8urFjP+VHFxsWnYsKGZMmVKlc+mcFXNbdiwwbz44otm8+bNZt++febTTz81N910k2natKn1zrELb+Xv0aOH2bRpk1mxYoVp1KiRy1v5T548acLDw81dd91l8vLyzPvvv2/q1q3r9rfyf//996ZZs2ame/fu5tChQy5vwb3Am+czxpj9+/ebzZs3mylTppg6deqYzZs3m82bN5tTp04ZY7x/votd2Iphzpw5Zvv27SYrK8sEBgaaffv2ubu1X3Xq1Cnrvw9gnnvuObN582ZrG4kZM2YYu91u3n//fZOXl2fuuuuuCt8K3qhRI7NixQqzadMm0717d494m7sxxjz00EPGbreblStXunyt/fjjj1aNN8/4+OOPm9WrV5u9e/earVu3mieeeML4+vqaZcuWGWO8e7af89N3Cxrj3TNOmDDBrFy50uzZs8esX7/epKWlmaCgIOt7R1XOpnBVzW3dutV069bNhISEGJvNZv7whz+YUaNGmUOHDrnU7d+/3/Tp08cEBASYkJAQM2bMGJe37V94rptvvtnYbDYTERFhJk+e7PZVj7lz5xqgwsdPeet8xhiTmZlZ4XwXVh6N8e75KvL3v//dXHfddcbf39+0b9/eequ/p/vss88q/G+VmZlpjDm/svPUU0+ZiIgIY7PZzC233GLy8vJcnuPs2bNmzJgxJiQkxAQEBJi0tDRz4MABN0xzqZ/7Wps7d65V480z3n///db/dw0aNDA9evSwgpUx3j3bz7k4XHnzjBf2rfLz8zNRUVFmwIAB5ptvvrHOV+VsPsZ46BbNIiIiIl5I7xYUERERqUQKVyIiIiKVSOFKREREpBIpXImIiIhUIoUrERERkUqkcCUiIiJSiRSuRERERCqRwpWIiIhIJVK4EhEREalEClciIj+jTZs2+Pj44OPjw+eff15hTWFhIaGhoVbdf/7znyruUkQ8jcKViEgFiouL2bFjBzVr1gQgLy+vwrpJkyZRWFgIQFBQEM2bN6+yHkXEMylciYhU4Ouvv+bcuXP07t0bX1/fCsPVtm3bmD17NrfddhsA7dq1w8fHp6pbFREPo3AlIlKBTZs2AXDLLbfQtGnTCsNVVlYWQUFB3H777QDEx8dXaY8i4pkUrkREKpCbmwtA+/btadeu3SXh6v333+ff//43U6ZMYf/+/VatiIjClYhIBS6sXF0IV0VFRRw4cAAAp9PJxIkTadWqFQ8//LBLrYhITXc3ICLiaUpKSti2bRvXX3899erVo127dsD5i9obN27MM888w969e/nkk0+oWbMmubm51K5dm5YtW7q3cRHxCFq5EhG5yNatWyktLbVWotq2bQucD1fff/8906dPJz09nZSUFPLz8zly5Aht27alRo0aAEyfPp2EhASCgoIIDw9n0KBB7Nu3z13jiEgVU7gSEbnIhZf5Llyg3rBhQxo0aEBeXh6PPvoopaWlPPvss4DrtVkXrFq1irFjx7JhwwZycnI4efIkvXv35ty5c1U8iYi4g14WFBG5SEWBqW3btnz88ccUFhby2GOP0axZM4AKr7fKyclxeb45c+bQuHFjtm/fTps2ba52+yLiZlq5EhG5SEWBqV27dhQWFhIREcGTTz5pHb8QxH5pGwaHwwFASEjI1WhXRDyMjzHGuLsJERFPUVpaal0rdWGLBYC9e/fy9ddf07RpU+Li4qzjjRs3pqCggFOnTuHn53fJ85WXl9O7d29q1qzJkiVLqmQGEXEvvSwoIvIT33zzDU6n85JtFZo0aUKTJk1cjv3www8cPHiQhISECoOVMYYHH3yQvXv38sUXX1zVvkXEcyhciYj8REXXW11JrTGGhx9+mBUrVrB69WoaNGhQuY2KiMfSy4IiIpXMGMPo0aP517/+xapVqy5Z8RKR6k0rVyIilezhhx8mOzubjz76iICAAPLz84HzF7T7+/u7uTsRudq0ciUiUsl8fHwqPP7ZZ5/RtWvXqm1GRKqcVq5ERCqZfmcVubZpnysRERGRSqRwJSIiIlKJFK5EREREKpHClYiIiEglUrgSERERqUQKVyIiIiKVSOFKREREpBIpXImIiIhUIoUrERERkUqkcCUiIiJSiRSuRERERCrR/wOUZB0z0JuuVgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, ax = plt.subplots(1)\n", "\n", "ax.plot(m2_sample, y_sample, label=\"LSF\", color=\"k\")\n", "# Contour plot\n", "X_grid,Y_grid = np.meshgrid(m2_sample,y_sample)\n", "pdf = np.zeros(X_grid.shape)\n", "for i in range(X_grid.shape[0]):\n", " for j in range(X_grid.shape[1]):\n", " # This is correct, but only works when ALL RV's are independent!\n", " # pdf[i,j] = M2.computePDF(X_grid[i,j])*Y.computePDF(Y_grid[i,j])\n", " pdf[i,j] = inputDistribution.computePDF([x_star[0], X_grid[i,j], x_star[2], Y_grid[i,j]])\n", "ax.contour(X_grid, Y_grid, pdf, levels=8, cmap=cm.Blues)\n", "\n", "ax.set_xlabel(r\"$M_2$\", fontsize=14)\n", "ax.set_ylabel(\"Y\", fontsize=14)\n", "ax.plot(x_star[1], x_star[3], 'ro', label=\"Design point\") # Delete x_star[1] and x_star[3] for students\n", "ylim = ax.get_ylim()\n", "ax.fill_between(m2_sample, ylim[0], y_sample, color=\"grey\", label=\"Failure region\")\n", "ax.set_title(r\"Limit state function in the plane $(M_2, Y)$\", fontsize=18)\n", "ax.legend();" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "
\n", "From the second figure:\n", "\n", "
" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAHVCAYAAAA3nGXJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADax0lEQVR4nOydd3hU1daH3+kzmSST3hNIQuhVQLpKF6VJtdfvYrsqCupVvPZ+FVEsoIIIFsSGBVBBOkhvAUJND+m9TJ/z/THJSMqEJCQEcL/Pw/OQOfvsvc7Jycxv1lp7LZkkSRICgUAgEAgEgiYjb20DBAKBQCAQCC51hKASCAQCgUAgOE+EoBIIBAKBQCA4T4SgEggEAoFAIDhPhKASCAQCgUAgOE+EoBIIBAKBQCA4T4SgEggEAoFAIDhPhKASCAQCgUAgOE+EoBIIBAKBQCA4T4SgEggEAoFAIDhPhKASCAQCgUAgOE+EoGpF7rzzTmQyGXfeeec/cn0B2O125s6dS69evdDr9chkMmQyGStXrmxt01qcS/X5u9jtvuaaa5DJZDz//POtbUqzc7Hf+wvBM888g0wm480332xtUy4rrr32WmQyGevXr2/yHEJQNRPPP/+868PwcmDJkiU8//zzbNy48bJct7WuryYzZ85k1qxZHDhwAJvNRnBwMMHBwWi12la163y4WO7t5Yi4t/9s0tPTmTt3LoGBgTz44INux0VFRbk+j1QqFRaLpd55Dxw4gEKhcJ1zxRVXNLfpDaI17a76AjJ79mwcDkeT5lA2eXXBeRMaGkqHDh0IDQ296NZfsmQJmzZtApzfeC8UF2rd1rq+syktLWXhwoUAvPnmm8yePfuyEOQNvbet/fw3lda0+2J4bgWtx5w5czAajbz44ovo9fo6x+Tn55OWlub62WazcezYMbp37+523ocffriaiOjdu3fzGd1AWtvu/v37M3r0aH7//Xe++OILbr/99kbPITxUrchrr73GsWPHeO211/6R6//TOXbsGFarFYD777//shBTjeFSff4uVbsFlzYZGRl8+eWXqNVq7r77brfj9u7d6/p/dHQ0APHx8W7HL1++nC1bthAREeF6D2oNQXUx2H3fffcBNDmcKgSVQNBKVFRUuP7v6enZipYIBIKLnU8++QS73c51112Hn5+f23FVwiQoKIjrrrsOcC9MKioqeOKJJwC46667kCQJoFVCfheD3VX39siRI2zbtq3R5wtB1YrUl2B5dmKp3W7nnXfeoVevXnh6ehIUFMTEiRM5ePCga3xFRQUvv/wyXbt2Ra/X4+/vz/Tp0zl9+nSj1l+yZAkymcwVVnjhhRdc8emqf8nJyQ2+xhUrVjBmzBiCg4NRqVT4+PgQFxfH+PHj+eCDDzCZTE1at7i4mOXLl3PLLbfQrVs3/Pz80Gq1tGnThptvvpkdO3bUaU9Tri8rK4v//Oc/9OjRA4PBgFarJSYmhv/7v//j6NGjDb4XNW04O2Rz9vpnv962bVtkMhlLlixxO5+75+jsZ0iSJD755BP69euHt7c3Xl5eDBgwgC+++OKc9qalpfHEE0/Qs2dPDAYDOp2O2NhYJkyYwNKlS5v8O2xIgvHGjRuZOnUq4eHhaDQaAgICGD58OJ999hl2u73Oc5rrut3R0L/b5ly7qX+X52NDcz/3UP3+WCwWXn/9dbp3745er8fX15eRI0eyZs2aJs3d1PeEumxr6n1riXsGzt/jokWLALj55pvrHbtv3z7AKS569uwJuBcmr7/+OmlpaQwfPpw2bdoAoFQq6w2ztRQXg91qtZrJkycD8PHHHzd+AknQLDz33HMSIDXmlt5xxx0SIN1xxx21jl199dUSID399NPSiBEjJEBSq9WSXq93rePp6Snt3r1bysvLk3r16iUBklarlXQ6nWtMUFCQlJKS0uD1ly9fLgUHB0sqlUoCJL1eLwUHB1f7l5qa2qDru/vuu112VNnr4eFR7bWkpKQmrXv2/a6aW6PRuH6WyWTSu+++W8umxq7zyy+/SJ6enq55VSpVtd+BWq2WPv/88wbdj5o2+Pr6uuY5e/0bbrjBNbZNmzYSIH322Wdu53P3HFU9Q88884w0YcIECZCUSqXk7e1d7d49++yzbudeunSppNVqq12vwWCodv7+/fubdG/re/4lSZIeffTRar9PHx8fSaFQuF4bNmyYVFJSUuu85rju+mjI321zr92Ye9scNrTEc3+2bU899ZQ0ZMgQl20+Pj7VbHvuuefqPL++e9/U94SatjX1vrXUPZMkSTp06JBrnszMzHrHRkdHuz47du/eLQFSZGRkrXHJycmSVquVFAqFFB8fL91///0SIPXo0aNJNp4vF4vdy5Ytc312NhYhqJqJlhJUPj4+kr+/v/Ttt99KFotFcjgc0q5du6SYmBgJkAYOHCjdcMMNUtu2baXff/9dstvtkt1ul9atWycFBgZKgHTLLbc0eX13b2znYsuWLRIgyeVy6Y033pDy8/Ndx/Ly8qTff/9duuOOO6SMjIwmrfvRRx9Jjz76qLRjxw6psLBQkiRJcjgcUmJiovTII49IMplMUigU0r59++o8vyHr7Ny5U1Kr1RIg3XvvvVJCQoJks9kkSZKklJQU6YEHHnC96e7evfvcN6UGGzZsOOcz0xyCytfXVzIYDNKSJUukiooKSZIkKS0tTRo3bpzrd3TixIla865atUqSyWQSIA0aNEjasmWLZLfbJUmSpOLiYmnz5s3Sv/71L+nIkSN1rnuu32F9z9/8+fNd92bGjBmuD5GysjLpnXfekZRKpQRI06dPr3Xu+V73uWjI301Lrd2Qe3u+NrTkc19lm8FgkDQajbRgwQLJaDRKkiRJqamp0pQpU1y/959++qnW+fXd++Z6T2jKfWvp94r333/frcA4m4KCAtf9++677ySj0ej6WykqKqo2dvLkyRIg/fvf/5YkSZL69esnAdJdd93VaPvOl4vJ7hMnTrhsSUhIaNS5QlA1Ey0lqABpy5YttY7/+eefruM6nU46efJkrTGLFi1yHbdYLE1av6mC6o033pAAadSoUY0673zXreLBBx+UAOmee+5p8jp9+/aVAOm///2v2zEPP/ywBEgTJkxotI0XSlAB0vr162udZzKZpLCwMAmQXn755WrHrFar6xvj4MGDJbPZ3ODrOl9BVVFRIfn5+UmAdNNNN9V57nvvvee6tpofUOdz3Q2hoX+3LbF2YwRVU21oyef+bNsWLVpU67jdbpeuuuoqCZA6d+5c6/i5vJr10dD3hKbct5Z+r7jtttskQBo7dmy949atW+e6hsTEREmSJKlLly4SIG3dutU1bv369RIg+fv7S/n5+ZLNZnNFNt5///1G23e+XGx2V3kaFy9e3KjzRA7VRc7gwYMZPHhwrdevvvpqNBoNAFOmTKFdu3a1xowePRoAo9HIyZMnW9bQGvj4+ACQm5vrNtelJbn++usB2Lp1a5POP3jwILt370alUjFr1iy346q21q5bt65VrrMhDBo0iKFDh9Z6XaPRuJ6RQ4cOVTu2YcMGkpKSAHjnnXdQq9Utb2gla9eupaCgAMBtccoHHnjAVbbg66+/rnNMU667uWjNtc/Hhgv13EdGRnLXXXfVel0ul/PMM88AcPTo0Xp3eTWWhr4nNPa+XYh7dubMGQACAwPrHVeVh+Tr6+vaKVczH8lut/PII48A8OKLL+Ln58fRo0cxGo1A6+zwu9js9vf3B/6+7w1FCKqLnCuvvLLO1xUKBQEBAQD07du3zjHBwcGu/xcWFja/cfUwYsQItFot+/fvZ8iQISxatMj1Ad1cJCYmMnv2bHr37o2Pj0+1Am9Vu0TS09ObNHfVm67D4aBDhw6EhITU+e/aa68FoLy8nPz8/Oa5sGamX79+bo+FhYUBuARMFdu3bwcgJCSEPn36tJxxdbBnzx7A+aHbvn37OscoFAqGDRtWbXxNmnLdzUVrrn0+Nlyo574qAbwurrrqKpRKZ4lEd79bdzTHe0Jj79uFuGe5ubkA9e7ug793yvXq1cv1Wk1hsmDBAuLj4+nWrRv33ntvtfMUCgU9evRwnbtv3z4ee+wxevTogbe3N56envTv358vv/yyUfafi+a2u6ysjOeff56xY8cSEhLS6Or6Vfe56r43FFHY8yLHy8vL7bGqNx13Y6qOA656RxeKmJgYPv30U+677z7++usv/vrrL8D5DWvo0KHcfPPNjB8/vsm1l3788UduuukmzGaz6zVvb2+0Wi0ymQyLxUJhYSHl5eVNmr/qm4ndbic7O7tB55xdBuFioiHPUM3nIysrC8C1g+ZCkpOTA0B4eHi94yIiIqqNr0lTrru5aM21z8eGC/Xc1/e71Wg0+Pv7k52d7fZ3WxfN9Z7Q2Pt2Ie5Z1U7aqqiEO87eKVdFlUiJj4+noKCAZ599FoB3330XhUJR7bxOnTqh0+lc57755pv8+eefTJ48mQcffJCysjI+++wzbr31Vk6dOsVzzz3XqOu4UHbn5eXxwgsvEBoaSp8+fVi1alWj7Kmaq+q+NxThoRK0GLfccgspKSksWLCA6dOnExkZSW5uLitWrGDixIlcffXVlJSUNHre/Px87rzzTsxmM8OGDWPjxo1UVFRQXFxMdnY2WVlZfPvtt+dle5VLvmPHjkjOXMNz/mvbtu15rXkx0prFRhu69j+tIGpLcqGe++b+nV2I9wR3XIh7VhWCqi/SUFJSwqlTp4DqwqTK03P48GH++9//UlBQwOTJk6uFNauESc2w2cMPP0xaWhoLFixgxowZPPbYY+zatYv27dvzyiuvNEvkoyXsDg0NJT09nTNnzvDdd9812qYqD2TVfW8oQlAJWhQ/Pz/uvfdeli9fTmpqKqdOneI///kPMpmMLVu2NKmB6+rVqykpKcHX15dffvmFq6++utq3E/jbw9JUQkJCAGcIoaleruag6htxfd+UiouLm33dqvyk5g7TNoSgoCCAam0o6qIqdHOuvBJBw7lQz319YTez2ewKiVU9C+fiQrwnuONC3LOqZ7y+MPH+/fvrLHDp7+9PREQEhYWFfPTRR2i1Wt566y3XcYfDwYEDB2qdBzBw4MBafUV1Oh1jx47FarVy/Pjx87qulrJbo9Gc08NdH1X3ubHvLUJQCepELnc+GlUPenMRGxvLa6+95ipOt3bt2kavW/VB26FDBzw8POocs27dunrtONc6gwYNAsBisfDjjz/WO1dL4uvrC7gXFw6Ho9F5Jg1h4MCBAGRnZzd6/vN9dqpyttLT0zlx4kSdY+x2Oxs2bADc5xBejrTU32UVF+q537Rpk9tr2LJlCzabDaDB+XvN8Z7QVC7EPevcuTPgFG3uqPLWeHp61so9rPL2SJLE7Nmzq3nIjh8/7hKCDU3sbmiSfEO4kHY3hNLSUvLy8gBnKLExCEElqBNvb28AioqKmnT+2XkMdVH17bEqFt6YdQ0GAwAnTpyo03Nz4MABvvrqq3rXP9c6ffr0ccXw58yZc87kxJZKMK5KtPzxxx/r/AD6/PPPm5x4Xx9Dhw4lJiYGgEcfffScXd/P5nyfnZEjR7pc7e48mAsXLnS9qd90001NWudS5Hzv7bm4UM99amoqn3/+ea3XHQ4Hr776KuD8MOvWrVuD5muO94SmciHu2VVXXQU4dxS6e2+tStDu2bNnrZDqjBkzmDVrFo8//jj/+c9/6jxPLpe7BEx9HD16lB9++IH+/fsTGxvb2EtpNbsbyp49e3A4HCiVSpdYbihCULUAeXl59f5rqTfD5qRr166A05WekZHR6PP//e9/M23aNL7//vtqiaVlZWUsWLCApUuXArh23jRm3VGjRiGXyykoKOCWW25xjbNYLKxYsYJRo0bVm1jakHVkMhkLFixAo9GQmppKv379+O6776olk2ZkZPDFF18wcuRInnzyyXPdkiZRJRYSEhKYMWOGKxRSUlLCO++8w3333XfOnT9NQaFQ8P777yOTydi6dSvDhw9n69atrs7uJSUlbNy4kVtvvbVWS43zfXZ0Op1LSH399dfcd999rmTfiooK5s+fz8yZMwGYPn16q2zzbi3O996eiwv13BsMBu6//34++eQTlwBKS0vjpptucnkeX3nllQbP1xzvCU3lQtyzQYMGoVQqsVgsrjBXTepK7K5i3LhxvPXWW7z55pvo9fo6z+vQoUOtYzUpKSlh6tSpyOVyFi5cWOeY5ORk187KhqR0XAi7G8POnTtd9jS2x6oQVC1AYGBgvf/O7tV2sXLHHXeg1Wo5deoUUVFRhISE0LZtW9q2bdsgj4jVauXbb79lypQpBAcH4+Xlha+vL15eXtx///1YLBYGDx7MnDlzGr1uXFwcjz/+OAA//PADERER+Pj44OnpyfTp0/H09OS999477+u78sor+eWXX/D39ycpKYmpU6fi7e1NQEAAer2eiIgIbrvtthYLJQAMHz7cVb/m008/JSAgAF9fX3x9fXnssceYMWMG48aNa5G1x4wZw5IlS9BoNGzdupUhQ4bg4eGBr68vBoOBoUOH8uWXX9byXp3vswNOQf7oo48CTm9UaGgofn5+GAwGHn74YaxWK0OHDuWTTz5p9uu+mGmOe3suLsRz/8ADD9CnTx9mzJiBt7c3fn5+REVFsWLFCgCeeeYZbrjhhgbP1xzvCedDS98zb29vVx2tn3/+udbx8vJyVz5TYxsEV3l6zvXFxGg0Mm7cOE6cOMHy5cubpd/fhbC7sVTd33P1TKwLIagEdRIXF8eGDRsYP348gYGB5Ofnk5KSQkpKiiu/oT7++9//8t5773HDDTfQsWNHlEolZWVlBAUFMXLkSBYvXszGjRtrfbNo6Lqvv/46S5cu5corr0Sn02G1WmnXrh1PP/00+/fvd9WLOd/rGzlyJKdOneK1115j8ODBGAwGioqKkMvldO7cmXvuuYeff/6Z+fPnN/ION5zFixfz7rvv0rNnT3Q6HQ6Hg0GDBvHNN9+06LrgLEZ47NgxZs6cSefOnV3fkmNjY5k4cSLLli2rlWdwvs9OFXPnzmX9+vVMnjyZ4OBgysrK8PLyYujQoSxevJi1a9e2mNfhYqW57u25aOnnXq1W8+eff/Lqq6/SoUMHzGYzBoOB4cOHs2rVKl566aVGz3m+7wnnS0vfs6raS1999VWt8P+BAwdc3uPGCBNJktwmdp+NxWLhhhtuYOvWrSxbtowJEya4HXu257R///71rt/SdjeWpKQk/vrrL3Q6neuLbKNoVF11gUAgEAiaSHO1lvonYrfbpdjYWAmQNm3adMHWtVqt0oQJEySZTNagViwvvfSSq2XVxYDRaGxwu6IXXnjhvPoCCg+VQCAQCAQXOXK53OW5e/311y/Img6Hg1tvvZWffvqJDz74oM52QTVZv349gGtzwaVCeXk58+fPR6PRNLlgqaiULhAIBALBJcCNN97IvHnzWLNmDTt37qy3TU5zMHv2bL755huuuuoqvLy8+OKLL6odHzhwoGs3MDh3d//1119ce+21DBkypEVtOxfvv/8+RUVFrlD4oUOHePnllwHnrsmqnZNnj8/Ly+Pxxx9vcocIIagEAoFAILgEkMlkLFy4kJUrV7pqJbUkVTvpNm/ezObNm2sd/+yzz6oJKo1G42pW3Nq89dZbpKSkuH7ev38/+/fvB+C5556rJaj0ej3PP/+8awdxU7hsBNXzzz/PCy+8UO214OBgV3VcSZJ44YUX+PjjjyksLKRfv3588MEHdOnSxTXebDYze/Zsvv76a4xGI8OHD+fDDz909QwTCAQCgaA16dmzZ7PWXaqPjRs3XpB1WoLk5ORGjf/3v/993mteVjlUXbp0ITMz0/Wvqks1OJs8zp07l/fff5/du3cTEhLCyJEjKS0tdY2ZOXMmP/74I8uXL2fr1q2UlZUxduxYV68mgUAgEDSdjRs3IklSk1pOCQQXOzJJaqEeBheY559/npUrV9ZZ9EySJMLCwpg5c6arqJrZbCY4OJg33niDe++9l+LiYgIDA1m2bBnTp08HnOX1IyMjWb16NaNHj76QlyMQCAQCgeAS4rIJ+QGcPHmSsLAwNBoN/fr149VXXyUmJoakpCSysrIYNWqUa6xGo+Hqq69m+/bt3Hvvvezduxer1VptTFhYGF27dmX79u1uBZXZbK7WCsDhcFBQUIC/v3+zd1QXCAQCgUDQMkiSRGlpKWFhYa6+mY3hshFU/fr1Y+nSpbRv357s7GxefvllBg4cyJEjR1x5VMHBwdXOCQ4OdiWtZWVloVarXc1ozx5TX5fy1157rVbulkAgEAgEgkuTtLS0JuVOXzaCasyYMa7/d+vWjQEDBhAbG8vnn3/uqtZa02MkSdI5vUjnGvPUU0/x2GOPuX4uLi4mKirK9XObNm0YN25co3sCCQQCgUBwsaNSqfj3zNkAvD/vLaxWaytb1HTMZjPvvPNOkzswXDaCqiZ6vZ5u3bpx8uRJJk6cCDi9UKGhoa4xOTk5Lq9VSEgIFouFwsLCal6qnJwcBg4c6HYdjUaDRqOp9fpbb73F008/TUpKCp999hmTJ0+utr1UIBAIBIJLHZVKhbe3NwBarRaFQtHKFp0/TU3Xuax2+Z2N2WwmISGB0NBQoqOjCQkJYe3ata7jFouFTZs2ucRS7969UalU1cZkZmZy+PDhegWVO/71r3+xd+9e2rZtS3l5OUuXLmXDhg2uvkUCgUAgEAguHy4bQTV79mw2bdpEUlISO3fuZMqUKZSUlHDHHXcgk8mYOXMmr776Kj/++COHDx/mzjvvxMPDw9VR2mAwcM899zBr1iz+/PNP9u/fz6233kq3bt0YMWJEk2zq2rUrR44cYerUqQBs2rSJzz//nJKSkma7boFAIBAIBK3PZRPyS09P56abbiIvL4/AwED69+/Pjh07XCXkn3jiCYxGIw888ICrsOcff/xRLVb6zjvvoFQqmTZtmquw55IlS87Lhenh4cGKFSv49NNP+fe//01KSgoLFixg0qRJtGvX7ryvWyAQCAQCQetz2dShulgoKSnBYDBQXFzsiitXkZCQwNixY0lMTARg8ODBDB069LKIOQsEAsGFRCaT4eHh0dpm/ONRqVTcec+9ACxZtPCiTko3mUz1Fuo2mUy8/vrrdX5+N4TLxkN1KdCpUyeOHDnCPffcw1dffcXWrVtJSUlhypQpGAyG1jZPIBAILgm0Wi19+/ZFp9O1tin/eGQyGRmpSYCzfNHF7KOx2+2kpKRw6tSpFplfCKoLjFar5csvv2TkyJE88MADpKWlsWDBAm644Qbat2/f2uYJBALBRU+HDh3w8/PD19dXFFC+CAgIDAIgLzenlS1xjyRJWK1W1Go1QIuIKiGoWok777yTQYMGMXbsWE6cOMFXX33FwIEDGT58uAgBCgQCgRvUajWBgYEYDAZUKlVrm/OPRyaTodVqAWf472L2UFU9L23atCEpKanZ+/ReNrv8LkXi4uI4dOgQd9xxBwDbt29n8eLFFBYWtrJlAoFAcHGiUqmQy+VNag0iEKhUKhQKhUsENifiiWxlNBoNS5Ys4auvvsLDw4OMjAwWLlxIQkJCa5smEAgEFy0i1CdoCi353AhBdZFw0003ER8fT6dOnTCZTHzzzTesWbMGm83W2qYJBAKBQCA4B0JQXUTExMRw4MAB/u///g+AnTt3smjRIgoKClrZMoFAIBAIBPUhBNVFhlqt5pNPPmHFihXo9XoyMzNZuHAhR44caW3TBAKBQNBEZs6cyd13313nscOHD3P77bfTvXt3YmJi6NevH/fdd5/ry3RaWhrh4eG1/j300EMX8hIE50Ds8rtImTp1Kv369WPs2LHEx8fz7bffkpyczKhRo8TOFoFAILhMyMvLY/r06YwcOZKvvvoKb29vUlNT+eOPPzAajdXGLl++nA4dOrh+bonEakHTEYLqIiYqKoq9e/fyyCOP8NFHH7F7927S0tKYOnUq/v7+rW2eQCAQtDqSJNUSHhcKnU533knOe/bsoaysjLfeegul0vmRHBUVxeDBg2uN9fX1JSgo6LzWE7QcQlBd5KhUKj788ENGjRrF7bffTlZWFgsXLmTcuHF069attc0TCASCVsVoNBIXF9cqa588efK8298EBgZis9lYs2YNY8eOFbsXL2FEDtUlwsSJE0lISKBnz55YLBa+//57fv7554u6b5JAIBAI6qd379489NBD/Pvf/6Zr167ceuutfPTRR+Tm5tYaO2HCBOLi4lz/Dh8+3AoWC9whPFSXEOHh4ezevZvZs2fz3nvvsW/fPtLT05k6dSqBgYGtbZ5AIBBccHQ6HSdPnmy1tZuD//znP8yYMYNt27axb98+li1bxvz58/n+++/p1KmTa9xHH31UzRsXFhbWLOsLmgchqC4xlEol8+bNY+TIkdxyyy3k5OTw8ccfc/3119OzZ8/WNk8gEAguKDKZ7LzDbhcDfn5+jBs3jnHjxvHUU08xevRoFixYwLvvvusaExYWRnR0dCtaKagPEfK7RLn++utJSEigT58+WK1WVq5cycqVK7FYLK1tmkAgEAjOA7VaTZs2baioqGhtUwSNQHioLmFCQ0PZsWMH//nPf3j77bc5cOCAKwQYHBzc2uYJBAKB4CxKSkpq5T0lJCSwefNmxo8fT0xMDJIksW7dOtavX8/cuXNbyVJBUxCC6hJHoVDwv//9j1GjRjF9+nTy8vL45JNPuO666+jVq5fYMSIQCAQXCX/99RejR4+u9trkyZPR6XS8+OKLnDlzBo1GQ3R0NP/73/+YMmVKK1kqaApCUF0mjBw5koSEBCZOnMiOHTv4+eefSUpKYuzYsWg0mtY2TyAQCP7RzJs3j3nz5jXp3MjISDIyMprXIEGzI3KoLiOCg4PZtm0bTz31FHK5nPj4eD7++GOysrJa2zSBQCAQCC5rhKC6zJDL5bz66qusXbsWf39/8vPz+eSTT9i9ezeSJLW2eQKBQCAQXJYIQXWZMmzYMI4dO8bgwYOx2+2sWrWK7777DpPJ1NqmCQQCgUBw2SEE1WVMQEAAmzZt4rnnnkMul3PkyBEWLlzImTNnWts0gUAgEAguK4SgusyRy+U8//zzbNy4kcDAQAoLC1m0aBE7d+4UIUCBQCAQCJoJIaj+IQwZMoRjx44xdOhQ7HY7a9as4Ztvvmm1Lu0CgUAgEFxOCEH1D8LPz48///yTl19+GYVCwbFjx1i4cCHp6emtbZpAIBAIBJc0QlD9w5DJZMyZM4etW7cSHBxMUVERixcvZvv27SIEKBAIBAJBExGC6h9K//79OX78OCNHjsThcPDHH3/w9ddfi95RAoFAIBA0ASGo/sEYDAZ+//133nzzTZRKJSdOnGDBggWkpqa2tmkCgUDQstjtqLdvR7dyJert28Fub22LmoVvvvmGTp06tbYZDSItLY3w8PBa/Q0vVYSg+ocjk8l4/PHH2b59O2FhYZSUlPDZZ5+xdetWHA5Ha5snEAgEzY529WqC+/UjYOpUfB98kICpUwnu1w/t6tUttubMmTMJDw8nPDycNm3a0KNHD2688UaWL1/erO+148ePZ8uWLc02X0sSFhbG/v376dixY4PPefvttxk5cmQLWtV0hKASANC3b1+OHTvGmDFjXN3Ov/rqK8rLy1vbNIFAIGg2tKtX4ztjBvLMzGqvy7Oy8J0xo0VF1dChQ9m/fz87duzgiy++YODAgTz77LPccccd2Gy2ZllDp9MREBDQLHO1NAqFgqCgIJTKy6OtsBBUAhdeXl6sWrWKefPmoVKpOHXqFAsWLCA5Obm1TRMIBILzx27H8OyzIEnIahySVW7K8X7uuRYL/6nVaoKCgggNDaVbt248/PDDLF68mPXr17NixQrXuJKSEp544gm6d+9Ohw4dmDp1KkeOHHEdP3LkCFOmTKF9+/Z06NCBa6+9loMHDwJ1h/zmzZtH9+7dad++PbNnz+bVV1+t5uWZOXMmd999NwsWLKBXr1506dKFp59+GqvV6vZaqjxFy5Yto01UJJ56D2bMmEFxcbFrjMPh4J133qF3795ER0czcuRINmzY4DpeM+S3fft2wsPD2bJlC2PGjCE2Npbx48dz6tQp17XNnTuXo0ePurx933zzTVN+FS2CEFSCashkMh555BF27txJREQEpaWlfP7552zatEmEAAUCwSWNeudOFJmZtcRUFTJJQnnmDOqdOy+YTYMHD6Zz586sWbMGAEmSuP3228nJyWHZsmWsWbOGbt26MX36dAoLCwF46KGHCA0NZfXq1axZs4YHH3zQrZfnhx9+YP78+cyZM4c1a9YQHh7O0qVLa43bvn07ycnJfPvtt8ybN48VK1ZUE3l1kZyczC+//MJPP//C6jW/ceTIEebMmeM6/umnn7Jw4UKeffZZ1q5dyzXXXMNdd91FYmJivfO+8cYbPPvss6xZswalUsmsWbMAZzjz3nvvpUOHDuzfv5/9+/czfvz4eue6kAhBJaiTXr16cezYMSZMmIAkSWzYsIEvvviCsrKy1jZNIBAImoQiJ6dZxzUX7dq1Iy0tDYBt27a5agT26NGDmJgYnn32WQwGA6tWrQIgIyODIUOG0K5dO2JiYhg3bhxdunSpc+7Fixdz4403Mn36dGJjY3n00UfrzFkyGAy88sortGvXjpEjRzJ8+HC2bt1ar91ms5l58+bRs2dPrrrqKl5++WV++ukncirv38KFC3nggQeYMGEC7dq1Y86cOXTp0oVPP/203nmffPJJBgwYQPv27XnwwQfZs2cPJpMJnU6HXq93hQqDgoLQ6XTnvL8XCiGoBG7R6/WsXLmSDz74ALVaTWJiIh999NE5v10IBALBxYg9KKhZxzUXkiQhkzn9ZvHx8ZSXl9O1a1fi4uJc/1JTU0lJSQFgxowZPP7440yfPp3333+/3rSMxMREevbsWe21mj8DtG/fHoVC4fo5ODiYvLy8eu0ODw8nLCzM9XPv3r1xOBycPn2a0tJSsrKy6Nu3b7Vz+vTpw8mTJ+udt3PnztXsAMjPz6/3nIuByyMTTNCiPPDAAwwZMoRx48aRkpLC0qVLufrqq7n66quRy4UmFwgElwaWfv2wh4Yiz8py5UydjSSTYQ8NxdKv3wW169SpU0RGRgLOvKOgoCC+++67WuMMBgMAs2bNYuLEifz5559s2LCBt99+mw8//JAxY8bUOX+VWKuiriLOKpWq1muNLfZctc7Z69W1ds3XalJX+PJSSDm5LAXVa6+9xtNPP80jjzzCvHnzAOcv8YUXXuDjjz+msLCQfv368cEHH1Rzk5rNZmbPns3XX3+N0Whk+PDhfPjhh0RERLTSlVw8dOvWjaNHj3LHHXfw3XffsWnTJlJSUpg0aRLe3t6tbZ4LmUyGh94Tnd4TnU6P1sMDjUaLWqNBpdagVKpQKJXI5QqnGJQBkoTDIWG327DbbFitFixmE2aTCWNFOcaKcirKSikvKxHV5AWCSxmFguIXX8R3xgwkmayaqJIqP+RLXngBzvLUtDRbt24lISGBf/3rX4DzvTY3NxelUukSWXURGxtLbGwsM2bM4IEHHuCbb76pU1DFxMRw4MABpkyZ4nrt0KFDzWJ7RkYGWVlZBIeEArB3717kcjkxMTF4eXkREhLCrl276N+/v+ucvXv31ukhaygqleqiFVeXnaDavXs3H3/8Md27d6/2+ptvvsncuXNZsmQJ7du35+WXX2bkyJEcP34cLy8vwLnT4ZdffmH58uX4+/sza9Ysxo4dy969e6u5Qv+peHh48O233/LJJ5/w0EMPkZyczIIFC5g0aRLt2rW7YHYoVWp8fP3w9nH+8zL44OltwMvbB52HvsW8Zg67nbKyEooL8ykqyKcwP5f8nCyKC/OF0BIILhFM111H4ccfY3j2WRRnlU6wh4ZS8sILmK67rsXWtlgs5OTkYLfbycvLY8OGDbz//vuMGDHCJXiGDBlC7969ufvuu5kzZw6xsbFkZWWxfv16rr32Wtfn1/XXX09UVBSZmZkcPHiQ69zYfffdd/P444/TvXt3+vTpw88//0xCQgJRUVHnfT0ajYZHHnmEd9+bT0lJCc888wzjxo0jqDJket999/H222/Tpk0bunTpwooVKzhy5Ajz589v8pqRkZGkpqZy+PBhwsLC0Ov1aDSa876W5uCyElRlZWXccsstfPLJJ7z88suu1yVJYt68ecyZM4dJkyYB8PnnnxMcHMxXX33FvffeS3FxMYsWLWLZsmWMGDECgC+++ILIyEjWrVvH6NGjW+WaLkb+9a9/MXjwYMaOHUtiYiJffPEFgwcPZujQoc0uPPVe3gQEheIfGIxfYBC+/oF4ehnqPcdut2OsKMNYUYHJWI7ZZMJiNmG1WLDZrNhsNhx2O5LDgYTT/SyXy1EolCiUSlQqNWqtFo1Gh87DA53eE72nFwqFEm+DL94GXyLb/i0gbVYruVlnyMpMIzMthZysDKSL9BuUQCBwiirT6NHOXX85OdiDgpxhvhb+4rxhwwZ69eqFUqnEYDDQuXNnXnrpJaZOner6IiiTyVi2bBlvvPEGs2bNIj8/n8DAQPr3709AQAAKhYLCwkIeeeQR8vLy8PPzY8yYMa6dcDWZNGkSKSkpvPTSS5jNZsaNG8e0adPYv3//eV9P27Ztue666xh7/XUUFBQwbNgwXn31Vdfxe+65h7KyMl588UXy8/OJi4vjs88+IyYmpslrXnfddaxevZpp06ZRXFzM3LlzmT59+nlfS3Mgky6jr9Z33HEHfn5+vPPOO1xzzTX07NmTefPmkZiYSGxsLPv27aNXr16u8RMmTMDHx4fPP/+c9evXM3z4cAoKCvD19XWN6dGjBxMnTuSFF16oc02z2YzZbHb9XFJSQmRkJMXFxRdVKKwlMJlM3HXXXSxfvhyAqKgoJk+e7IrzNxalUkVgSJjzX3AYAcGheOg96xxbUV5GSVEBJUWFlBQXUlZSRGlxEWWlJZiMLdOP0EPvhZfBBx+/AHz8/PELCMIvMBi1uvq3I7PZxJnUJFJOHyct6TQ2m/taLgKBoHHo9XoGDRpEeHj4ZVMQ8kJz4403EhgYeF6eorfffpvffvuNdevWuUJ+2VmZF7233mazkZGRwbZt22oVrjaZTLz++utN/vy+bJ7G5cuXs3fvXvbs2VPrWFZWFvD3boEqgoODXbsmsrKyUKvV1cRU1Ziq8+vitddecyu2Lne0Wi1ff/01o0eP5v777yc1NZUFCxZwww030L59+3Oer1AoCQoLJyyyLSHhUQQEhiCv8Q3RYbdTmJ9LXm4WBbk5FOTlUFSQh8VsaqnLcktFeSkV5aVkn0mr9rrB15+QsEiCwyMJj4pGq/MgOq4T0XGdsFmtpCad5PjhA2RliB6JAoHgwmI0Glm6dCnXXHMNCoWClStXsmXLFr7++uvWNu2y47IQVGlpaTzyyCP88ccfaLVat+OastvgXGOeeuopHnvsMdfPVR6qfxJ33nkngwYNYuzYsZw4cYKvvvqKgQMHMnz48FohQN+AIMKjogmLbEtwWARKZfWdJWWlxeRkZpCbnUle1hnyc7Ox25unJUNLUVyYT3FhPsePHEAmkxEQFEpUTBxt4zribfAlpn1nYtp3prgwnyMHdnMq4fBFf00CgeDyYf369bz33nuYzWZiY2P55JNPuOqqq1rbrMuOy0JQ7d27l5ycHHr37u16zW63s3nzZt5//32OHz8OOL1QoaGhrjE5OTkur1VISAgWi4XCwsJqXqqcnBwGDhzodm2NRnPRJMS1JnFxcRw6dIgZM2awdOlStm/fTmpqKtOmTadj1+60iYkjsm079F7V3ajlZaWcSUsmMz2FrIxUyktLWukKmgdJksjNPkNu9hn2/rWJgKAQ4jr3ILZDZwy+/gwcei29+g3hyP5dHD20F3sz9e8SCASCutDpdC3SnmXWrFlu87b+qVwWgmr48OHEx8dXe+2uu+6iY8eOPPnkk8TExBASEsLatWtdOVQWi4VNmzbxxhtvAM6CZCqVirVr1zJt2jQAMjMzOXz4MG+++eaFvaBLFI1Gw+eff86Y665jxfc/MWzUGIaOGI2X9985VTarlcz0FM6kJZORmkRx4cVfrO18yMvJIi8ni93bNhDXqRtde12Jp7eBPoOG0qlHH/b9tZlTx+LPPZFAIBAILmouC0Hl5eVF165dq72m1+vx9/d3vT5z5kxeffVVV9XZV199FQ8PD26++WbAWTDtnnvuYdasWfj7++Pn58fs2bPp1q2ba9efwD2SJGG0OqiwOBg0ciIDR050HcvJzuLg3p3YzBXkZmb8I8NdNquFhEN7OXZ4P7HtO9PzysF4GXwYMvJ6OnTtwbb1v1FUUH9VYoFAIBBcvFwWgqohPPHEExiNRh544AFXYc8//vjDVYMK4J133kGpVDJt2jRXYc8lS5aIGlRukCQJs02i3GKnwuLg7M0dSjloFDB/3lu8+Nx/kSSJsLAwpkyZgp+fX+sZ3cpIDgenjh0m8UQCnXv0pueVgwgKjWD8jXexf+cW4vfuaG0TBQKBQNAELquyCRcDJSUlGAyGy7psgs3uFFFlZjv2s8otKWTgoVGgV8tRKWSuZP4VK1Zw9913U15ejkajYfz48W4bef7T8NB7MeCaUUTFxAGQkZrE5j9+abHSDwLBpY4om3BxIZPJRNmESkQjNkGDkCSJCoudnFILZ4otFBudYkomA71GTpCXijAfNb4eStRKebWdkdOmTePIkSN07doVs9nMt99+y6pVq7BaRX2mivJS/lz1PVvXrcZmtRIeFc246XfgG3Bhm7MKBAKB4PwQ8l5QLzaHRLnZTpnJjv2sLx4apQxPjQKdWo78HKUnANq0acO+fft4+OGHWbBgAbt37yYtLY2pU6fi7+/fgldwaXAy4RC52WcYdt0NGHz9uW7yLaxf9QOZ6SmtbZpAcElQVlaGyXTh6tNptVo8PesuPCz4ZyIElaAWVblRZWZnblQVchl4ahToNQpUinOLqJqoVCo++ugjRo8eze23305WVhYLFy5k3LhxdOvWrf6TZTJ0Hl54eHmj03uj03uh0enR6DxQa3WoVM7mx4rK5scyuRwZMmRyOQ67HYfDjt1mxWa1YLWYMZsqMBsrMJWXUl5aTEVpEaVFBdis5vrtaEGKCvL4dcVShl0/mdCIKEaMm8r6Vd+TkZrUajYJBJcCZWVlrFixArvdfsHWVCgUTJs27YKIqm+++Ybnn3+ehIQE4O8q5WvXrm3xtS8kM2fOpKSkhMWLF7e2KU1CCCqBC2dYz0GpyY7lLHdUlTfKQy0/ZyHUhjBx4kSOHj3KuHHjOHDgAN9//z3Jyclce+21qFQqPLwMGPyC8PIJwNPHDy8ffzy8DCgUTXtc5QoFcoUCpUqNRqevd2xFWQklBTkU5mRSkHuGorysC9qXz2Ix88dP33DNtRNoE9ueYddPZu3PK0SVdYGgHkwm0wUVU+CsdWgymRosqGbOnMm3335b6/WtW7cSHR1d77njx49n+PDhTbLzUuLFF1+86HOw6kMIKgEOyemNKjX9nWQuAzw0crw0CtTK5k+1i4iIYPfu3Tz9zH/Zc+AIXXv2IaZXfzp17YlaU3e1e7vdhrGshIqyEkzlpc7Gx8YKLCYjVosJq8WM3WbFbrc5Gx9LEkgSMrkcuUKBQqFEqdagUmvRaHVoPPTo9N7ovQzovXzQeXrjUfkvJMrZ/NhmtZCXmUp2ehJZqaewXoCWNw6HnY2/rWTomBuIiolj2HWT+PXbzykpKmzxtQUCQcsxdOhQ5s6dW+21hqQ86HQ6dDpds9pisVhQq9XnPU9z5sJe6hu5hKD6B2N3/C2kHJVfCuQy8NIq8NQoUMjP3xtVE6vdQZnJTqnJRqnJzvT7nqJmn3Cb1UJZcQElhXmUFRdQWphHWXEhxopSaMFvL0qVBm+/AHz8g/ENDMMvOByNzoOQqHaERLWjW/9h5GakkHryMDnpiS36TcrhcLDxt5Vce8NNBIVGMGLsVH5d8TkWS+uFJAUCwfmhVqsJCqq94WThwoWsWLGClJQUfHx8GDlyJM888wx6vdOjXjPkV5MpU6bQuXNnXnzxRddrd999N97e3sybNw+Afv36cdNNN5GcnMxvv/3G6NGjeffdd9m9ezevvfYaBw8exNfXlzFjxvDUU0/h4eFR51pV4cZ77rmHd999l7S0NKw2OyUlJTz++OP89ttvmM1munfvzvPPP19tR/e8efNYvHgxJpOJ8ePH4+fnx4YNG1yhy5ohP7PZzMsvv8xPP/1EWVmZa86ePXsCsH37dqZOncry5ct59dVXOXHiBF26dGHu3Lm0a9eucb+cZkDs8vsHYndIFFbYOFPk3K3nkJx1o/w8lIT7qDHolM0mpiRJosxkI6PQRMKZMg6llZGYayS31IrJ6nSHaVVyPORWln74P6ZfO4BBnUKY/a/p7Nm4isQje8k9k4KxvKRFxRSAzWqmIDuDxKP72LvpV9auWMjmX77k2L5tFOfnIJcrCI6Moe+w8QybdDexXfugqNGLsDmx2+38ueoHykqKMfj6MWDo6BZbSyAQtB5yuZwXX3yR9evXM2/ePLZt28bLL7/c7OssWLCAjh07smbNGmbOnElCQgK33HILY8aMYe3atXz00Ufs2rWLOXPm1DtPcnIyv/zyC5988olLDI0bez05OTksW7aMNWvW0K1bN6ZPn05hodOz/sMPPzB//nzmzJnDmjVrCA8PZ+nSpfWu88orr7B69WrmzZvHb7/9Rtu2bbnllltcc1bxxhtv8Oyzz7JmzRqUSmWrtcQRHqp/EHaHRInJuWOvSpqoFDK8tc2XHwXgcEiUmGwUVdgorrBhc1QXQjqVHC+tEk+tAi+tAqVCDngy97XnUTmMzJ2bwIEDB8jIyGDq1Kl1fqO7UJQU5FBSkMOp+F3ovX2JbNeFqLiu6Dy96dR7CLFd+3L68B6SEvbhaIEcDpOxgg2/reT6KbcR074zacmnSTx+pNnXEQgELc+6deuIi4tz/Tx06FA+/vhj/vWvf7lei4qK4vHHH+epp57itddea9b1Bw0axH333ef6+eGHH2bixImu9WNiYnjppZeYPHkyr732Glpt3ekXVquV9957D39/f2QyGRs2bCA+Pp6DBw+6wojPPvssv//+O6tWreLWW29l8eLF3HjjjUyf7oxJPProo2zatKlWLagqKioqWLp0Ke+88w7Dhg0D4H//+x/9+/dn+fLl3H///a6xTz75JAMGDADgwQcf5Pbbb8dkMrm1v6UQguofgKNSSJWeJaTUChkGnQKtqnmElMMhUWK0UVBupdho42wNpZCBt4cSg06Jt1aJyk1OlkKh4K233mLUqFHceOON5Obm8vHHH3PdddfRq1evZhN8TaW8pJBj+7Zy4sBfhEV3oF23vnga/OjUezBR7btyZOdGcjKaf0deXnYmB3Zu5YoBV3Hl4GGkJ5/CYhahP4HgUmPgwIHVRFJVWG3btm3Mnz+fkydPUlpa6kp4r6iocBt6awrdu3ev9nN8fDzJycn8+OOPrtckScLhcJCWllZN/J1NeHh4tdyvfXv3UlZWVqtgs8lkIiXFWfolMTGRO+64o9rxnj17sm3btjrXSE5Oxmq10rdvX9drKpWKnj17cvLkyWpjO3fu7Pp/cHAwAPn5+YSHh9c5d0shBNVljEOSKDXZKTHZXdGy5hRSUuX8BeVWisqt1epUqRUyfDxUGDyUeGkVjVpr1KhRJCQkMGHCBHbu3MnPP/9MUlISY8eORaPRnJfNzYHDYSf99FHSExMIj+5IxysGoffy4coRE8lIOk78X+uwWS3Numb8vh3EdOiMj18Avfpdxc7Nl9d2aYHgn4CHh0etHX3p6encfvvt3HrrrTz++OP4+Piwe/duZs2a1eCE77reX+s6t6Y4czgc3Hrrrdx99921xtYnRuqaJzQ0lBUrVtTKLTUYDG7trC8PtepYXefUfK2uivmOC7g7uwqRQ3UZ4sxbsrtypCTJGdoL8FQS7K1Cp26cwKmJ2ebgTJGZw+llnMyuIL/MKaZUChlB3mo6hurpGuFJpL8Wb52ySWsFBwezfft2nnrqKeRyOfHx8Xz88cdkZWUBIJPJkStVKDQ6lFoPlBodCo0OuVKFc4/iBUCSyEhMYOPKzzl9eA8Oh4Pw6A4MGXcLBr/mDVM6HA52bHKKqA5de+LpbTjHGQKB4FLg4MGD2Gw2nnvuOXr37k1sbKzrfa6h+Pv7k52d7frZbrdz/Pjxc57XrVs3jh8/TnR0dK1/jdkB2OuKK8jKykKpVNaap6p3a0xMDAcOHKh23qFDh9zOWWXDrl27XK9ZrVYOHjzo1nPW2ggP1WWEJEmYrA6KjHasle4ihRx8dMrzzpGSJImiCht5pRZKTH/nCilk4KtX4eepwlNzfkLNdQ02B6VmG+VmOzc/9BT9J97GgfgEPA0+ePn64WXwRamq/4/dbrVgt5iwmY1YK8qwVJRgKSvGVJyPubSwWWtL2W1WEvZuITPlBFdcdT16Lx8GXjedA1t/JzP5RLOtk5meQkZqEuFR0fToM5Bt69c029wCgaB1aNOmDTabjcWLFzNy5Eh2797NsmXLGjXHoEGDeOGFF1i3bh1t27bl448/pqSk5JznPfDAA4wbN46nn36am2++GQ8PD06dOsXmzZsblRQ/YsQIBgwYwF133cWcOXNconD9+vVce+219OjRg7vvvpvHH3+c7t2706dPH37++WcSEhKIioqqc04PDw9uu+02Xn75ZXx8fAgPD+fDDz/EZDJx4403Nti2C4kQVJcJVruDwgobJqtTSMll4K1T4HWeIsdqd5BXaiW31OISaeAsrRDgqcbHQ4m8iTsCnSFJGwUVVoqMVopMVkqMNqw1ktjR+NC5zwC380gOB8icXqsqFCo1CpUatd4b/IJrjTcW5VKRl0lZ3hkq8s40i8Aqystmy69f0mPQKEKi2nHFVddxWKMl5bj7b2GN5cCurYRHRRPToQt7tm/EbDI229wCwaWKVqtFoVBc8ErpzZH03LVrV5577jk+/PBDXnvtNfr3789TTz3FI4880uA5brzxRo4ePcojjzyCUqnkX//6FwMHDjzneZ07d+b777/njTfeYNKkSUiSRJs2bRg/fnyjrkEmk/HrqtU89uhMZs2aRX5+PoGBgfTv35+AgAAAJk2aREpKCi+99BJms5lx48Yxbdo09u/f73bep59+GkmSePjhhykvL6d79+58+eWX+Pj4NMq+C4VMupTLkl6ElJSUYDAYmtyturE4HBLFRjul5r/fSLy0CgxaRZOFDkCF2dkIuaDM6kpkV8plBHipCPBUo1E1Plpsd0jklVtc/woqrNhriqdK9GoFnholerUCD7UCnVKOWiFjyaJPeHfu25SWFKHXablh4kTCwsJc58nkCuRKJQqVxhkO1OhQe3ih1nuj9vJBa/BHqa7+Jmi3WijLTqMo/SRl2WnnX55BJqPrldfQtmNPAOJ3/NmsomrstNsJDA5jz7YNxO/b2WzzCgSXAnq9nkGDBhEeHl4td0b08msdZDIZwSGhAGRnZTaqPt+NN95IYGAg8+fPbynzamGz2cjIyGDbtm21dhiaTCZef/31Jn9+Cw/VJYokSZRbHBRV/L2jTqeS4+OhbFKfvao5S012sorNlJ4V1vNQywnyVuOrVzWoEfLZ8xWbbGSXmskqNZNfbqGmflLKZfjoVPh6qPDRKTFoVXhp3NfBeuqxhxnctxeTJ08mNyeHRYsWMWrUKK688kpkMhmSw47dYsduMUN53S5vlYcXHv4h6P1D8QyORKXTY4iIxRARi9VYTmHKMQoSDzvnaAqSxOGdG7BaLMR1v5Ku/YZhNlaQlXqqafPV4PjhAwQGhxHToYsQVAJBJZ6enkLgXMQYjUaWLl3KNddcg0KhYOXKlWzZsoWvv/66tU1rNoSgugSx2JzhPbPNqU6Uchm+eiW6JniN4O/8qKxic7VmyL4eSoK81XhqG/6YOCSJnDILmcUmzpSYMFqrh9J0KjmBnhoC9Cr8PdR4axuftD5kyBCOHTvG5MmT2bhxI2vWrCE5OZnx48c3qD2DtaKU4opSitOcW291PoF4R8TiExmHSqcnqGNv/Nt1pzDxCHknD2JvYsPk4/u3oVJraNuxBz0Hj2bLr/mUl5x/+5iU08cZcM0o/AKCMPj6UVxYcN5zCgQCQUuzfv163nvvPcxmM7GxsXzyySdcddVVrW1WsyEE1SWEQ6oM71V6j2SAQadodFmCKiTJWTE9s8jsqloul4G/p5pg74aH9RySRG6ZhbQiI2eKTdUaKytkEOipIcRLQ7CXplkS1wH8/PxYv349r7zyiqslQ2ZmJlOmTCEiIqJRcxmLcjEW5ZJzdBdeoW0JiOuJzieAgPY98WnTkZyjuyhMOdYkOw/v2oCnwZeA0Ch6XzOWrau+Ou8CoBazmaz0VMLbxBDRth3FhbvOfZJAIBC0Ijqdjm+++aa1zWhRRNmESwSjxU5mscUlpnQqOaE+6iaVJZAkicJyK0fPlJOUa8RkdSCXQYhBTbcIT6L8tQ0SU0VGKwcyill1NIctiQUkFxix2CU0SjnRfjoGRfsyvmsIg2P8aBeox6sJ3qj6kMlkPPPMM2zevJng4GCKiopYvHgxf/31V5P67EkOByUZiSRu/IGUHb9hKi5AqdES1usq2gy8DqWmCc1JJYn9m9dgMpbj7RtAXPf+jZ+jDtJTEgEIj2zbLPMJBAKB4PwQHqqLnKq+e1WhOEVlzz2dWtHouSRJosRo50yRqdp8Qd4agrzUKBuQe2WxO0gtNJJcUEGR0eZ6Xa2QEeGjI8KgJdBT3SThZHNIFBmtlJhslJptlFnsGK12jFYHVrsDq0P6u9gbMlQKGRqlHF1QB1ZsPsCH895iw5qfWbd+A0lJSUycOLHJVYbLslIpy07DP6YrQZ364hkUQezQyaTtXkdFfuNqxJhNFcT/tY6+wyYQ26U3GYkJlBWfX5guKyMNgMDQcGfumNhbIviHIZ55QVNoyedGCKqLmAqLnYLyv5POvbQKDDpFoxLDqyg328koNLk8XHIZBBs0BHurG9QIubDCyum8ctKKjK6K6HIZhHlrifLTEeKpafCuQkmSKDBaOVNiJqfUTE6ZhbwKC8VGG+fzqHeZdB9dJt2Hw24nLz2JpFOHCVWq8JNbwFLR+AklifzT8ZRmpxLZdwRagz9tBl1Pxp4NlJxJbNRU2WmJZKWdJiQylg49B7J306+Nt+csCvNzsFotqNUavH18RR6V4B+D1WrF4XC0SiVswaWP1Wp1tfZpboSgugip6ZVSKWT46ZVo3PTAqw+LzUFGoZmCcmcbAhkQ5K0m2KBGpah/PockcabYxMm8cvLL/25j4K1VEu3nQZSvrkE22R0SGcUmUoqMpBWZyCg2YbLV/WaoUsgwaFV4a5xlEzxUzjY5aoUclVyGXCZDqrTNandgtksYrXZKzTZKTDbyy62YgaA27Qhq0841r1ReiJSfCtmJjRZXlrJiEjevJPyKoRjCY4joO4z0PTJKMk43ap5j+7YRHBFDaNs4vA76U1qU36jzz0aSJIoK8ggMDsPHL1AIKsE/BovFQm5uLnq9Hl9f31bv8SnAJU4a2iqnNZAkCavVSkFBASkpKS1Ss0wIqosMo8VBwVl98bwrvVKNfdNwOCSyis1klVhcZZX89CrCfDXnFEE2h0RyfgUn88opt/ydAB/hoyU2QI+/h+qc9hQarZzMLed0fgUphcZaxToVchkhnmpCvDQEeWkI1Kvx81DheZ5tcSRJosxiJzG7iA+XrcCu9yOyUy/kel9kel+kyG5QmIl0JgGKs889YdW8djvpu9dhtw7Br20nwntfg91spDzvTIPnKCvKJzPlJGFt29O2Y0/id/zZlEt0UVxYQGBwGN4+vuc1j0BwqXH8+HG8vb0xGkVh29ZGJpNRVuas51RSUnxRh2LtdjspKSmcOtU8JWxqIgTVRYKjsnRBmdnpuVHKZfh7Nt4rVVUCIa3A5Kps7qlREOGnRa+pP+/KYndwOq+ck7kVWOxOO9QKGbEBemL8PdCp3J8vSRJZpWYScso5nltGXnn1byp6tYIoHx1RPloifbQEeWoaFGpsLDKZDC+Nkh5RASx4+n7mzZvHczc9REzvwfS9bhpR3fqCXzhyQwiRO9bieXIPpUpIbdMGSX7ue515YAsKpRpDRCyR/UZxesP3WCtKG2xf8rEDhLVtT3hMR47u2Yzd1vRvdOWlxQDoPVu+gKxAcDFhMpnYunUrOp1OeKhaGZVKxZ333AvA2kULL2ovlclkatFq+kJQXQRYbA7yymzYHH8LIB+PxudKmax2UvP/zpNSK2RE+Gnx8ah/d53V7uBkbjknc8tdniS9WkH7QD1t/DxQ1iN88sstxGeVciSrjALj339IMhlE+eho5+9BjL8HwU1MVD8fZDIZjz76KNdccw3jx4/n03Ur8Q9vy8vXXMtNv6/EkPd3cnmxtze/XXstxzp3Pue8Gfs2oNLp8fAPIbz3UJK3/AINzP4qyM6gvKQIvbcPQeFtyUw52dTLw1jhDF1qdU1LvBcILmUkSaKiogm5kYJmRaVSoalswVNeXn5RC6qWRgiqVkSSJMrMziKd4KzZ5OepanSBTockkVVkJqvYgoQzPBdiUBNiqD9R3GZ3cDKvghO5ZS5vlrdWSccgTyJ8tG4Fndnm4Eh2KQfOlJBR/HfRS6VcRjt/DzoGexLn74G2Ho/WhaRXr14kJCRwyy23oPj5Z2Z8uaDWGO+SEqatWMGKadPOKaokh4P0veuJHToFvX8I/rFdyT8d32B7MlNO0q5bX0Ki2p2XoDKbnXkLao2myXMIBAKBoHkQgqqVcDgk8sttrkriOpUcP737livuKDPZSMk3uQpzemsVRPnr6q0j5ZAkkvIrOJpdhtlWdZ6SzsGehBu0bj1JWaVm9qYXE59V6hJgMhnE+nnQNdSLDoF61OdIdK+iwmIno9hEVqmZ7FILBeUWiow2ik1WKiwOTDZ7tWbMGqUcnUqOp0aJn4cKfw8VYQYtbfx0RPpoz5lg7+npyU8//EBpQAAUFdUqwCYDJGRc+8dajnfseM7wn7WijOzDOwjrdRWBHa6gKPVEgyuq52Qk0a5bX/xDIhs03h12W6UQV4g/Y4FAIGhtxDtxK2C2Ocgrs1KZpoSvh6LRFcTtDomMQhO5pU73qlIuI9Jfi2894T1JkjhTYiY+s4SyymbKerWCLiFeRPrULaQcDonjueXsSisitejvbab+Hip6hnnTPdQLT039j5HZ5uBUXjmncis4nV9BUn5FrRyrc1GVHA+1RYtKIaNjkCddQz3p18aHYC83HpstW/AqKnK7hgwJQ1EhUQUVpAScuydYYcpx/GK6oDX449+uOzkJuxtwJVCUm4XdbkProcfDy0BFZS5UY5Gkyur2LZCLJhAIBILGIQTVBaRmiE8phwBPFepGJp6Xmmwk5xmxVPby8/dUEeGrrbcwZ5HRysEzJeSWWQCnx6dzsCfR/h51hvasdgcHz5TyV2qhq4CnXAYdgzzpE2Egyo0AA6cIO5VfwcGMEg5nlnE6vwJ7za7IgK9ORYi3c6dfgKcaH50Kg1aJXu0slaBSyJ2eIwnMdoezPILJTn6FhbwyC2lFJlIKjJRZ7MRnlhKfWcrX+zLpEKjnmjg/Bsf4Vc//ysxs0P318gwBLy2U5p1jpETOsT1E9RuNb3Qnck/sQ2pAwqPDYaesKB+DfzBePgFNFlTySi+a3S7q8QgEAkFrIwTVBcIhSRSU/11bSqeS469XNsq74HBInCkyk13iFEUqhYy2ATq8de5/jRa7gyOZpZzOdyZvymXQPlBPhyDPOsNkFpuDPenF7EgtcnmFdCo5vcMN9I4w4O2mUbLZ5uDQmRJ2pxazL73kLI+SEz8PFe0D9cQGOJPUo3y15/RsNQRJkkgvNnE4s4x9acUcySrjeG45x3PL+fFQNpN6hDAk2td5n0NDGzRneUAIsg7dkA6sApul3rGlmalYyktQ673xDotxNVw+F6VFBRj8g/E0+JGd1rh6VlUolCoA7HbbOUYKBAKBoKURguoCYLNL5JZZXTlBPk1oaGy02EnKNbpyrvw9VUT6ad3mXEmSRGqRkUNnSl15UuEGLd3DvNCra//arXYHu9OK+SulkIrKNQxaJf2jfOgV7l2n+LI7JA6dKWV7ciG7U4td64AzlNg11IseYV50DvEkqIV2+clkMiJ9dET66BjTKZCCCgtbTheyOiGXnDILC7al8sexXO4f1IaIIUMgIgIyMqCOWikOIANICA3HQ+MBsf2Qjm85hwUSRWknCerYG++w6AYLKmN5CQA6/blDi+7QaJw7ayzm5q/4KxAIBILGIQRVC2OyOvOlHJLTOxTgqULbiF18kiSRW2olvcCEhDNXqk2AFh8Pldtzysw29qUXk1MZ3vPSKOgVbiCojtwiu0Nif0YJW5IKKKv0KvnqVAyJ9qVriFedgi2zxMzGk/lsTiyo1s8vQK+ib5QPfaMMtA/Ut0idqXPh56FmQrdgRncMYO3xfFbGZ5GYb+SZ1Se4u18EV737LkyZ4symP0tUSTIZMkniEWDHcw8yY/53KAKikHLCoLD+4p0lZ5II6tgbz6AIZDK5K7epPsxGp8dQrW16yQNtZZ9CkyhuKBAIBK2OEFQtSKnJ7sqXUitkBHiqGtSAuAqb3UFynoniStHirVPSNsD9jjZJkjiZV86RzFLslQKuU7Bz913N0KIkOZPN/zyVT0GFM0HcR6vkqhg/uoV41RrvcEjsyyjhj2N5xGf+XcjSW6tkQFsfBkb7Ehfg0SgvVLnZRpHRSrHRitHiwC5JOBwSGqUcD7UCg05FoFfTCoBqVQrGdQ1iSKwvH25NJT6zlI+2pZLTYyBTvvsOHnkE0tNd42URETBvHuOKi1nzwAP89cPnDJ72f1hCOqE+h6AylxRgM5tQarRofQIwFuac0z5bZShRqXQvjM9FVUHP8rKSJs8hEAgEguZBCKoWoqDchrxyW7uH2lkSoTGFOstMNhJzjVjtkrPti5+GQC/3YbNSs409qUXkV4qjQE81V0QY8KojTymr1Mzvx3Ndu/b0agVDon25ItxQS7yYrHY2ny5gTUIuWaVOESADeoR7MyzOj17h3ijPUbIgp9RMQmYpp3PLOZ1bTlqBkcxiE6Xmc+f+KOQygr00xAV70iXMix4RBrqGeTdYZPnoVPxnRAzfH8zih0PZfH8wC48+g7kuORm2bHEmqoeGwpAhoFBwFzBo0CAmTbsR0/U3ovULYdfJdHrFhKJQuK+rZSzMxiukDboGCipHZfK6vJ45z4WXtw/wd8V0gUAgELQeQlC1EOVmO14aMOgUeDciX8oZ4rOQVuAsD6BRyokJ1OHhpm2MJEmczqvgUGYJDskZEuwe5k20X+2WDCarnQ2nC9ibXuwKH/Zv48PANr61WtxUWOz8fiyX1Qm51UosDIvzZ0R7/zrDh1WcKTKxO6WQPcmFHEwvIafUfX0mrUqOt1aFh1qBsrL5sclmp8Jip6jCis3hbNB8ptjEphPOXXe+HiqGdQxkcq8wYgL157yncpmMqT1DUSnkfLM/k2V7zuCvV9PvmmvqHN++fXv27vyLOZ/+iLZDH3Rtu/LZZ28xZcoUfHx86jzHXFqEV0gb1F51H69J1e/G4Wj6Dj2Drz8ARaIxskAgELQ6QlC1EDIgwFOJh7rhHgi7QyI130hBudNz4+uhpE2Azq03xmi1syetmOxKwRLkqaZPpE+tNSVJ4kh2GX+cyHPtvusc7MmIOH8MWlWtOdck5LLqSI4rOT3IU831nQO5KtavzurnkiRxNLOUTSfy2HIqn6S86u0g5DKIDdQTF+RJbKCeNv4ehBm0hBq06Oq5P3aHRH6ZhbTCCo5llXHkTAl7UooorLDy/b4zfL/vDFe3D+DugVF0CPGq79YCMKFrEMVGK78dy2PRjjQ6BXu63bWo0WiYddtEPt2VTod+Q/nhzSdYsGABEydOpGPHjrXGWyqTzFW6hiWZKxTO++5oYl8pD70XWp0Oh8NBiRBUAoFA0OpcNoLqo48+4qOPPiI5ORmALl268OyzzzJmzBjA+aH/wgsv8PHHH1NYWEi/fv344IMP6NKli2sOs9nM7Nmz+frrrzEajQwfPpwPP/yQiIiIRtsT6K1qlJgyWx2czqlw7eKL8NMQVE+IL7PExO7UYix2B3IZdA/zJta/dg5TscnKqoRcV9kEfw8VYzoGEu1XPRnaZnfwx/E8VsZnU1rpkQo3aJjYLZgBbX3rFHWpBRWsis9m7dEczhT/vdNMIYMu4d70bePLFVEGOoV6N+peuOaRywjy1hDkraF3G1+XnXtSilh5IJONJ/LYdCKPzSfyuK1/JDOuiq6376BMJuOW3mEcySojrcjEF3syeGBwG7fjQ7w0eKoVlOHBoGsnsvmXFSxfvpz+/fszYsQIlMq//3zsFuf1K9TaBl2bqrJdjNXStB16AUEhABQV5ImyCQKBQHARcNkIqoiICF5//XXatWsHwOeff86ECRPYv38/Xbp04c0332Tu3LksWbKE9u3b8/LLLzNy5EiOHz+Ol5fTuzFz5kx++eUXli9fjr+/P7NmzWLs2LHs3bu33vyZuqgZQquPUqON07lG7A4JpVxGTJAOLzeeE4ckcTizlBO55YAzkfzKNj541/A0SZIziXzdyTwsdgmFXMbgtr4MbOtbTXRIksTOlGK+3nfGtSsw1FvDlB4h9G/rUyvvy2JzsC4hh58OZnIw/e9kaK1KzuB2/lwVF0D/GN9a9jQXSoWc/jF+9I/xIymvnMXbUlibkMvSHWkcSC/mlQmdCawnHKlUyJkxMJL/rj7J1qRCJnUPIcS77vEymYw2vjqOZJfx0tz3WRrkxaJFi9ixYwepqalMnToVX1+n0HNU5ss1NCdKo3OGKqt2+zWWoDCnyM/Nrj9hXiAQCAQXhstGUI0bN67az6+88gofffQRO3bsoHPnzsybN485c+YwadIkwCm4goOD+eqrr7j33nspLi5m0aJFLFu2jBEjRgDwxRdfEBkZybp16xg9enSL2J1baiE13+ml8FDLiQ3ycFs53Wi1syO50JV43i7Ag26htRO0S0w2fjmaTWKBczt9hEHLuM5BBOjV1calFhr5bFc6x7IrxZlOydSeoVwd61drzvxyC9/tzWDlgUwKK9eXy2BAjB/Xdg1mcKx/veG7liA6QM9LEzpzdfscXl1zgkPpJdz/1UE+va1XvWUl2gXo6RnuzYGMElYn5HJ3P/ceyGAvDUeyy8gz2vn0008ZNWoUd999N2fOnGHBggVMmDCBzp07A1UlGBqWK+dRuUPPVFF6jpFu7Ap12px9Jv0cIwUCgUBwIbhsBNXZ2O12vv32W8rLyxkwYABJSUlkZWUxatQo1xiNRsPVV1/N9u3buffee9m7dy9Wq7XamLCwMLp27cr27dvdCiqz2YzZ/HfSdUlJw7awS5JERuHfVc999Ura+uvcVk7PKTOzM6UIs82BSi6jT5QP4Yba4aUj2aWsTsjFZHOglMsY1s6fvpGGap4mo9XOtwey+P1YLg7JWdJhXJcgxnYJqpUjlV5o5MudaayKz8JSWZg0yEvDDb1CGdstpF5vUF2Um2wUVVgw2xzY7A50agVeOhXeWlWTe9KN6BREhxAvHl5+iPRCI49/f5j3b+pRr5dwTKcADmSUsCO5kDv6hrvNU/OprEJfUrkjcdq0aVx55ZWMHTuWI0eOsGLFCvr27cvUO+8FQGpg+E3v7fRslZUUNvg6q1Cq1K6QX/aZtEafLxAIBILm57ISVPHx8QwYMACTyYSnpyc//vgjnTt3Zvv27QAEBwdXGx8cHExKSgoAWVlZqNVqVwjn7DFZWVlu13zttdd44YUXGmWnwyGRlGekqLJGVaiPhlBD3flSkiRxurIvnoSzevmAtr612rZY7Q5+O57HgTNOQRfmrWFCl+BaXql96cUs3pHu8nJdGWXg1j7hBHpWH5dZbGLxthRWx2dRqaPoGubFzVdGclX7gHpzlQCyiozsTSrgSFoxJzJLOZ1dRmaRkTJT3YJDo5LTLtiL9qFeDGwfwLCuIQTXIRjdEemrY+7UrsxYdoD4jBI+3JjIoyPauR3fJcQLT42CUrOdU3nldAiqO5ncs7Kq/NmtdNq2bcv+/ft56KGHWLhwIbt37yasY0+iB12Hw3bups9yueJvQVWU3+BrrCIkPBK5QkFpcRFlJaJkgkAgEFwMXFaCqkOHDhw4cICioiK+//577rjjDjZt2uQ6XlOwSJJ0znIG5xrz1FNP8dhjj7l+LikpITIy0u14m13idE4FZWY7MqBtgA4/z7rDUw6HxP6MYpIqQ3dRPlquiPSpJWZyyyx8F59FXrnT2zW4rS9XxVQP25WZbXy+O4OtiU6PSJCnmrv7RdAj3LvaXMVGK59tS+G7fWewVTY07h/tyx0DougZaXBfB8toZVNCDhuP5rD1WA7pBe6rd6uVcjRKOUqFnAqLDbPVgdnq4Eh6MUfSi/lxtzOM1Tvaj/8bFsv1vcIa5L2KDtDzwviOPPbtYb7dm8H4HqHEuimroJDL6BCoZ296CafzKtwKqqp77ajR3FmlUrFgwQJGjx7NHXfcgbwyGT0369w5Td7+QcjlcszGckwV5eccX5PItk6hmJ6S2OhzBQKBQNAyXFaCSq1Wu5LS+/Tpw+7du3n33Xd58sknAacXKvSsBrk5OTkur1VISAgWi4XCwsJqXqqcnBwGDhzodk2NRoNG07Cwl8Xm4GR2BSarA4UMYoM88HLT2Nhic/BXciG5lSKpW6gX7QP1tQTNkexSfjmag9Uu4alWcEPXYNrW2MF3MKOEhdvTKDRakcnguk6BTOkRUi28Z7M7+HbvGRZvS3EV3OzTxocZQ9rSPcJQp41Gi43fD2bxy950Nh7NqdbLTy6DjuHe9GjjS4dQb9qHehHh50GQQYNnjYR1s9XOmUIjJzJLOZxWxIajORxILmRvUgF7FxXQI8qH127uSfcon3Pe44Gx/gztEMCG43ks3ZHKC+M6uR3b1t+DveklpBaee6dd7c5/Tm644Qb69u3Lh9//AcDeHds5tWs91157LSpV3ULZL9D5DBbmufd8ukMmkxEVXSmokk81+nyBQCAQtAyXlaCqiSRJmM1moqOjCQkJYe3atfTq1QsAi8XCpk2beOONNwDo3bs3KpWKtWvXMm3aNAAyMzM5fPgwb7755nnbYrY6OJFdjsUmoVLIiAv2cJvEXWa2sS2pgFKzHaVcRr82PoR6Vw9/ORwSf57KZ0dqEQBtfXVM6hZcrfGx1e7g632ZrEnIBZy79+4fFEVcDa/NvtQi3vrjJImV9aPaBep5aFgM/aL96rTvSFoRy7Yk89OedErPCuHFBHkyrGsw13QOok+MXy3h5A6NSkF0kCfRQZ6M7hHKrLGdyC428cWWJD7+8zQHU4uY8L9NvDStO7cOiT7nfLf2i2TD8Tw2Hs+jbKQNTzc7JgP0TvuKjO7DdFUisb58rIiICEaMGUeB0UZG8kn27t1Leno6U6dOJSAgoPa6oVEAFGQ1PqE8KDQCD08vzGYTZ9JSGn2+QCAQCFqGy0ZQPf3004wZM4bIyEhKS0tZvnw5Gzdu5LfffkMmkzFz5kxeffVV4uLiiIuL49VXX8XDw4Obb74ZAIPBwD333MOsWbPw9/fHz8+P2bNn061bN9euv6Zistg5kV2B1S6hUcqIC9ajcdMguaDCwrakQsw2BzqVnMHRfhh01YWJyWbnh/hsV22pgW19GBrjXy0sllVi5t3NySRXht5GdQjg5t5h1YRBqcnGe+tP88shp6fEoFNy/9UxjOseUitJ2+GQWH8km4//PMX2yorlAFH+HtxwZQTjekfQIdSrUb386iPYoGXW2E7ccXUM//nqAL8dzOQ/Xx/Eape465qYes/tHOpFW38PkvMr+CuxgJGdg+ocV9WWp6oSfF2UW53HdHUUNK1CkiRKKueY/fCDHNq2nuzsbBYuXMjYsWPp0aOHa6xcocAvuLLkQWZqvddRF7EdnHXTUk6fwOFoWlFQgUAgEDQ/l42gys7O5rbbbiMzMxODwUD37t357bffGDlyJABPPPEERqORBx54wFXY848//nDVoAJ45513UCqVTJs2zVXYc8mSJY2uQXU2RoudE1kV2BwSWpWc9sEeqNx4O7JLzWxPLsTukPDRKhkU41frg7ywwsrXB86QX2FFKZcxoUswnYOr5//sTi3io22pGK0OPDUK7h8UxRU1wnZbTubxxu8nyausPXVDz1Duuzq6lnhzOCTWHDzDO6uOc6wy4V0hl3F9rzBuGdyWAXEBTd6d1xACvDR8MuNK3vg5gfd/P8F/VxyibaCeoV2C3Z4jk8no08aH5PwK4jNK3Aqqhmi/orMaR7uj2GTDVllDbPzo4SQkJDBu3Dj27dvHjz/+SFJSEtdddx1qtZqAkEiUKhXG8lJKC/PczlkXSqWK6PbOEOaphPhGnSsQCASCluWyEVSLFi2q97hMJuP555/n+eefdztGq9Uyf/585s+f3yw2nS2mdGqnmHLXSDijyMjO1CIckjNhfEBbX1Q1xmYUm1h+IJMKqx0vjYLpPUKrhQIdksS3B7JYGZ8NQIdAPQ9d1Qb/s3b6GS123l1/mpUHMgFo46fjqTEd6BlZO09q67FcXvnxMPFpzp1knloltw5uy93XxBBWI0+rJZHJZDw5vhPFFRaWbUnmuW/jGdIxsN6mzB0rW9Ek5btP+rZWbl+sb8diXoVTcPrVU9cqt+zvMTKZjLCwMHbt2sWTTz7J3LlzOXDgABkZGUydOpXuA5zezuz0xieUt23XAbVaQ0lRoSiXIBAIBBcZl42gutgwWuwkFTnFlIdaTlywHqWi7g/ulMIKdqc6RUu4QUu/KJ9aXp+TeeV8dygLm0MixEvDjT1DXSErcDY+nr8lhX2V1cvHdArk5t5h1cTCyewy5vx0lNQCIzLgpisjuPeq6Fr5QUk5ZTz/XTx/HnYKM0+tknuGxvKv4bH4eFQvr3ChkMlkzLmhC6v2nyExp4zvdqZx40D3bWMCvZx2FpS7z48qrsydMrjZGACQWeKsMRZST72trMpeisFnjVEoFLz11luMGjWK6dOnk5uby6LFi7nxgTnOeZNPup3PHe27OEOHJxMONfpcgUAgELQsQlC1EKdyKtB6eJ1TTCUXVLCn0gPU1k9H74japQniM0v5+Wg2Dgli/T2Y3C2kmgjKL7fwv/WJpBSaUMll/GtgJENiqieU/3Iwk7fWnsJscxDkpeHZ6zvQp231mltmq50P157k/d9OYK4sDHr7VdE8MqYD/o0o4ClJEsXlFjLyyygqtyCXyVAqZEQEeBLiW7vfYEPx1KqYMbwdr/90lB931y+oqnYwmq3u84yyqzxL+rq9T+UWm6teV5h33TWxrHYHuWWVoquOFjajRo3i2LFjTJgwAa13AB56T4oL88lMPY1a3XBx6hcQTHBYJA67nZMi3CcQCAQXHUJQtRA2u4ROdQ7P1FliKsbfg17h3rXExt70YlYfc+7S6xbixbjOQdUSxtMKjbz+ZyIFFVYMWiWzh0bT7qxdfFa7g7f+OMVPB50hvoGxfjw3tmOtXKlDqUU8smQvJ7OcrVCGdAzk5endiQ324lzY7A52HMti06EMdhzLZs+JbIoqyz3UJNCgZVCXMB4c241BXUIbLa6u7xXG6z8dZefJfEqNVrx0dYsha+XuPHf5agBpleUSIn10dR6vqv8V7Kl229z5TIkJhwReGgXemrr/nIKDg9m+fTurNu8HYOU3y/jq04VMnTqVkJAQt/adTZeefQBIPn0cY3lZg84RCAQCwYVDCKoWQquSExfi4VZMpRUa2V0ppmL9PehZh5jalVrE75U76vpGGhjdPqDamOM5ZfxvfRLlFjvhBg1PDo+tVvG8qMLKUz8eYX9aMXIZzBjSltsHRFVrQ2OzO3j/9xPMW30cm0Mi0FvD81O6Mb53eL1iR5IkNsef4csNx1m9K4X80tq1nPy9tPh6aZCkylpTBeXkFptYuT2RldsT6dM+iNfuGsDgLmENuKNOooM8CfDSkFdqJiWvnK6RPnWOK6hKJncjuBwOiVN5zvyqaL+6BVVVA+oYf/f5YimVoivSR1fv/bLaIaxtHACb/viF/Px8PvnkE8aMGUPv3r3rPVfv5U1M+84AHDmw2+04gUAgELQeQlC1ELFBHrWSyqvILDGxq7J+VLSfrk4xtTvtbzE1oI0Pw9v5VxtzOLOU/61PxGKXaB+o5/Fh0dXa0aQVGnn0m0OkF5nQaxS8NL4TA2P9q62RU2ziwcV7+Oukc53re4Xx2k098PN0H94zmm18vu4YH/56iJMZf7c98fPSMKJXJAM7h9KvQzDtI3zw0KhqnXswKY8v1x9n2Z/H2XMihzHP/MLPz1/P0B7uGxTXJNRHS16pmewiE13dFKVPL3QKnTCfukN1SQVGjFYHHio5bXxrCyqr3cHJSsHVyU0V9QqLnZzKsGFdc5xNTqlznLdWwbrfV3PDDTewbds2fv31V5KTkxk7dixabd22druiH3KFgozUJPKyM+tdRyAQCAStgxBULYTaTagpr8zCX8mFSECkj5Yr6siZ2p9RzG/HnSJnUFtfhsb6VRtzIKOEuRuTsNoleoR58eg11RPLj2WV8uiKeAorrIQZtLw9tSvRAdWLee46lc/9i3aTXWxCr1Hyyo3dmXxlpFtPSYXZyoJVh3lv5UGyi5xixUunYvrVcUwd0o6BnUPr3XUHoNMo6d8xhP4dQ/jvzX156MPN/LwjiVvf/INtb0+hbYh3vedXIW9AmPBopjN06a71zN5K72DXUK86yz4cyynHYneWrwirIzcKILFyB2Ggpxq9m3AfOMO/eZWCKshbg8FDz+bNm3n++ed55ZVXOHz4MGfOnGHq1KnVKvkD6PSexHV2JqMf2vNXfZcsEAgEglak/k9AQbNSYrKyLbkAh+SsWt43yqeWgDmaXcavlZXN+0f51BJT8WdKmbvBKab6RHoza2h1MXUgrYgHvjpIYYWVDsGefHJ7r1pi6rudqUx/dyvZxSY6hHqx6smrmdIvym1z5p93JNHrwW+Ys2QH2UVGooK8mDtjMKc/u535D1zNVd3CzymmahLk48GSWSO4ol0gBaVmHvt4a4PPrapsrndTG8rukIiv9J51D69dDkKSJHamFAHQJ6rutjpVTaa7uylWanNIrhyrdvWEBAFySy04JGcY2FvnzMWSy+W8+OKLrF+/noCAAAoKCvj000/ZtWsXkvR3o5vuvfujVCrJOpNGVkbjC4EKBAKB4MIgPFQXCKPVztbEQqx2CX8PFf3b+NbytCQVVLDysLNq+RXh3oyIqx7mO5ZdxlsbErE6JPpEGnjk6rbVyiLsTSlk1neHMVkd9I7y4c3JXap5TiRJ4p3Vx5m76hjgDPG9c/sVeLjxrpzJL+ehDzexerezxUlEgCfP3tKXG6+OQ6VserHTKnQaJYsfG07PB5bzx75U8kqMBHjXHzozWuykVeU+uQnFxWcUU2y04a1V0jG0dlL9ybwKzpSYUStk9K6jT2FOmZnkQiMyGfQMr9trllxQgdnmQK9WEGqoO1QHTnGXXeL0ToUY1LXE2dVXX82xY8eYPHkymzZtYvXq1SQlJTF+/HgCg0Lo0NXZKunAroYLToFAIBBceISH6gJgd0hsTy6kwmrHU61gYLRfrdYuOWVmvj2YhV2CTkF6xnQMrPbhm1podOVM9Qjz4uGr2lQTUwfTi11iqn+0L29P7VpNTDkcEs9+G+8SUw+OiuOje/q6FVO/7kziyodXsHp3CiqlnMen9OLAhzdy2/COzSKmqugQ4UvHSF/sDok9J3LOOT6+svipv6eaIDehuHWVHr6BsX51Fu38szI3rV8bnzp37+2o9F51CNRjqKMfod0hcTzHudOufaC+3hBkTokFu0NCo5S7Lc/g7+/Phg0beOmll1AoFCQkJLBw4UI697wSRWXuVKbo2ycQCAQXNcJD1cJIksTe9GIKK6yoFTIGx/jVKqRZZrax/EAmZruDKB8tE7uGVPuQzi+38Pq6RCqsDjoE6XnsmuhqCe/Hs0p57Nt4TFYH/aJ9eWNy12prOBwSTy0/yJdbk5HJ4NXpPbjtqrqbDNvtDv67dCfv/HgAgB7RASyeNZzOUXU3Sm4O/CprXJks5+5Nt67Sgze4Y1CdoTiT1c7vR5zCbEzX2u1pCiusbEsqAmBUx9qNi4uMVuIrS0cMaONb6zg4PYlGq7PXYtt6KsZb7Q6yip01qsJ8NPXu5JPJZDzzzDMMGzaMSZMmERbZhi49e+NwONi9bYPb8wQCgUBwcSAEVQtzMq+c1EJnZfL+bX2r7cQDp7fju0NZFJts+HmomNYjtJpXxWS187/1iRQarYQbtMweGl0t4T2r2MRj3x6m3GynZ4SBNyZ1qSamJEni2W8P8eXWZOQyePu2K5jaP6pOWyvMVu58+09+2ZEEwEMTuvPS7f3R1NMYuDmoMNkAanntauJwSPy6NwOAkd3qrt+05nA2pWYbId4a+tQhiH45koPdIdEhSE+7gNoJ65sTnTlu0X46IuoI5VntDhKynd6pjkGe9dqcWWTGIYGHWo6vvmF/agMHDiQh4RgHTjg9Ut99vYxPP3iXCRMm4OFx4dr9CAQCgaBxiJBfC5JTZib+jNPb0SPMm6A6yhH8fiKXtGITGqWcG3uGVmuGLEkSH21LJaXQhLdWyZPDY6oJsnKzjce+jSe/3EJsoJ63pnR1VQiv4t01x1myKQmZDN65vbdbMVVcbmbMM7/wy44kNCoFn88ewZv3DGpxMWW22jmaWgBA17b+9Y7dfCyH1PwKvHVKRveoLahsDokvdjp73N10ZUQtsVNQYWVdZbhvUvfa3qucMjOHKncHDo2t25YTueWYbQ481Qqi6/FOGS12ckudyfMRftpGFTBVeXgRG9cRq8XCO2+8xPHjx1m4cCFpaaJ/n0AgEFysCEHVQphtdnalFCHhrFEUG1D7w/dQZil7K3vv3dA1GP8affJ+OZLDrtRilHIZs66Jrla00yFJvPDrMRLzKgjwVDN3alc8a+x6+3F3Gm/96syZemladyb3q7toU7nJyg0vrmbX8Wz8vDSsemkc066KO5/LbzCrdydjsTkI8fOg7Tmqsn/4h7P/3ZR+UejUtT0+vx7KJKPIhI9OxYQeobWOr9ifidXu9E51q5GsLkkSa0/kIQEdA/WE1+GdKjPbXLlT7sotVM2Vmu8sdOrjocTLzW7EurA7JIoqnB67QIOOH3/4ntDQUIqLi/nss8/Ytm0bDoejwfMJBAKB4MIgBFULsS+tGJPNgZdGSa86ak3llVtYneDM9RkS7UtcjfBTQnYZy/c7izjeeWU47YOqH1+2I43NJ/NRKWS8MakLwTV6zR1MKWT2Mmerk/tGtOPOq2PqtNNmd3DLG3/wV0IWBr2aVS+OY1Dn2mKkpVi46jAAtw/vWK8XZ+uxXLafyEOtlHPfiHa1jpebbXyyxRkmu2tQVC1PXWJ+BZtPOz1ht/QOq7XW8dxyEguMKGQwPK52bpUkSRzIKMEhQZCnuk7BVUV+mZUysx25zOmdagxFFTYcEqgUMry0Cq688kqOHTvGtddei8PhYO3atXz99deUl5c3al6BQCAQtCxCULUQ2WUW5DLo38an1k4zu0Ni5eFsrA6Jtr46rqrRyLjMbOODLSlIEgyJ8WVYXPXwU3xGMR9vduY5zR4VR5ew6lv7S41WHli0G7PNwajuITw9sYtbO1/8che/703FQ6Pkx2evp2ds4PlcdqNYfyCdTfFnUCrk3D26s9txVruDZ789BMAtg9sSVkeo7ZMtyeSXW4jw0TKpV/VWNnaHxKd/pSEBg6J9iatR7NNks/Pb8craX2188fOovRsvvdhEVqm5spRCbYF8tq3phc5E9FAfTa0NCPVhsjootzi9T34eStca3t7erF69mrfffhuVSsXJkydZsGABKSli559AIBBcLAhB1YJ0D/Ou1YQYnInPmaVmdCo5E7sG19p2/9nOdPIrrIR4qbm7X0S1D+8Ki53nfj6GXYJRnYMY3712LtF/VxwiJa+CCD8d79x+hdvQ1IaD6fzvO6cX66OHrmFAp4Y16m0OLFY7/1m8HYAZ13WhTZD7cN/Ctac4kVmKv6eaWWM71jp+NLOEFZXJ6rNHxdVq+bMmIZekAiN6tYJb+9TuG7j+ZD6lZju+OhVDomsnspttDg5kOEOzHYM88a4nhJeWb8LukNCp5QR7q92Oq4lDkigod+ZceWrkaFTVr0Emk/HYY4+xY8cOIiIiKC0tZcmSJWzevFmEAAUCgeAiQAiqFiLIU01sHRW0M0tMbEspBOC6jkF41dj1tyetmO3JRchk8OCQNrVCVws3J3Gm2ESIt4YnRsXV8pT8eTiL73amIZfB+3f1weBR94d6hdnKgx9sAuD/ru18wXKmqnjui53EJ+fj76Xlqem93Y47klbE26sSAPjvpK741Lgek9XOC78cw1EpMPvX8PalFRr5pjJ0ekvvsFrNkk/nl7O3UiyN7RRYS4xJksS+9GLMNgfeGiUd3RQTBSgos1JYmf/Uxr/+Zsk1KaywYXOAQu7Mu3LHFVdcQUJCAuPHj0eSJNavX88XX3xBWVlZg9cSCAQCQfMjBFULUVdYyCFJ/JqQiyQ5G+52Dq7+4Wy02lm8Ix2AsZ2Dam3rT8gsZcUepyfmqTHtayWhm6x25iw/CMD/DYulj5udagDzfjxIUlYJYf56XrlzQNMusol8t/UU83502vnhQ9e4rY5earTywOI9WO0So7uH1JlU/+6fp0kpMBLoqWbWyOq5VRabgw+2pmBzSPQK9+aadtXFVrnFzi9HnXlsfSMNddaUSi00klFsQgb0jfJxWybBYnOQWtmKJtSgRq9p+O5Io8VOudnpZfLXq87Zq9DT05OVK1cyf/58VCoViYmJLFiwgKSkpAavKRAIBILmRQiqFqKuCtx704vJKjWjVcq5tkPtxOcfDmVTaLQS7KVmSo2yAJIkMXfdKSScnph+0bULbS7dnER6gZEQHy2zx3Zya5vRbOPDX+IBePXOAXi78WK1BNuPZvJ/76wH4OEJPRjfv+4Cow6HxMzP93I6u4wQHy1v3tKrlkBdHZ/FjwcykQHPXN+hVnh16Z4MV8mJGQOrN36WJImfj2RTarbj76FieLva4rPMbGN/pfeqc4gnvnXkVlXNlZRnxO5w1pwK9am7gntd2B0S+eVOr5aXRoFW1bA/SZlMxr///W/27NlDVFQUZWVlLF26lI0bN4oQoEAgELQCQlBdICosdjZU7jIbGutfq8BndqmZNZUtU27vG16teCfAxhN5xGeUoFXJ+ffQ2jv2jBY77/9+AoBZ13d021IG4Mftp8kvNdEmyIspg2PP67oaw7ajmUx6aTVmq52x/dry6p393Y59/eej/H4oC41Szicz+uHvVV2kJGSW8sbvzjIKdw9qU0tgbjqVz58n8pEBDw6OqhXq255SxKn8ChRyGZO7hdQK9dkdEjtSCrE5JAL06npDfVnFFspMzl190YEND/VJklNMVe3q8/FofM2v7t27k5CQwKRJk5AkiY0bN7J06VJKS0sbPZdAIBAImo4QVBeILUkFmG0OgjzVXBFRu+HutweysDskuoV6cUWNhr0OSWLRVueOrpv6RhDkVdsD8v3OVArKLET6e7gt3lnF73tTAZh+dRwKxYV5BH7bk8K4Z3+luNzCoM6hLJk1wu3an/x5ylVz6o2be9KrbfVE8ZwSM49/fxizzcHAWD/uHtSm2vFTueV8Whk6ndQ9mO41dkEm5lew4VQ+ANe2DyC4jvt5IKOYIqMNtULOlVE+bkVSidHGmSLnrr5IP22tnLf6KDXZMVmrQn3KRuVcnY2Hhwfff/89CxYsQKPRkJyczIIFCzh9+nST5hMIBAJB4xGC6gJQZLSyJ70YgJFxAbVyZDKKTGxPciaq33RF7RpQOxILOJVbjodawY19I+pcY+kWZ/7MPUNjUJ5DJP2V4OyHN6xH3XM1J5Ik8c6PB5j88hqMFhvX9oni5xeuR19H02GAZZuTeOF7Z22qJ8d3YkoNcVhstPLIikPklTmrw780vlO1vKbcMjNvbUjC5pDoE2lgUo3QaX6Fhe/js5CAnmHe9AqvLW5P55WTVJkP5a6BMjjzppJyneP8PVUEeDU8dGqyOigyOnsX+nkoa3kkm8K9997L3r17iY6Opry8nGXLlvHnn39it5+7R6JAIBAIzg8hqC4A25ILXf3hYurY+ffLkRwkoE+kN9F1HP927xkAJvYMrbMMw4nMEo6ml6BSyJjcr37vFEBusVMEnKsy+flSWGbmxtd+5+nP/sLhkLhteAdWPH0tHpq6xdTnmxJ5qjKp/r4R7fj36PbVjldY7Mz6Np6kvAoCPdX8b3JX9GeFNsvMNt74M5Fik40oXy0PDI6qJl6NVjvLD2RisjkIN2gY0yGgllcot8zsKpHQNcSrTu8VOL2Gp3MqsFWWSIhqRAFPu0Miv8xZIsFDLUevab4/wy5dunDkyBGmT58OwJYtW/j8888pLi5utjUEAoFAUBshqFqYUrONg2ecH9A1C3iC0+OytdI7Nb5rHf3lSs3sSHTmXtUsWFnFn4ezARjSMQhfff1eErvdgdnq9Fi0ZLjv5x1JXPHv5fy8Iwm1Us679w1h4cNDUSlre3skSeKtXxOY842zeOeM4bHMuaFLrfpbs76N5/CZUry1St6d3p0wn79FjMlq580/E8koNuPnoeLJ4THV+iJa7Q6+OZhJQYUVb42Sad1Da3nySs02/kouRAIifLR0CKrdPLnK3pQ8ExUWBwo5xAZ6uK31Vde5eWVW7BIo5TL8ziPU5w6dTsfy5ctZtGgRWq2W1NRUFixYwMmTJ5t1HYFAIBD8jRBULczutGLsEkQYtET51C4PsOl0AXaHRKy/R60K3gB/JuQiAT0ivInwrbu8wN5KwTWgfe2dgzVRKOTEhfkAcDSloOEX0kASM4u58bXfmP7qb2QVVBAXbmD9Gzcw47qudQoHi83BE18dYN7q4wDMvK4D/51UfWy52cZjK+LZn1aMXqPgnWndiDnrXllsDt7emMTJvAr0agX/GR6D31k7Fx0OiR8PZ5NWVNmEuldorU0BZpuDbYkFWOwSvjoVfSLd501ll1hcRThjAj1qFeGsj8IKG2abhEwGgV7Kc5ZIOB/uvvtuDh48SLt27TAajXz55ZesXbtWhAAFAoGgBRCCqgWxOST2ZzhDLf3b+NQ5Zkui0zs1rH3dNaO2ViZPD+voviXM8UynB6x7VN1r1KRv+yAAPl93rEHjG0J6XhkPfbiJHg8s56e/klDIZTwx9Qp2vTuN3nFBdZ6TU2xi+rtb+XpbCjIZvHZjD2aP7VRNyBRVWHnw64McSHeKqXend6/Wasdic/D2hiQOZ5ahUcr5z/AYIs8SnpIk8UtCDsdzy1HIYHqPUII9q4fxbHYH25IKKLPY8VApGBTtW6tdUBUF5VYyCv9OQvfWNbzxcanJTpn57yT0mjsLW4L27dsTHx/PbbfdBsC2bdv47LPPKCoqavG1BQKB4J+EEFQtyPHcMiqsDrw0CjoE1PY+pRUaSS8yoZTL6NfGUOu4yWonvkqQ1VF3qorsYhMAoW48WDWZeUNPZDL4Ydtpvviz6aJKkiT+SsjizrfX0XnGl3z621Fsdgeje0fx1ztTeeG2fmjVdQuOnafyuO6Njew+XYC3TsmS+/tz21XVa1KlFxqZ8cV+jmWV4aNT8cFNPeh6lpgyWe28tSGJQ5mlaJRynhweQ7uzPFeSJPHb8TwOZZYik8GkbiG0qXGPHA6Jv1KKKKiwolbIGBzj63anXqnJRnJlEnqQl5pAr7pzwerCaHW4qqgbdAq3ie4tgVarZenSpSxbtgydTkd6ejoLFizg2LHmE9QCgUDwT6fhX68FjSY+01kLqEeod505NvvSnZ6lbqFe6OsQHqdzy50hKA8VUX51iyVJkjBZnCGchn5Id23rzz2jO/Ppb0f517sb2Hz4DHNnDMGzjoT3mjgcEodT8vnpr0S+2XSK05l/JzsP6RrGs7f0ZXCXunO9wOkNemf1ceb/dhyHBHEhXiy6tx8xNarGH0wv5snvj1BktBLirWHe9O60PSthv8xs43/rkziRW+4SU53OmkOSJH4/nufaXTm+c1CtWlIOSWJnahHZpWYUMhgU7Ye3m92HRoud0zkVSDhbw0T4aRqc+2S1O8g7KwndW3vhxNTZ3HrrrQwYMIDrr7+e48ePs3z5cvr378+IESNQKsVbgUAgEJwP4l20hTDZ7CTmVwDQJaTuopAuwRVe9267pDzn+bGBercf3jKZDJ1aSbnZhtHS8NyYefcOIdRPzyvL97Dsz+N8v/U0Q3uEc1W3cCICPAn29UBySJSbreQUGTmRXsSxtEL+Ssgiv9TkmkenVjJlSCz3XtfVbWivimNnSpj9xX4OJDvDnNP6R/HitG541hAxPx/M5H9/nMRql+gY4slbU7oScFaYrqDCwuvrEkkrMqFXK3hieAzta3im1hzLdfXoG9cpiO6h1csjSJLEnrRiMopNyGUwINoPfzcJ/Warg5PZFdgdoNcoiA5oePFOu0Mip9SKJIFGKTuvelPNQWxsLIcOHeL+++9n8eLF7Nixg9TUVKZOnYqvb+3G0AKBQCBoGEJQtRApBUbsEvh7qAjyrL313iFJnK4UTDV7+lWRU+rM1Qk11L8lP8RHy+nsMhJzyoiup6L32SgUcp6+sQ9DuoZx//yNnM4sZtWuFFbtSjnnuXqtkqu7hTNlSDvG9Ys+p2fLZHVWcf/g9xNY7RJeWiWv39yTCX2q18Gy2BzMXXeKlQeczYyvbh/A82M7ojvL85ZSaOTNPxMpqLBi0Cp5amRstTCewyHx89Ec4rOcYnVc5yB6htUtplILjciAfm18CXFTHsFqc3AiuxyrXUKrktMuqOE7+hyVYsrucO7oC/BUtaqYqkKtVrNo0SJGjRrFPffcw5kzZ1iwYAETJkygc+fOrW2eQCAQXJIIQdVCJBU6c23a1VFXCiCrxIzJ5kCtkBHuRjCVmpw5N97a+n9NPdr4cDq7jL2JBQzvGlLv2JoM6RpG/IKbiE/O57fdKRxIzCOrsILswgoUChkeahV+3hriwnyIC/ehb/sgrmgXWGf5g5pIksSaA5m8/MNhUiu9daO7h/DyjT0IrbHjMbWggmd+SuBEdhkyYMZVbbljQPU6UvvSi3l/SwpGq4Mwg4Ynh8VUqxpvsTv4IT6Lk3kVyGUwoUswXUOqe/8ctcSUj9v7b7U7OJFdgcUmoVbKiAv2QKloeHmE3DIrVruEXAZBXiq3jZVbi+nTp3PllVcybtw4jhw5wooVK7jyyisZNWqUCAEKBAJBIxHvmi1EerEJ0NDGz42gqvI+eWvdejxcWuIcn8PXdA7mh13pfPNXKjOv69joqtsymYzu0QF0jz532YWGsjexgFdXHmFn5S7FYIOWF6Z24/peYbWaFP96KIu5605htDow6JQ8P64TA86q2SVJEj8fzuGb/ZlIOD16j17TtlrpgwqLneUHzpBRYkZZ2Z+vfY0yFA6HM2cqo9jkElMRdZSygEoxlVWByepApZDRPljf4PvqrDVVWR4Bp5hqqBC70ERHR7N//34eeughFi5cyK5du0hLS2PKlCn4+9e981QgEAgEtRGCqoXIL7eg1WuIdOP9yK+sYxTo6T5cVlWYssJcf27U9b3CeOXHI2QXm1iw9iQPj+nQRKvPnz2n83n3txNsOOIsNqpRyblvRBwPjoqr1bA5t9TM67+dYFtl0+g+bXx4bmxHAs/yOlVY7CzcnsquVGdy+fA4f+68MrxaUc68cgvLD2RSaLSiU8mZ3iOUyBpCyWZ38FdyIdllFuQy6N/GlzB3nimb0zPlElMh+gbXmqpqeGys7NEX6KVqlrYyLYlKpWLBggWMGjWKO+64g8zMTBYuXMj48ePp2rVra5snEAgElwRCULUgXhr32+ONldXK69rdV0VV7lRaZfjQHRqVgv9M6MyjS/fx9qpj9Ivzp1+75vM2nQub3cH6I9ksXHfK5ZFSyGVM7R/FY9d1IKyGl84hSaw6lMV76xMpNdtQKWT8a0hbbrkyslpYLKXAyLxNyWSVmlHIZdzRN5yRHapfV2J+Bd/FZ2G2OfDRKbmxZxiBNZLLzTY7WxMLKTRaUchlDGzr67aljMXm9EyZbVViygNtI8RUYYWNCkulmPJUNvjci4FJkybRt29fxo4dy6FDh/juu+9ISkri2muvRaVqeIkIgUAg+CciBFULElBPGxirXQKoNxQUE+gUIieyy7A5JLfFJgGm9Itky7EcftiVzl0f7eC9O/swolvj8qkaS2peOd/tTOPrbSlkFjlFn0ohY0r/KB4YGVdngvypnDLe/OMkhypLRnQK8eK/13eoVvlckiR+P5bHV3vPYHVI+HuoeOTqttUqyUuVJQ/WncxHAiINWqb2CEVfQ8CWmm1sTSyg3GKvrDPlV62K+tmYrc4EdItNQqWQ0aGRnqnCClu1wp26C1hrqrmIjIxk7969PProo3zwwQfs3buX9PR0pk6dSkDAhRPpAoFAcKlx6Xx9rofXXnuNvn374uXlRVBQEBMnTuT48ePVxkiSxPPPP09YWBg6nY5rrrmGI0eOVBtjNpt56KGHCAgIQK/XM378eNLT05tsl5fGvV7VVIaBLDaH2zHtg73w0akoMdnYn1pU71oymYzXbuzJlbH+lBht3PnRDp779hDFFZYm2e6O9PwKPtuYyKS3tzDw2bXMXXWMzCIjvno1941ox/aXRvG/W3rVElPFRitv/XGS2z/by6H0EnQqOQ8NjeGT23tVE1MFFVbe+DORz3dnYHVIXBHhzWtjO1QTUxa7g5VHsllbKaa6h3pxa+/wWmIqt8zChpN5lFvs6NUKhrYLcCumjBY7x7PKXQnojRdTf1dB99Mr0WsuPTFVhVKpZP78+fz00094e3uTnZ3NwoULOXjwYGubJhAIBBctl4WHatOmTTz44IP07dsXm83GnDlzGDVqFEePHkWvd34Qv/nmm8ydO5clS5bQvn17Xn75ZUaOHMnx48fx8nLuBJs5cya//PILy5cvx9/fn1mzZjF27Fj27t2LQtH4D0gPNxW3AdeHf3HlTr66UMplXN0+gJ8OZvLdvjP0bVt/nSC9VsnXDw/k1ZVHWLQhkUUbEvlqWwoT+0Zw86C29IjyafCW/yqyi03sTSxgx8k8tp3I43hlo2dwJs0Pah/ItAFRXNcrrM4K4yarnRV7M1j2VxqlZue1XtM+gEdHxBLs/XcOkyRJbE0q5PNdGZRb7KgUMm6+IozRHQOqJbHnlln4Lj6LvHILMhmMigugb6ShVjmCpPwK9mUUI0ng66FiUFv3FdDLTDZO5TjrTGlVctoHe6BqRAL62Z4pP70Sz0tYTJ3NuHHjSEhIYNy4cezbt48ff/yR5ORkxowZg1pdfxNugUAg+KdxWQiq3377rdrPn332GUFBQezdu5errroKSZKYN28ec+bMYdKkSQB8/vnnBAcH89VXX3HvvfdSXFzMokWLWLZsGSNGjADgiy++IDIyknXr1jF69OhG21XfNvkQb2cOT1aJud45buwbzs8HM9l0Io9jWaV0DKm7CGgVGpWCF6Z25+rOwbzyw2GOZ5by9bYUvt6Wgo9exZWx/sQEeRLu50Ggtwa1Uo5CLsNosVNmspFXaiajoILU/AqOpheTW8M+hVxGnxg/RnYLYXyfCMLctLsxWe38eiiLJX+lklfm9JLFBel5ZFgsfWoIw/xyC4t2pLO/shBntJ+OBwa3IcKnuuA6lFnKmmO5WB0SnmpF3a1kJIn4M6WczCsHnE2p+0T5uA2XFpZbScozIknOop3tgnTVEt7rQ5IkCsptlFsuPzFVRVhYGLt27eKJJ57gnXfeYf/+/a4QYFBQ/YVcBQKB4J/EZSGoalJc7NwR5ufn3HqflJREVlYWo0aNco3RaDRcffXVbN++nf9v777Do6zy9oHfz/RJmUklBUIvgkgLLoLSJQrSpKnsKryWVRGVBcuL7qq4K6DLovuDVyd0UBGRKj2AGMAghkAgIQWBdBIS0iZt+vP7Y5KRQAIBkkwyuT/XNZebmZOZ7/FZmZtzznPOyy+/jJiYGJjN5mptgoOD0bNnT0RFRdUaqIxGI4zGP0KHXq+vsd2N2lQuOM8tNaG4wgxtLZtjdvBzR9j9rXDgfC7+uScZa2b0c0wX3sqI+wMwvEcrnLyYj6+PpeJQXA6KysyIOJdTp/qqSASgS5AGD3XxxcAufni4mz+8b7E2rMxowY7YbGz8LRP5ZfYgFaRV4a+D2yOsR6tqIdNiE7E/MQ9bztoXlcskAib1CsC4ngHVAlCF2Yq9SXlIuFpq/3fio8bE+wOqbZsA2Bef/5pWhLzKANcjwAPdAzxq3ExTFEXk6k3IrDzoWKuWoaO/us4jeFVbI1TdzefbzKf5bkUqleI///kPRo0ahWeeeQZ5eXlYsWIFnnjiCfTp06dJbFZKRORsLheoRFHE3Llz8cgjjzhu+c7JsYeIgICAam0DAgKQlpbmaKNQKG46fiMgIMDx+zVZtGgRFixYUONrxlusj/JUydDOW420wgqcyy7B4I61H378xohO+C2lEJfyyrBgVyIWjO8OeR1GUQRBwENd/PBQFz+YrTacSy/CmZRCZOSX4UphBQpKTTBbbTBbbFArZPBQyeDlLkeIrxta+7ihW5AGPdpooL7FnYhVsooqsCXmCn48l42yym0eAjVK/GVACMb3Drpp64D47BJsiM5CRpH9GJtu/u54cWBItVEpwH4X366EXOiNFkgEYGhHHwxq711tw0/APsr1a1ohKsz2YPZgiBata9ljShRFZBQYkFdSuXWFpxwhPqo6BwObKOJaqRkGs/3GAj8PWaMeduwsjz/+OBITEzFhwgT89ttv2LlzJ1JSUvDEE09Aqaz5rkkiopbC5QLV7Nmzce7cORw/fvym1278whRF8bZfordrM3/+fMydO9fxs16vR0hICAA41gzVJjREg7TCChy9VHDLQOXrrsA/x3fHm5vj8FPyNZRviceiJ++/o7vI5FIJQjv4ILRD7Z9zp8xWG45fzMeO2GycTCl0PN/O1w1/+VMbPN4z4Kbgl603YmNMFk5l2EfyPJRS/Dk0GEM6+VQLSUaLDYd+v4bTldOAPmo5JvYMuGlXc1EU8XteGeKySyBWvt+g9t61HnJssYq4nFeOEoM99LX2ViJAo7ijs/nySswwWe2bdvp5yqFuRlsj3KvAwECcOHEC7733Hj777DOcO3cOV65cwZQpUxAY2LB3lRIRNWUuFahef/11/Pjjjzh69CjatPnjnLiqP+hzcnIQFBTkeD43N9cxahUYGAiTyYTCwsJqo1S5ubkYNGhQrZ+pVCpr/dt5frn5lvUO6+yD7eeuIj67FBlFFTdtRnm9/u29sWRKT8zffh6/phTi+Q2n8XZYF/Rr63XLz6hvVpuIs5nFOJiYi8OJedBft6h+QAdvPNW/NR7q6HPTCFJBuRnbz+XgyO/5sIr2qcRR3fwwuVcgPG84Wuf3a2XYl5TnWLDfv40WIzv73jTKZbTYcCqjCNmV67zaaFUIDdHWOnpXYbLiUm45jBb7cTAd/NXwcqv7/koWa/XjZPw95XWafnU1EokEixcvxqOPPoqnnnoK165dw6pVq/D4448jNDSUU4BE1CK5RKASRRGvv/46tm/fjp9//hkdOnSo9nqHDh0QGBiIgwcPom/fvgAAk8mEyMhIfPrppwCA0NBQyOVyHDx4ENOmTQMAZGdnIz4+Hp999tld1ZVfZoLBYoWqlnPv/D2UeLCtFr+lF2NDdBbee7TTLb+MBnb0wfKne+PtrfFIuVaOWRvPIqxHKzz/cDu0r+XMwPpQarAgOq0QUZcKcPxiPgqvC4p+HgqM6RmACX2CapxiK64wY/f5XEQkX4Opcu+tPq01+EtoMFrfML1XarQg4sI1nK9cK+WlkmFcj1ZoX8PxPVdLjIhOL4LBYoNEAHoHa9DR163Wf3+FZWakXquATQQUMgGdWrnd0TSdyWJDXokZVhGQCs1jB/SG9uijjyIpKQkTJ05EVFQUdu/ejdTUVIwdOxYq1a0P9CYicjUuEahee+01bNy4ETt37oSnp6djzZNWq4VarYYgCJgzZw4WLlyILl26oEuXLli4cCHc3Nwwffp0R9sXXngB8+bNg6+vL3x8fPDWW2/hgQcecNz1dye81XJUAEgrNKDbDWfKXW96aDDOZOoRn12Kny8WYHiXW5+f1rO1BpteehC6oynYcSYbEQm5iEjIRd8QLR7t3goDO3oj+BYjXbcjiiJy9EYk55TiXFYxzmYWIym7BJVZCID9sObBXXzx2P0BCG3rVePdjNdKTdibmIfDF/4IUl383fBMv2B0D6i+R5XNJiI6sxiRlwpgtNrs5+y19cLQTj5Q3DDaZLGJiM/W4+I1+2HLGqUMf2rnBa9aFvWLoojMQiNy9faF6p4qKTr61/1OPgCoMNlwrdQMEfaNS/09mu7ZfI3N398fx44dw0cffYRPPvkE8fHxuHLlCqZOnVptNJiIyNW5RKD66quvAADDhg2r9vzatWsxc+ZMAMA777yDiooKzJo1C4WFhRgwYAAiIiIce1ABwOeffw6ZTIZp06ahoqICI0eOxLp16+5qD6oOPm5IKLIh4WrJLQNVgKcSk3sHYtOZbKw5mYkQbxU6+9XeHgC0ajnefawrxvcKwppf0vDLpXycySjGmQz73Y2tvVToGuCBTv7uCNaq4OOugFZtDwEyiQCLTYTRbEOJ0YL8UhOulRqRVWRARkEFLl8rqzaNV6WtjxoPdfDB4C6+6BuirTWQpOSXY19iHqJSCh0hrJOfG6b0DkTvYM+b94sqKMeB5GvIq7ojUKPEE/f5I0hz8whHfpkJ0RlFKK1c9N7R1w29gjW1bolgsthwOa/CsUg+QKNAa2/lHU1JlRisKCy3//tQyuxh6k738nJ1EokEH3/8MUaOHIkpU6Y4pgAfe+wxPPjgg5wCJKIWQRBFUbx9M6orvV4PrVaLxPSr+CFZD7lEwBuPtL/l9JJNFPH5zyk4laGHh0KKt0d2RNdbhLAb5eqN2H/+KqIuFSAuq7jaaNLdkEoEdPRzQ89gDXq10aJPiNZxrmBNzFYbotOLEZF0Dcl5ZY7n7w/0wPierfBA0M1BKq/UhMMXr+H3ypEmtVyCEZ180ae15qb1VxarDedzSh17S6nlEoS20SKwhtBVpajcjNRrBlhtleul/NTwcq/7eqkbN+x0V0jg4y5jOLiN/Px8TJ48GZGRkQCAHj16YNy4cVCr737UlIiaLrlcjrnvvAcAWPrZQpjNt1473JQZDAYsXrwYxcXF0Gg0d/z7LjFC1RQFaZQI9FQip8SIkxlFGN6p9qk8iSDg1YfbYeGhS7h0rRyfRFzE64Pbo39bbZ0+q5VGiecGtsVzA9ui1GBBQk4JLuaW4lJeGXJLjCgoM6PEYIHFZoPFKkIulUAll8BNIYWvuwI+7gq09lIhxMcNbX3U6OjnXqf1QWkF9jsUj14ucIwaSQVgQDsvjOnRCp38bl77VGwwI/JSAc5V3pUnEYDQNloM7egDdQ07mV8tMeJ0ZjHKTPb3b+utRp9gTa312Wwisor+mOJzU0jQwb/uBxwD9oX310rNMFrsyVSrlkKjkjJM1YGvry+OHDmCf/3rX1iwYAESEhIcU4CtW7d2dnlERA2GI1T1rGqEqri4GFkGCbacy4FcKuDVgW2hreVW/ioGsxX/PZqG2MqtAoZ28sH00GBoVE0n9+bojTiZVoRfUgode0gBgI+bHMM7+2BEVz/41HDnXInRgl9SCnH6uhG0bv7uGNHZt8ZDpA1mK85e0Ts+Qy2XoF8bbY1TgVUqTFak5FU4NttsVTnFd+OI162YLDbklZphtQECAN8WssdUQ4iKisKTTz6J3NxcSCQSjBo1Cg899BCDKZEL4QjVH5rON7ULus/fHSFaFTKKDdiXlIenegfd8stEJZdi3vAO+DYmC/sTryHyUgFiMooxqXcghnWueQSnodlEEZfzy3EmU4+YjGKkFf4RomQSAf3aaDC0sw/6BGtqXFtUVGHGibQinLmih9VmT1LtvNUY0dnXsVv8jZ936Vo5zueUwFLZvrOfG+4P9Kx1O4SqXc+zCo0QK+tq56e6oy0RAKDMaEVBmaXyPQA/D97Jdy8GDRqE5ORkTJ48GT/99BMOHDiA1NRUTJgwAW5uDXdXKhGRMzBQNSBBEDCmuz9WnczA79fKcSylEENusYEnYA8DMx5sg4HtvbHqRAYyigzYEJ2FLbHZGNbZFw939EYHH3WD/S3fZhORUWzAhdwynM8pwfmcUsd0HmCfors/0BMD2mkxoJ3XTce/VMkpMeLXtCKcv1qCylyEEK0Kwzr51LgNAmCf3jt7Re9YFO+tlqNvGw183Go/6sZotiH1WoWjRo1ahvZ+qjrtJF/Fvl7K6ngPlUyAr4f8lmcxUt14eXnh0KFD+PTTT/GPf/wDycnJCA8Px5QpUxwb4BIRuQIGqgbWykOJ0ff5Y3diHiIvF8DbTY4HbnPAMQB09XfHwrHdcOT3fOxLzEO23oi9iXnYm5iHVh4K9Ar2RFd/d3T2d0MrD+VdffmXm6y4ojfgSrERaQUVSC2sQEp+uWPKrIpaLkGvYA36ttGgX2vNTRtxVrFV7lr+W0YxUgsrHM939FHj4fbeaOddcxDUG8w4d6UEOSX2DToVUgE9gzS3DI6iaN+xPKvQAFvlRqFtvFXw85TfUdi0WO3rpaq2dtCopNCquV6qPgmCgP/93//FiBEjMGHCBOTk5GDt2rUYOXIkBg4cCImEo4BE1PwxUDWCvq21yCsz4WR6MXbGX4XFakPf1rdfcC6TCBjVzQ8ju/oiNkuPo5cKcCZTj9xSEw5dyMehC/kA7HflBXoq4OumgEYtg4dCCrlUArlUgE20L7I2WmwoM1lRarSgsMKM/DKzY6H3jVQyCTr7uaF7oAd6Bnqio59brVsTAPb1UWev6HE6S+/Y3VwQgB6tPPBQWy8E13KHYLnJioSrJUgtsIcvAUAnP3f0CPC45VSbwWRFWr7BMaLkoZSivZ8ayjs8AqbcZJ/is4n2en3duV6qIf3pT39CcnIynnrqKezfvx8HDx5EamoqJk6cCHf3ut/VSkTUFDFQNZJHu/jBaBERe0WP3Yl5uFZmxojOvnUaWZIIAvq10aJfGy0MZivisktwIbcMyXllSC2ogNkqIqvYiKxi4x3X5aWWIVijQoi3Cu191Ojg44YQL9Vt91qy2ET8fq0MZ6/YN9msurNBLZegb7AGoW20tW62aTBbkZxbhkv5ZY7pwGCNEg8Ea+BZyxQiYJ+OzCk2IqfY5LhDsLW3Cv53OColiiKKyq0oqQxkCqkAP27W2Sg0Gg327t2Lzz//HO+++y5+//136HQ6TJkyBe3atXN2eUREd42BqpFIBAFju/vDUynFsZRC/JpehNTCCozt3gpBmprPAqyJSi7Fg2298GDlGX42UUR+mRnZeiOKKsworrCg1GSBxSrCXLkHk1QiQCGVwF0hhbtCCm83OXzd5fB1U9zRiIzNJiK1sAKJuaVIuFoKg+WPqcEQLxX6BmvQI8Cj1vVLBrMVv+eV4WJ+uWOBup+7Ag8EecK3hjv9rldcYUFGvgHGys/UqmUI8VXd8Vl6ZqsN10otMFdO8XkqpfBy4xRfYxIEAXPnzsWwYcMwfvx4ZGVlYd26dRgxYgQefvhhTgESUbPEQNWIBEHAsE6+CPRUYldCLnJKjFj9Wwb6tdZgUHvvWkd0bkUiCPD3UMDf49aB5G6ZrTZcLqhAcq59Y83y69ZXeSql6Bnoid7BGvjfIhCVm6y4kFeGlPwyx5YJ3mo57g/0RICn4pZhxmi2IbPQgKLK3cplUgFtfVTwcruzTTZFUUSp0YaicotjdMvXXQY1p/icpl+/fkhKSsIzzzyD3bt34/Dhw0hNTcWTTz4JDw+P278BEVETwkDlBPe18kAbrQoHLlxDwtVSxGTpcfqKHj0DPDGgrRaBnnd2PEp9sokirpYYkVpYgUv55UgvMjhGkwD7lF73Vh7oEeCBdt7qW+7xVFRhxoW8MmQUVjimBL3VcnQP8ECQ5tZ9tFZO712tnN4D7PtKBXvd+QJ8q01EfpkFhsowqJIJ8PGQ33JdGDUODw8P/Pjjj1i+fDnmzZuHS5cuQafTYfLkyTcdck5E1JQxUDmJh1KGyQ8Eon+bChxLKUBKQQXickoQl1MCXzc5egR4oLOvG4I1t1/PdC/KTVZklxiRVWxAVrEBGcV/TKtV0apk6Obvjq7+7mjnpb5lPaIoIrvEiN/zypBXanI87++uQLcADwR43HpEShRF5JeacaXI+Me0nEqKEB/VXY0mlRntZ/FVZUIvNyk8lZzia0oEQcDrr7+OIUOGYPz48UhPT8eGDRswdOhQDBkyhFOARNQsMFA5WTtvNdp5t8YVvQG/phUhOa8M+eVmHEspxLGUQihlErTRqhDoqUSApwI+ajm83eRQyeoWLkRRhMkqosRoQVGFGUUGCwrKTLhWbkZuqdGxMPt6SpkEbb1U6ODjhk6+bvB1u/2ib4PZitSCClwuKEd55d2DAoDWWhW6tnK/5V5SVXXqDVZkFRgc2zYoZALaeN/59B5gH5UqKLM43ksuFeDrLuNGnU1Y7969kZCQgOeeew7btm3Dzz//jLS0NEyaNKnaIeZERE0RA1UDudMTfYI1Kkx6IBBGiw3JeaX2NUcFFTBYbLiUX45L+eXV2sskAtwVUqhkEsilEsf0lU0UYRVFmCwiTFb7VgkW261r8VbLEaxRoo1WhTZe9vBWl+NaRFHE1RITUgrKcUVvQFWX5VIBHXzc0NnPvU6L3suMFmQWGlFqqDwPUAIEaZXw1yju6NiYqprKTbZqo1LcW6r5cHd3x9atW6HT6TBnzhykpKRAp9Nh0qRJ6NSpk7PLIyKqFQNVAzmZVoihPTygrONIUhWlTIJeQRr0CtI41jNd0RuRrTcit8yIogqLIyQVGyworuP7KqQCvNRyaFUy+Lop4Osuh5+7AgEeyju6U04U7Z+bVliBjMKKanf6ebvJ0cnXDSFe6jqtcyozWpFdZERxReXeVQD8NQoEaRWQ3cFO51UsVhEF5WYYzPYkxVGp5uuVV17B4MGDMXbsWKSmpuLrr7/G4MGDMWzYMEilvJGAiJoeBqoGklNiQkTyNdwf6HnXR8VIBAFBGtVNBwKbKjfpLDdbUWG2h6uqUShBAKSCAKVMAoVUAje5FO5KKRR3EVCqVIWorGIDMosqqk0TKqQC2nqr0d7Hrc53Kd4YpADA10OOYC/lXYUfURRRYrCiuMLqWMCuVUuhUXFUqjm7//77kZCQgJkzZ2Lz5s04duwY0tPTMXny5Ls6uJSIqCExUDUQT5UMRosNpzOLcelaGe4P8kRQPd29p5BJoJBJ4I0732ahrmw2EXllJmTrDcjWG6vtqi4RgCCNCu281fbpwTqMRomiiFKDFTnFRugNf7yXj7scQV4KqO7y4GeD2T69V7WAXSkT4OMuu6Oz/KjpUqvV+P777/HYY49h1qxZSEtLg06nw5NPPokuXbo4uzwiIgcGqgYyvJMv8swyJFwtQbHBgqiUQngqpejs54623uom94VvXxRuQV6pCVdLjcgrNVVbeyURgABPJdp4qRCsqfvhw/ZdyS24qjeh7LqRLV93OQLvIUhZbSIKyy0oN9kc9Xm5yeCukHBUygU9//zzGDRoEMaNG4eLFy/i22+/xcMPP4wRI0ZwCpCImgQGqgYikQjo4m8PT8m5pbicX44SoxVnsvQ4e0WPYI0KwVoVAjzvbA1TfbFYbfYz/crNyC8zIb/M5DgguIpSJkGQRokgjQoBHne2rsliFZFfakJuiQkmS+V0JAA/TzkCNMo7PnevSk3Te+5KCbzUsrs6IJqaj/vuuw9xcXF46aWX8M033+CXX35xTAF6eXk5uzwiauEYqBqYUiZBr2ANugd4ILWgAin55dAbLcgsNiCz2ADAfpdd1VEwWrUcHkrpHd/dVhtL5Z1+JUYL9EYL9AYLiivMNW6XIJUI8HWTo5WnEgEeSnip73y7ggqTFXklJuSXmh132UklAvw95WjlqYD8LsOjKIqV03t/3LWokArwdpc5JZCSc6hUKnz99dcYNWoUXnnlFWRkZCA8PBwTJ05Et27dnF0eEbVgDFSNRC6VoIu/Ozr7uaGowoLMogrklBhRbLCgsMKMwgozLsK+NYIgAB4KKdRyKdwUUscCc7lUAqkAR9gSYQ8aVYvSTVYbTBYbDBYbKsxWVJhtN23SeT2VTAJfdwV83eTwdVfA201+V0HOZhNRWG5GXom52rSeSi5BK439jsJ72ZzUZLGvkzJWjnRxeo+ee+45DBo0CGPHjkVycjK+++47DBw4ECNHjoRMxj/WiKjx8U+eRiYIArzd7JtzPgCgwmxFXqkJBeUm5JeboTdYYLWJKDFaaxxFuhsKqQB3pQwapQyeKhm8VDJ4qeV3vX4JsAe5MqMVBWVmFJSacf1soZebDP6eCnje4112FquI4goLykzXnR9YuadUfY3gUfPVuXNnnDt3Dq+88grWrl2LEydOID09HVOmTIG3t7ezyyOiFoaBysnUcinaeqvR1lsNoHJjSrMVpUb7lgjlJqt95Mkqwmy1wSbCcbaeIAASAFKpAJlEAoVUgEImgVIqgVohhVvlCNe9bJlwI4PZisIyC/JLzdVGvxQyAX4eCvh5yO96Wq+K1WbfNb3kursB3RT2dVIyKYMU/UGhUGDNmjUICwvDCy+8gKysLOh0OkyYMAE9evRwdnlE1IIwUDUxgiDAXSGDu6LpXBqD2YqiMgsKy82Ou+qAqqk3OXw95Pc8GgXYpw6rglTVgJdSJsDLjeuk6NaefvppDBgwAGPHjkVCQgI2b96MP/3pTwgLC+MUIBE1Cv5JQzepOr6lqNyMonILDObq67A0Kil8POTwcpPXy511tso79/QGq+P4GoVUgFYtg0oucJ0U1UmHDh0QGxuL2bNnY8WKFfjtt9+QkZGBKVOmwNfX19nlEZGLY6AiAPaF3yUGC/QVFugrbj7/T6OSwstdDi+3+ts002qzB6kSo7XaOYBatRRqORec052Ty+UIDw9HWFgYZs6ciezsbISHh2P8+PHo2bOns8sjIhfGQNVA7vRw5MYkiiLMVvvO5SVGC0oN1ptGoSQCoFHL4OUmg1Ytr9e1S5bKIFV63dSeTGIPUm68c4/qweTJk/GnP/0JY8eOxblz57Blyxakpqbiscceg1zecCcMEFHLxUDVQOIyS9DapIBGLYWnynkH9IqiCItVRLnJinKTDeUmK8qMVsdRLddzU0igUcugUcvgoaz/c/Dso2DWanftcUSKGkpISAhiYmIwZ84cfPnllzh16hQyMjIwdepU+Pn5Obs8InIxDFQNxGqDfUuBMjMA+11w7gop3JRSqOQSqORSKGX1tz7IahNhstj3nTJabDCabTCYbagw2W6avqvippDAQyWDp1IKD1XD3EEniiKMFvti8+tHwZQyARqV/d8FgxQ1FJlMhuXLlyMsLAzPPvssrl69ivDwcIwbNw69evVydnlE5EIYqBpI5wA3iDIFSgz28+ZMFhEmiwWF5ZZq7eSVWx3IJAJkUgFSiQBJ5eadAmA/r0W0b+JpE0XYbIC1ctTJarNP3VVtp3ArSpkE7kr7lJr9n9J72mzzdmyiiDKjfUTq+kCnlkugUUnv+ugZorsxfvx4JCQkYNy4cThz5gy2bduGlJQUjB49GgqFwtnlEZELaJRAVVhYiF27duG5555rjI9rEjxVMmg0KgD20aMyo31PqXKjfaTGYLZBBCoDUf1s4CmVwL4PlUxSOQpmHwlTyyUNGp6uZ7baUGKwH3dTtYxMgP28PU+VtMkdCk0tR+vWrREdHY23334bX3zxBc6cOYPMzExMnToVrVq1cnZ5RNTMNUqgSk9Px//8z/+0qEB1PalEcKxNqlK1tslktU/VWWz2n22iCKvNPsJjb2ffwFOA/Z/2ESzBMaIlkwiQywT7sTROOhzYVrnNQqnR6jgIGbAvNPdUSeGulHBnc2oSpFIpli5dilGjRmH69OnIy8vDypUrMWbMGPTt29fZ5RFRM1YvgSo9Pf2Wr1+5cqU+PsalCEJlEJIB7sq7PwLGWURRhMkiosxkX2R+/U2NarkEHkop95CiJmv06NFITEzE+PHjER0djZ07dyI1NRVjxoyBUql0dnlE1AzVS6Bq3779Lb84RVHkF6uLMFttKDPa7xa8/txlmcQeDD2UUqeNlBHdicDAQPz666+YP38+/v3vf+Ps2bPIysrC1KlTERAQ4OzyiKiZqZdA5e3tjYULF2LYsGE1vp6YmIjJkyfXx0eRE1y/7YLpuu0WBABqhX00qj7vWCRqLBKJBJ9++ilGjRqFadOm4dq1a1i5ciVGjx6Nfv368f/TRFRn9RKoQkNDkZeXh27dutX4usFgaNIbXdLNzFZb5b5Vtpv2rFLJ7VtAqBVcG0Wu4dFHH0VSUhImTpyIEydOYNeuXUhJScG4ceM4BUhEdVIvt1y9+uqraN++fa2vt23bFmvXrq2Pj6IGIooiKsw2FJZZcKXIhOxiM4or/tgAVCkT4O0mQ2svBVp5KuCulDJMkUtp1aoVjh8/jr///e+QSCSIj49HeHg4srOznV0aETUDdQ5UFy9erPW1J598En/5y19qfd3b2xszZsy4s8ru0NGjRzFu3DgEBwdDEATs2LGj2uuiKOKjjz5CcHAw1Go1hg0bhvPnz1drYzQa8frrr8PPzw/u7u4YP348MjMzG7RuZ7EfP2PfJyqvxIzMQhPySswoMf6xb5RKLsCnMkQFaBTwVHF9FLk2iUSCf/7znzh8+DB8fX1RUFCAVatW4bfffuMoOxHdUp0DVdeuXeHl5YVhw4Zh3rx5+Pbbb5GYmNhk/pApKytD7969sXz58hpf/+yzz7B06VIsX74c0dHRCAwMxKhRo1BSUuJoM2fOHGzfvh2bNm3C8ePHUVpairFjx8JaT/tEOZP9rjx7gLpWanaMQhWWW1BRuSeWVADcFRL4ecjQxts+EuXBEEUt0LBhw5CUlIQhQ4bAarVi7969+OGHH2AwGJxdGhE1UYJYx0QkkdiPCKlqXrVY083NDb1790a/fv3Qr18/hIaGokePHpBKnbcVgCAI2L59OyZOnAjAHiaCg4MxZ84cvPvuuwDso1EBAQH49NNP8fLLL6O4uBj+/v74+uuv8dRTTwGwb/cQEhKCvXv34rHHHqvTZ+v1emi1WhQXF0Oj0TRI/+rij6NoRJis9n/WdKWVMgEquQRquQRyKReWE11PFEX885//xMcffwyr1QovLy9MnToVrVu3dnZpRE2CXC7H3HfeAwAs/WwhzGazkyu6ewaDAYsXL77r7+86L0r38fFBcXExxowZgyeffBKpqamIiYnB6dOnERUVhaioKMeXsVKpxAMPPIDQ0FB8+eWXd1xUfUtJSUFOTg7CwsIczymVSgwdOhRRUVF4+eWXERMTA7PZXK1NcHAwevbsiaioqFoDldFohNFodPys1+sbriM1sFUdP2MTYbbYp/FMVrHGo2gE2AOUUm7fTV0hE7gOiugWBEHABx98gJEjR2LSpEnIzc3F6tWrERYWhgEDBvAvIETkcEdrqF555RXs3bsX8+bNg7+/P3bu3ImsrCxkZ2dj9+7dWLBgAcaPHw9/f39ER0cjPDy8IWuvs5ycHAC4aW+ZgIAAx2s5OTlQKBTw9vautU1NFi1aBK1W63iEhIQAAAxmm/2MPZt4V9OiomjfNd1iFWG02Pd9KjFYUVRuwbVSM3L0JmQWGpFZZMLVEjMKyiwoMVphsPwRpmQSAe4KCbzdZAjUyO3TeBoFtGoZVHLeoUdUVw8//DCSk5MxYsQI2Gw27N+/H99//z0qKiqcXRoRNRF1HqHy8vLCsmXL8PLLL2POnDl4/fXXodPp8MUXX2DkyJEYM2YMxowZ42ifn5+PmJiYBin6bt34t8m6bDh6uzbz58/H3LlzHT/r9XqEhIQgr8QMg/DH0KdEsB8dUxViHAcfA47Dj0UREGGfmrvdYcfXkwr2Q5blUknlMTT2BwMTUf3x8vLCoUOH8Omnn+If//gHkpKSkJ2djSlTpjj+IkVELdcdb5vQs2dPHDp0CFu2bEFZWRnCwsIwadIkpKSkVGvn6+tbbfrMmQIDAwHgppGm3Nxcx6hVYGAgTCYTCgsLa21TE6VSCY1GU+0B2EeHro8zNhGw2qoOQ646w6/yUfmcxVZ1jl/1z5BKAIVUqDzSRQIvtRR+Hn+MOrX2VqKVRgFvd1nlJpscfSJqCIIg4H//939x/PhxBAYGori4GGvXrsUvv/wCm812+zcgIpd11/tQTZo0CUlJSfj4449x8OBB9OjRA++//z7Kysrqs7560aFDBwQGBuLgwYOO50wmEyIjIzFo0CAA9s1J5XJ5tTbZ2dmIj493tLkTQV4KhPgoEeKtQLCXAkFaOQI0crTylMPfQwa/Gx7+HvbXAjRyBGnlCNYq0MZbgRBvBVp7KRGoVcDfUw4fdzk0ahncFFIoGJyInGLAgAFITk5GWFgYbDYbDh48iO+++w7l5eXOLo2InOSeNvZUKBR4//33kZycjMmTJ2PRokXo1q3bTfs7NYbS0lLExsYiNjYWgH0hemxsLNLT0yEIAubMmYOFCxdi+/btiI+Px8yZM+Hm5obp06cDALRaLV544QXMmzcPhw8fxpkzZ/CXv/wFDzzwAB599NG7rksQBMgk9uk4pUxiv6NOIYXbDQ+1wv6aUiaBXCqBrHLKjoteiZomjUaD/fv3Y8mSJZDJZPj999+h0+mQlpbm7NKIyAnu6eiZzMxMxMXFIS4uDoIgwNvbG9nZ2bh06RLuv//++qqxTk6dOoXhw4c7fq5a1zRjxgysW7cO77zzDioqKjBr1iwUFhZiwIABiIiIgKenp+N3Pv/8c8hkMkybNg0VFRUYOXIk1q1b59QtIIio6RIEAfPmzcPQoUMxceJEZGVlYd26dRgxYgQefvhhSCT1chgFETUDdd6H6pdffnGEp6qHXq933MHm7++P3r17o0+fPnjttdfQrl27Bi28qWoq+1ARUeMqKSnBM888gz179gAAOnXqhCeffBIeHh5Oroyo4XAfqj/UeYRq8ODBEAQBEokEHTt2RFhYGPr06YM+ffqgd+/eCA4OvuMPJyJyFZ6enti1axeWL1+OefPm4dKlS9DpdJgyZcotzzolItdwR1N+MpkMo0ePxpAhQxw7o3MUhojIThAEvP766xg8eDDGjx+PjIwMrF+/HkOHDsWQIUM4BUjkwuocqHr27ImkpCT8+OOP2LVrl+P5jh07Oo6cqQpZPj4+DVIsEVFz0KdPHyQmJuLZZ5/F9u3b8fPPPyMtLQ2TJk2qtm6TiFxHnQPVuXPnYDQacfbsWZw+fdpx7Ex8fDwuXbqEH374wXFHWtu2bR0h67333muw4omImip3d3ds27YNOp0Ob775JlJSUqDT6TBp0iR06tTJ2eURUT2r86L02pjNZpw7d65ayIqLi4PRaIQgCLBarfVVa7PARelEdKPz589j7NixSE1NBQAMGTIEQ4cO5R3E1OxxUfof7mnbBMD+LzM0NBShoaF46aWXAAAWiwXnz59vckfPEBE5w/3334+EhATMmDEDP/zwA44ePYq0tDRMnjyZf/EichENskJSJpOhd+/eeP755xvi7YmImh21Wo3Nmzdj1apVUCqVSEtLg06nw++//+7s0oioHvCWEyKiRvTCCy8gNjYWnTp1Qnl5Ob799lscOnSoxS2PIHI1DFRERI3svvvuQ3x8PP785z8DAI4fP45169ahuLjYyZUR0d1ioCIicgKVSoVvvvkG69evh1qtRkZGBnQ6HZKTk51dGhHdBQYqIiIneu6553Du3Dl069YNFRUV+O6773DgwAFYLBZnl0ZEd4CBiojIyTp37oyzZ89i5syZAIATJ05g7dq1KCwsdG5hRFRnDFRERE2AUqnE2rVr8d1338HNzQ1ZWVkIDw9HYmKis0sjojpgoCIiakKefvppxMfHo0ePHjAYDPj++++xd+9eTgESNXEMVERETUyHDh0QGxvr2Cz5t99+w+rVq1FQUODkyoioNgxURERNkFwux4oVK7BlyxZ4eHggOzsb4eHhOH/+vLNLI6IaMFARETVhkydPRkJCAh544AEYjUb88MMP2L17d7M+M43IFTFQERE1cSEhITh9+jRee+01AMCpU6ewatUqXLt2zcmVEVEVBioiomZAJpNh+fLl2LFjBzw9PXH16lWsWLEC586dc3ZpRAQGKiKiZmXChAlITExE3759YTKZsG3bNuzcuRMmk8nZpRG1aAxURETNTOvWrREdHY05c+ZAEAScOXMGq1atQl5enrNLI2qxGKiIiJohqVSKzz//HLt374ZWq0Vubi5WrFiB2NhYZ5dG1CIxUBERNWNjxoxBUlISHnzwQZjNZuzYsQPbt2/nFCBRI2OgIiJq5gIDA3HixAm8/fbbEAQBZ8+exYoVK3D16lVnl0bUYjBQERG5AKlUis8++wwHDhyAt7c3rl27hpUrVyImJgaiKDq7PCKXx0BFRORCRo0ahaSkJAwcOBAWiwW7du3Ctm3bYDQanV0akUtjoCIicjGtWrXC8ePH8f7770MikSAuLg7h4eHIzs52dmlELouBiojIBUkkEvzrX//CoUOH4Ovri4KCAqxatQrR0dGcAiRqAAxUREQubPjw4UhKSsLgwYNhtVqxZ88e/PDDDzAYDM4ujcilMFAREbk4Pz8/REZG4qOPPoJEIkFCQgLCw8ORlZXl7NKIXAYDFRFRCyAIAj788ENERkbC398fhYWFWL16NX799VdOARLVAwYqIqIW5JFHHkFycjJGjBgBm82G/fv34/vvv0dFRYWzSyNq1hioiIhaGG9vbxw6dAgLFy6ETCZDUlISdDodMjMznV0aUbPFQEVE1AIJgoD58+fj+PHjCAgIQHFxMdasWYOoqChOARLdBQYqIqIWbMCAAUhOTkZYWBhsNhsiIiLw3Xffoby83NmlETUrDFQ1+PLLL9GhQweoVCqEhobi2LFjzi6JiKjBaLVa7N+/H//+978hk8lw4cIF6HQ6pKenO7s0omaDgeoG33//PebMmYP3338fZ86cweDBgzF69Gj+wUJELk0QBLz11luIiopCcHAw9Ho91q5di2PHjsFmszm7PKImj4HqBkuXLsULL7yAF198Ed27d8cXX3yBkJAQfPXVV84ujYiowT344INISkrCmDFjIIoiDh8+jI0bN6KsrMzZpRE1aQxU1zGZTIiJiUFYWFi158PCwhAVFVXj7xiNRuj1+moPIqLmzNPTE7t378Z///tfyOVyXLx4ETqdDqmpqc4ujajJYqC6zrVr12C1WhEQEFDt+YCAAOTk5NT4O4sWLYJWq3U8QkJCGqNUIqIGJQgC3njjDfz2228ICQlBSUkJ1q9fj8jISE4BEtWAgaoGgiBU+1kUxZueqzJ//nwUFxc7HhkZGY1RIhFRo+jTpw8SExMxceJEiKKII0eO4Ouvv0ZJSYmzSyNqUhioruPn5wepVHrTaFRubu5No1ZVlEolNBpNtQcRkStxd3fH9u3b8eWXX0KhUCAlJQU6nQ6XL192dmlETQYD1XUUCgVCQ0Nx8ODBas8fPHgQgwYNclJVRERNw6uvvoqYmBi0b98eZWVl2LBhA3766SdOARKBgeomc+fOxapVq7BmzRokJibib3/7G9LT0/HKK684uzQiIqfr2bMnEhISMHXqVADA0aNHsX79et6QQy0eA9UNnnrqKXzxxRf4+OOP0adPHxw9ehR79+5Fu3btnF0aEVGToFarsXnzZqxcuRJKpRJpaWnQ6XS4ePGis0sjchoGqhrMmjULqampMBqNiImJwZAhQ5xdEhFRk/Piiy/izJkz6NixI8rLy/HNN9/g0KFDsFqtzi6NqNExUBER0V3r3r07zp8/j+nTpwMAjh8/jnXr1qG4uNjJlRE1LgYqIiK6JyqVCt9++y3WrVsHtVqNjIwM6HQ6XLhwwdmlETUaBioiIqoXM2bMwNmzZ9G1a1dUVFRg48aNOHDgACwWi7NLI2pwDFRERFRvunTpgnPnzmHGjBkAgBMnTmDt2rUoLCx0cmVEDYuBioiI6pVSqcS6deuwceNGuLm5ISsrC+Hh4UhMTHR2aUQNhoGKiIgaxDPPPIO4uDh0794dBoMB33//Pfbt28cpQHJJDFRERNRgOnbsiNjYWLz44osAgJMnT2L16tUoKChwcmVE9YuBioiIGpRCocDKlSuxefNmuLu7Izs7G+Hh4Th//ryzSyOqNwxURETUKKZOnYqEhAQ88MADMBqN+OGHH7B7926YzWZnl0Z0zxioiIio0bRt2xYxMTGYNWsWAODUqVNYvXo18vPznVwZ0b1hoCIiokYll8vxf//3f9ixYwc8PT2Rk5OD8PBwxMXFObs0orvGQEVERE4xYcIEJCYmok+fPjCZTNi6dSt+/PFHTgFSs8RARURETtO6dWtER0fjzTffhCAIOH36NFauXIm8vDxnl0Z0RxioiIjIqWQyGb744gvs2rULWq0Wubm5WLFiBWJjY51dGlGdMVAREVGT8MQTTyAxMRH9+/eH2WzGjh07sH37dphMJmeXRnRbDFRERNRkBAUF4ddff8Vbb70FQRBw9uxZrFixAlevXnV2aUS3xEBFRERNilQqxb///W8cOHAA3t7euHbtGlauXInTp09DFEVnl0dUIwYqIiJqkkaNGoWkpCQ89NBDsFgs+PHHH7Ft2zYYjUZnl0Z0EwYqIiJqslq1aoVffvkF8+fPh0QiQVxcHFasWIGcnBxnl0ZUDQMVERE1aRKJBAsXLsShQ4fg6+uL/Px8rFy5EtHR0ZwCpCaDgYqIiJqF4cOHIykpCYMHD4bVasWePXuwZcsWGAwGZ5dGxEBFRETNh5+fHyIjI/Hhhx9CIpHg/PnzCA8Px5UrV5xdGrVwDFRERNSsCIKAjz76CD///DP8/f1RWFiI1atX4+TJk5wCJKdhoCIiomZp8ODBSEpKwvDhw2G1WrFv3z58//33qKiocHZp1AIxUBERUbPl4+ODw4cP41//+hekUimSkpIQHh6OzMxMZ5dGLQwDFRERNWuCIOD999/HsWPHEBAQgKKiIqxZswZRUVGcAqRGw0BFREQuYeDAgUhOTsaoUaNgs9kQERGB7777DuXl5c4ujVoABioiInIZWq0WBw4cwGeffQaZTIYLFy5Ap9MhPT3d2aWRi2OgIiIilyIIAt5++21ERUUhODgYer0ea9euxfHjx2Gz2ZxdHrkoBioiInJJDz74IJKSkjBmzBiIoohDhw5h48aNKCsrc3Zp5IIYqIiIyGV5enpi9+7d+OKLLyCXy3Hx4kXodDqkpqY6uzRyMQxURETk0gRBwJtvvomTJ0+iTZs2KCkpwfr16xEZGckpQKo3DFRERNQi9O3bF0lJSZgwYQJEUcSRI0fw9ddfo7S01NmlkQtgoCIiohbD3d0dO3bswP/93/9BoVAgJSUFX331FS5fvuzs0qiZY6AiIqIWZ9asWTh16hTat2+PsrIybNiwAUeOHOEUIN01lwhUn3zyCQYNGgQ3Nzd4eXnV2CY9PR3jxo2Du7s7/Pz88MYbb8BkMlVrExcXh6FDh0KtVqN169b4+OOPucsuEZGLeuCBB3D+/HlMnToVABAZGYkNGzZAr9c7uTJqjlwiUJlMJkydOhWvvvpqja9brVY88cQTKCsrw/Hjx7Fp0yZs3boV8+bNc7TR6/UYNWoUgoODER0djWXLlmHJkiVYunRpY3WDiIgamZubGzZv3owVK1ZAqVQiNTUVOp0OFy9edHZp1MzInF1AfViwYAEAYN26dTW+HhERgYSEBGRkZCA4OBgA8J///AczZ87EJ598Ao1Gg2+//RYGgwHr1q2DUqlEz549ceHCBSxduhRz586FIAiN1R0iImpkL730Eh555BGMHTsWly9fxjfffINHHnkEw4cPh1QqdXZ51Ay4xAjV7Zw4cQI9e/Z0hCkAeOyxx2A0GhETE+NoM3ToUCiVymptrly5csv9SoxGI/R6fbUHERE1P927d8f58+cxffp0AMDx48exfv16FBcXO7kyag5aRKDKyclBQEBAtee8vb2hUCiQk5NTa5uqn6va1GTRokXQarWOR0hISD1XT0REjUWlUuHbb7/F2rVroVKpkJ6eDp1OhwsXLji7NGrimmyg+uijjyAIwi0fp06dqvP71TRlJ4pitedvbFO1IP1W033z589HcXGx45GRkVHnmoiIqGmaOXMmzp07h65du6KiogIbN25EREQErFars0ujJqrJrqGaPXs2nn766Vu2ad++fZ3eKzAwECdPnqz2XGFhIcxms2MUKjAw8KaRqNzcXAC4aeTqekqlsto0IRERuYYuXbrg3Llz+Otf/4oNGzYgKioK6enpmDJlSq13lFPL1WRHqPz8/HDffffd8qFSqer0XgMHDkR8fDyys7Mdz0VERECpVCI0NNTR5ujRo9W2UoiIiEBwcHCdgxsREbkWpVKJ9evX49tvv4WbmxsyMzOh0+mQmJjo7NKoiWmygepOpKenIzY2Funp6bBarYiNjUVsbKzjOIGwsDD06NEDzz77LM6cOYPDhw/jrbfewksvvQSNRgMAmD59OpRKJWbOnIn4+Hhs374dCxcu5B1+RESE6dOnIy4uDvfddx8MBgO+//577Nu3DxaLxdmlURPhEoHqgw8+QN++ffHhhx+itLQUffv2Rd++fR1rrKRSKfbs2QOVSoWHH34Y06ZNw8SJE7FkyRLHe2i1Whw8eBCZmZno378/Zs2ahblz52Lu3LnO6hYRETUhHTt2xNmzZ/Hiiy8CAE6ePIk1a9agoKDAyZVRUyCI3Aq8Xun1emi1WhQXFztGv4iIyLVs3rwZzz//PMrKyqBUKjF+/Hjcf//9zi6r0cnlcsx95z0AwNLPFsJsNju5ortnMBiwePHiu/7+dokRKiIiosY0bdo0JCQkoGfPnjAajfjhhx+wZ8+eZh0o6N4wUBEREd2Ftm3b4vTp045jz6Kjo7F69Wrk5+c7uTJyBgYqIiKiuySXy/Hll19i+/bt8PT0RE5ODsLDwxEXF+fs0qiRMVARERHdo4kTJyIhIQF9+vSByWTC1q1b8eOPP3IKsAVhoCIiIqoHbdq0QXR0NN544w0IgoDTp09j5cqVyMvLc3Zp1AgYqIiIiOqJTCbDf//7X+zatQtarRa5ublYsWIFYmNjnV0aNTAGKiIionr2xBNPIDExEaGhoTCbzdixYwd27NhR7TQOci0MVERERA0gKCgIJ0+exLx58yAIAmJjY7Fy5UrHObHkWhioiIiIGohUKsWSJUuwf/9+eHt7Iy8vDytWrMDp06fBfbVdCwMVERFRAwsLC0NiYiIGDBgAi8WCH3/8Edu2bYPRaHR2aVRPGKiIiIgaQUBAAKKiojB//nxIJBLExcVhxYoVyMnJcXZpVA8YqIiIiBqJRCLBwoULcfDgQfj6+iI/Px8rV67EqVOnOAXYzDFQERERNbIRI0YgMTERjzzyCKxWK3bv3o0tW7bAYDA4uzS6SwxURERETuDv74/IyEh88MEHkEgkOH/+PMLDw3HlyhVnl0Z3gYGKiIjISSQSCRYsWICff/4Z/v7+KCwsxOrVq3Hy5ElOATYzDFRERERONnjwYCQlJWHYsGGwWq3Yt28fNm/ejIqKCmeXRnXEQEVERNQE+Pj44KeffsI///lPSKVSJCYmIjw8HJmZmc4ujeqAgYqIiKiJEAQBf//733Hs2DEEBASgqKgIa9asQVRUFKcAmzgGKiIioiZm4MCBSE5OxqOPPgqbzYaIiAh89913KC8vd3ZpVAsGKiIioiZIq9UiIiICn332GWQyGS5cuACdTof09HRnl0Y1YKAiIiJqogRBwNtvv42oqCgEBwdDr9dj7dq1OH78OGw2m7PLo+swUBERETVxDz74IJKSkjB69GiIoohDhw5h48aNKCsrc3ZpVImBioiIqBnw9PTEnj17sHTpUsjlcly8eBE6nQ6pqanOLo3AQEVERNRsCIKAv/3tbzh58iTatGmDkpISrF+/HkePHuUUoJMxUBERETUzffv2RWJiIsaPHw9RFPHTTz/hm2++QWlpqbNLa7EYqIiIiJohDw8P7Ny5E8uXL4dCocDly5eh0+lw+fJlZ5fWIjFQERERNWOvvfYaoqOj0a5dO5SWlmLDhg04cuQIpwAbGQMVERFRM9erVy8kJCRg8uTJAIDIyEhs2LABer3eyZW1HAxURERELsDNzQ1btmxBeHg4lEolUlNTodPpcPHiRWeX1iIwUBEREbmQv/71rzhz5gw6duyI8vJyfPPNNzh8+DCsVquzS3NpDFREREQupnv37oiPj8fTTz8NADh27BjWr1+P4uJiJ1fmuhioiIiIXJBarcZ3332HtWvXQqVSIT09HTqdDhcuXHB2aS6JgYqIiMiFzZw5E2fPnkWXLl1QUVGBjRs3IiIiglOA9YyBioiIyMV17doVcXFxeO655wAAUVFRWLt2LYqKipxbmAthoCIiImoBlEol1q9fj2+++QZqtRqZmZnQ6XRISkpydmkuodkHqtTUVLzwwgvo0KED1Go1OnXqhA8//BAmk6lau/T0dIwbNw7u7u7w8/PDG2+8cVObuLg4DB06FGq1Gq1bt8bHH38MURQbsztEREQN6s9//jPi4uLQrVs3GAwGbNq0Cfv27YPFYnF2ac2azNkF3KukpCTYbDaEh4ejc+fOiI+Px0svvYSysjIsWbIEAGC1WvHEE0/A398fx48fR35+PmbMmAFRFLFs2TIAgF6vx6hRozB8+HBER0fjwoULmDlzJtzd3TFv3jxndpGIiKhederUCefOncOsWbOwevVqnDx5EhkZGZgyZQp8fHycXV6zJIguOATz73//G1999ZXjPKN9+/Zh7NixyMjIQHBwMABg06ZNmDlzJnJzc6HRaPDVV19h/vz5uHr1KpRKJQBg8eLFWLZsGTIzMyEIQp0+W6/XQ6vVori4GBqNpmE6SEREVE82b96M559/HmVlZVAqlZgwYQJ69OhRp9+Vy+WY+857AIClny2E2WxuyFIblMFgwOLFi+/6+7vZT/nVpLi4uFrCPnHiBHr27OkIUwDw2GOPwWg0IiYmxtFm6NChjjBV1ebKlStITU2t9bOMRiP0en21BxERUXMxbdo0xMfHo2fPnjAajdi8eTP27NnTrMORM7hcoLp06RKWLVuGV155xfFcTk4OAgICqrXz9vaGQqFATk5OrW2qfq5qU5NFixZBq9U6HiEhIfXVFSIiokbRvn17nD592vHdGR0djdWrVyM/P9/JlTUfTTZQffTRRxAE4ZaPU6dOVfudK1eu4PHHH8fUqVPx4osvVnutpik7URSrPX9jm6rZ0FtN982fPx/FxcWOR0ZGxh33lYiIyNnkcjm++uorbNu2DZ6ensjJyUF4eDji4uKcXVqz0GQXpc+ePduxZX5t2rdv7/jfV65cwfDhwzFw4ECsWLGiWrvAwECcPHmy2nOFhYUwm82OUajAwMCbRqJyc3MB4KaRq+splcpq04RERETN2ZNPPokHH3wQY8eOxdmzZ7F161akpqbi8ccfh1wud3Z5TVaTDVR+fn7w8/OrU9usrCwMHz4coaGhWLt2LSSS6gNvAwcOxCeffILs7GwEBQUBACIiIqBUKhEaGupo895778FkMkGhUDjaBAcHVwtuRERErq5NmzY4deoU5s2bh2XLliEmJgYZGRmYOnUq/P39nV1ek9Rkp/zq6sqVKxg2bBhCQkKwZMkS5OXlIScnp9poU1hYGHr06IFnn30WZ86cweHDh/HWW2/hpZdecqzknz59OpRKJWbOnIn4+Hhs374dCxcuxNy5c+t8hx8REZGrkMlk+O9//4udO3dCo9EgNzcXK1aswNmzZ51dWpPU7ANVREQELl68iJ9++glt2rRBUFCQ41FFKpViz549UKlUePjhhzFt2jRMnDjRsU8VAGi1Whw8eBCZmZno378/Zs2ahblz52Lu3LnO6BYREVGTMG7cOCQmJqJfv34wm83Yvn07duzYcdPm2C2dS+5D5Uzch4qIiFyR1WrFu+++i6VLl0IURfj7++PPf/4zFv37cwDch6rZj1ARERFRw5NKpViyZAn27dsHLy8v5OXlYc2aNc4uq8lgoCIiIqI6e+yxx5CUlIQBAwZUO//PaDQ6sSrnY6AiIiKiOxIQEICoqKhqZ92uWbv2lhthuzoGKiIiIrpjEokECxZ87Pi5ID8fK1euxKlTp9ASl2czUBEREdE9GzhwIKxWK3bv3o0tW7bAYDA4u6RGxUBFRERE9+zAgQh88MEHkEgkOH/+PFasWIErV644u6xGw0BFRERE98w+BbgAP/30E/z8/FBQUIDVq1fj5MmTLWIKkIGKiIiI6s3QoUORlJSEoUOHwmq1Yt++fdi8eTMqKiqcXVqDYqAiIiKieuXr64sjR47gn//8J6RSKRITExEeHo7MzExnl9ZgGKiIiIio3gmCgL///e84evQoAgICUFRUhDVr1uDEiRMuOQXIQEVEREQNZtCgQUhKSsKjjz4Km82GAwcOYNOmTSgvL3d2afWKgYqIiIgalJeXFyIiIvDpp59CJpMhOTkZOp0OGRkZzi6t3jBQERERUYMTBAHvvPMOfvnlFwQFBUGv12PNmjU4fvw4bDabs8u7ZwxURERE1Gj+9Kc/ISkpCY8//jhEUcShQ4ewceNGlJWVObu0e8JARURERI1Ko9Fg7969WLp0KeRyOS5evAidToe0tDRnl3bXGKiIiIio0QmCgL/97W/49ddf0aZNG5SUlGDdunU4evRos5wCZKAiIiIip+nXrx8SExMxbtw4iKKIn376Cd988w1KS0udXdodYaAiIiIip/Lw8MDOnTuxbNkyyOVyXL58GTqdDpcvX3Z2aXXGQEVEREROJwgCZs+ejVOnTqFt27YoLS3Fhg0bcOTIkWYxBchARURERE1Gr169kJiYiEmTJgEAIiMjsWHDBpSUlDi5sltjoCIiIqImxc3NDVu3boVOp4NSqURqaip0Oh0uXbrk7NJqxUBFRERETdLLL7+M06dPo0OHDigrK8PXX3+Nw4cPw2q1Oru0mzBQERERUZPVo0cPnD9/Hk899RQA4NixY1i/fj2Ki4udXFl1DFRERETUpKnVamzatAlr1qyBSqVCeno6dDodLly44OzSHBioiIiIqFn4n//5H5w9exZdunRBRUUFNm7ciIiIiCYxBchARURERM1G165dERcXh2effRYAEBUVhbVr16KoqMipdTFQERERUbOiVCqxYcMGfP3111Cr1cjMzIROp0NSUpLTamKgIiIiombpL3/5C+Li4tCtWzcYDAZs2rQJ+/fvh8ViafRaGKiIiIio2erUqRPOnTuH559/HgDw66+/Ys2aNSgsLGzUOhioiIiIqFlTKBRYvXo1Nm3aBHd3d1y5cgU6nQ4JCQmNVgMDFREREbmEp556CvHx8bj//vthNBqxefNm7N27F2azucE/m4GKiIiIXEb79u1x5swZvPzyywCA3377DatXr0Z+fn6Dfi4DFREREbkUuVwOnU6HrVu3wsPDAzk5OQgPD0d8fHyDfSYDFREREbmkSZMmISEhAb1794bJZMKWLVuwa9euBpkCZKAiIiIilxUSEoJTp05h9uzZEAQBMTExWLVqFa5du1avn+MSgWr8+PFo27YtVCoVgoKC8Oyzz+LKlSvV2qSnp2PcuHFwd3eHn58f3njjDZhMpmpt4uLiMHToUKjVarRu3Roff/wxRFFszK4QERFRPZPJZFi2bBl27twJjUaDq1evIjw8HGfPnq23z3CJQDV8+HBs3rwZycnJ2Lp1Ky5duoQpU6Y4XrdarXjiiSdQVlaG48ePY9OmTdi6dSvmzZvnaKPX6zFq1CgEBwcjOjoay5Ytw5IlS7B06VJndImIiIjq2bhx45CYmIh+/frBbDZj+/bt2LFjx00DLHdDEF1wCObHH3/ExIkTYTQaIZfLsW/fPowdOxYZGRkIDg4GAGzatAkzZ85Ebm4uNBoNvvrqK8yfPx9Xr16FUqkEACxevBjLli1DZmYmBEGo02fr9XpotVoUFxdDo9E0WB+JiIicTRQBY+W5xEopUMevSqezWq1455138Pnnn0MURfj7+2PChAlYtWrVXX9/u1ygKigowKuvvoqsrCwcP34cAPDBBx9g586d1Yb2CgsL4ePjg59++gnDhw/Hc889h+LiYuzcudPR5syZM+jXrx8uX76MDh061Ph5RqMRRqPR8XNxcTHatm2LjIwMBioiInJpzTVQVTl48CBeeOEFFBcXQyKRwGazoaioCFqt9o7fS9YA9TnFu+++i+XLl6O8vBwPPfQQdu/e7XgtJycHAQEB1dp7e3tDoVAgJyfH0aZ9+/bV2lT9Tk5OTq2BatGiRViwYMFNz4eEhNxLd4iIiKgR2Ww2AEBJSYlrBaqPPvqoxqByvejoaPTv3x8A8Pbbb+OFF15AWloaFixYgOeeew67d+92TNXVNGUnimK1529sUzV4d6vpvvnz52Pu3LmOn202GwoKCuDr61vnacJ7odfrERIS0uJGxNhv9rslYL/Z75agqfRbFEWUlJQ4lgbdqSYbqGbPno2nn376lm2uH1Hy8/ODn58funbtiu7duyMkJAS//vorBg4ciMDAQJw8ebLa7xYWFsJsNjtGoQIDAx2jVVVyc3MB4KbRresplUrHmqsqXl5et+tevdNoNC3qP8Aq7HfLwn63LOx3y9IU+n03I1NVmmygqgpId6NqZKlqbdPAgQPxySefIDs7G0FBQQCAiIgIKJVKhIaGOtq89957MJlMUCgUjjbBwcE3TQUSERERXa/Zb5vw22+/Yfny5YiNjUVaWhqOHDmC6dOno1OnThg4cCAAICwsDD169MCzzz6LM2fO4PDhw3jrrbfw0ksvOdLw9OnToVQqMXPmTMTHx2P79u1YuHAh5s6d2yhTd0RERNR8NftApVarsW3bNowcORLdunXD888/j549eyIyMtIxFSeVSrFnzx6oVCo8/PDDmDZtGiZOnIglS5Y43ker1eLgwYPIzMxE//79MWvWLMydO7fa+qimSKlU4sMPP7xp2tHVsd/sd0vAfrPfLYGr9Nvltk0gIiIiamzNfoSKiIiIyNkYqIiIiIjuEQMVERER0T1ioCIiIiK6RwxURERERPeIgaoJOnr0KMaNG4fg4GAIgoAdO3ZUe10URXz00UcIDg6GWq3GsGHDcP78+WptjEYjXn/9dfj5+cHd3R3jx49HZmZmI/bizt2u3zNnzoQgCNUeDz30ULU2zbHfixYtwoMPPghPT0+0atUKEydORHJycrU2rnjN69JvV7zmX331FXr16uXYFXrgwIHYt2+f43VXvNbA7fvtite6JosWLYIgCJgzZ47jOVe95terqd+uds0ZqJqgsrIy9O7dG8uXL6/x9c8++wxLly7F8uXLER0djcDAQIwaNQolJSWONnPmzMH27duxadMmHD9+HKWlpRg7diysVmtjdeOO3a7fAPD4448jOzvb8di7d2+115tjvyMjI/Haa6/h119/xcGDB2GxWBAWFoaysjJHG1e85nXpN+B617xNmzZYvHgxTp06hVOnTmHEiBGYMGGC4wvUFa81cPt+A653rW8UHR2NFStWoFevXtWed9VrXqW2fgMuds1FatIAiNu3b3f8bLPZxMDAQHHx4sWO5wwGg6jVakWdTieKoigWFRWJcrlc3LRpk6NNVlaWKJFIxP379zda7ffixn6LoijOmDFDnDBhQq2/4wr9FkVRzM3NFQGIkZGRoii2nGt+Y79FseVcc29vb3HVqlUt5lpXqeq3KLr+tS4pKRG7dOkiHjx4UBw6dKj45ptviqLo+v9919ZvUXS9a84RqmYmJSUFOTk5CAsLczynVCoxdOhQREVFAQBiYmJgNpurtQkODkbPnj0dbZqrn3/+Ga1atULXrl3x0ksvOQ6wBlyn38XFxQAAHx8fAC3nmt/Y7yqufM2tVis2bdqEsrIyDBw4sMVc6xv7XcWVr/Vrr72GJ554Ao8++mi15139mtfW7yqudM2b7OHIVLOcnBwAQEBAQLXnAwICkJaW5mijUCjg7e19U5uq32+ORo8ejalTp6Jdu3ZISUnBP/7xD4wYMQIxMTFQKpUu0W9RFDF37lw88sgj6NmzJ4CWcc1r6jfgutc8Li4OAwcOhMFggIeHB7Zv344ePXo4viRc9VrX1m/Ada81AGzatAkxMTE4derUTa+58n/ft+o34HrXnIGqmbrxwGZRFG97iHNd2jRlTz31lON/9+zZE/3790e7du2wZ88eTJo0qdbfa079nj17Ns6dO4fjx4/f9JorX/Pa+u2q17xbt26IjY1FUVERtm7dihkzZiAyMtLxuqte69r63aNHD5e91hkZGXjzzTcREREBlUpVaztXu+Z16berXXNO+TUzgYGBAHBTOs/NzXX8DScwMBAmkwmFhYW1tnEFQUFBaNeuHX7//XcAzb/fr7/+On788UccOXIEbdq0cTzv6te8tn7XxFWuuUKhQOfOndG/f38sWrQIvXv3xn//+1+Xv9a19bsmrnKtY2JikJubi9DQUMhkMshkMkRGRuL//b//B5lM5qjd1a757fpd06Ly5n7NGaiamQ4dOiAwMBAHDx50PGcymRAZGYlBgwYBAEJDQyGXy6u1yc7ORnx8vKONK8jPz0dGRgaCgoIANN9+i6KI2bNnY9u2bfjpp5/QoUOHaq+76jW/Xb9r4irX/EaiKMJoNLrsta5NVb9r4irXeuTIkYiLi0NsbKzj0b9/f/z5z39GbGwsOnbs6JLX/Hb9lkqlN/1Os7/mjb0Knm6vpKREPHPmjHjmzBkRgLh06VLxzJkzYlpamiiKorh48WJRq9WK27ZtE+Pi4sRnnnlGDAoKEvV6veM9XnnlFbFNmzbioUOHxNOnT4sjRowQe/fuLVosFmd167Zu1e+SkhJx3rx5YlRUlJiSkiIeOXJEHDhwoNi6detm3+9XX31V1Gq14s8//yxmZ2c7HuXl5Y42rnjNb9dvV73m8+fPF48ePSqmpKSI586dE9977z1RIpGIERERoii65rUWxVv321WvdW1uvNvNVa/5ja7vtytecwaqJujIkSMigJseM2bMEEXRfpvthx9+KAYGBopKpVIcMmSIGBcXV+09KioqxNmzZ4s+Pj6iWq0Wx44dK6anpzuhN3V3q36Xl5eLYWFhor+/vyiXy8W2bduKM2bMuKlPzbHfNfUZgLh27VpHG1e85rfrt6te8+eff15s166dqFAoRH9/f3HkyJGOMCWKrnmtRfHW/XbVa12bGwOVq17zG13fb1e85oIoimLjjYcRERERuR6uoSIiIiK6RwxURERERPeIgYqIiIjoHjFQEREREd0jBioiIiKie8RARURERHSPGKiIiIiI7hEDFREREdE9YqAiIiIiukcMVERElXr16gVBECAIAo4dO1Zjm8LCQvj5+TnaXbhwoZGrJKKmiIGKiAiAwWBAYmIiZDIZACAuLq7Gdh988AEKCwsBAJ6enujSpUuj1UhETRcDFRERgLNnz8JisWD06NGQSCQ1Bqr4+Hh89dVXGDNmDACgT58+EAShsUsloiaIgYqICMDp06cBAEOGDEGnTp1qDFRz5syBp6cnnnzySQBAaGhoo9ZIRE0XAxUREYCYmBgAQL9+/dCnT5+bAtW2bdtw+PBhLFiwAGlpaY62REQAAxUREYA/RqiqApVer0d6ejoAwGg04q233kL37t0xa9asam2JiABA5uwCiIiczWQyIT4+Hh07doSXlxf69OkDwL4wvW3btliyZAlSUlJw4MAByGQyxMTEwM3NDffdd59zCyeiJoMjVETU4p07dw5ms9kx4tS7d28A9kCVlZWFRYsWYfz48QgLC0NOTg6ys7PRu3dvSKVSAMCiRYvQv39/eHp6IiAgANOmTUNqaqqzukNETsBARUQtXtUUXtUi89atW8Pf3x9xcXF45513YDab8Z///AdA9bVWVSIjI/H666/j5MmT2L9/P4qKijB69GhYLJZG7gkROQun/IioxaspJPXu3Rv79u1DYWEh3n33XXTu3BkAalw/tX///mrvt3r1arRt2xYJCQno1atXQ5dPRE0AR6iIqMWrKST16dMHhYWFCAwMxPvvv+94vip83WrLhOLiYgCAj49PQ5RLRE2QIIqi6OwiiIicxWw2O9Y+VW2HAAApKSk4e/YsOnXqhAceeMDxfNu2bZGbm4uSkhLI5fKb3s9ms2H06NGQyWTYs2dPo/SBiJyPU35E1KKdP38eRqPxpi0QOnTogA4dOlR77tq1a8jIyED//v1rDFOiKOLll19GSkoKfvnllwatm4iaFgYqImrRalo/dTdtRVHErFmzcOjQIRw9ehT+/v71WygRNWmc8iMiukeiKOK1117D7t27ERkZedPIFhG5Po5QERHdo1mzZmHTpk3YtWsX1Go1cnJyANgXpSsUCidXR0SNgSNURET3SBCEGp8/cuQIhg0b1rjFEJFTcISKiOge8e+lRMR9qIiIiIjuEQMVERER0T1ioCIiIiK6RwxURERERPeIgYqIiIjoHjFQEREREd0jBioiIiKie8RARURERHSPGKiIiIiI7hEDFREREdE9YqAiIiIiukf/H2cDeuo9KFtlAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "m1_sample = np.linspace(-300, 500, 200)\n", "m2_sample = [f_m2(k, x_star[2], x_star[3]) for k in m1_sample]\n", "\n", "f, ax = plt.subplots(1)\n", "\n", "ax.plot(m2_sample, m1_sample, label=\"LSF\", color=\"k\")\n", "# Contour plot\n", "X_grid,Y_grid = np.meshgrid(m2_sample,m1_sample)\n", "pdf = np.zeros(X_grid.shape)\n", "for i in range(X_grid.shape[0]):\n", " for j in range(X_grid.shape[1]):\n", " # This is correct, but only works when ALL RV's are independent!\n", " # pdf[i,j] = M2.computePDF(X_grid[i,j])*Y.computePDF(Y_grid[i,j])\n", " pdf[i,j] = inputDistribution.computePDF([Y_grid[i,j], X_grid[i,j], x_star[2], x_star[3]])\n", "ax.contour(X_grid, Y_grid, pdf, levels=8, cmap=cm.Blues)\n", "\n", "ax.set_xlabel(r\"$M_2$\", fontsize=14)\n", "ax.set_ylabel(r\"$M_1$\", fontsize=14)\n", "ax.plot(x_star[1], x_star[0], 'ro', label=\"Design point\") # Delete x_star[1] and x_star[3] for students\n", "ylim = ax.get_ylim()\n", "ax.fill_between(m2_sample, m1_sample, ylim[1], color=\"grey\", label=\"Failure region\")\n", "ax.set_title(r\"Limit state function in the plane $(M_2, M_1)$\", fontsize=18)\n", "ax.legend();" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Bonus: $M_1$ and $M_2$ connected via the Clayton copula\n", "\n", "**Note:** the dependence structure is quite particular. $M_1$ and $M_2$ are correlated, but independent from the other 2 variables (P, Y). \n", "\n", "
\n", "

\n", "Task 8:\n", "You do not need to fill out any code in the bonus part. Take a look at the figures and compare them to the original case, which included linear dependence (i.e., bivariate Gaussian) between the two load variables. Pay particular attention to the correlation structure in both plots, and try to understand where it comes from. Note in particular the commented piece of code, which uses an (incorrect) alternative for computing the PDF. Why is it different, and why is it incorrect? This is especially important for the first plot, which compares two random variables which, based on the correlation matrix, independent.\n", "

\n", "
\n", "
\n", "
\n", "In this part we specify non-linear dependence structure between the first two random variables to illustrate the impact dependence can have on reliability results. As a general note, it is easier to define multivariate distributions by specifying the marginal distributions separately from the dependence structure (you can learn more about this in the probability cross-over!). This can be seen above in the way you defined the distributions first for each random variable (the marginal distributions), then defined dependence via a correlation matrix. If the marginal distributions were all normal, this would be a multivariate normal (or Gaussian) distribution. However, the use of non-Normal distributions introduces non-linearity into the problem, which makes the definition of dependence difficult to predict. Even though you think you are defining the relationships between specific variables, there are unintended consequences due to the way the conditional distributions are defined. For example, you add a correlation coefficient to the 1st and 2nd variable and this impacts the distribution of the 4th varialbe $f_{X_4|X_1,X_2,X_3}(X_4|X_1,X_2,X_3)$. This does not have an effect in the first example abvove, but we can clearly see it in the example below!\n", "

\n", "Note: you don't need to understand the Clayton copula, but it is interesting to recognize that it defines a non-linear dependence structure and is quite easy to specify in OpenTURNS (see first ~10 lines of code below).\n", "

\n", "From the figure below:\n", "
    \n", "
  • In the first figure you can see the contours have clearly shifted for the conditional distribution of $Y|M_2$ due to the dependence between $M_1$ and $M_2$.
  • \n", "
  • In the second figure note the non-elliptical contours. This can be interpreted as decreasing positive dependence for higher values of the variables. Thus, as the loads increase, they differ in magnitude more significantly than at lower values, where they tend to increase and decrease similarly.
  • \n", "
  • In both figures, and comparing to the previous case, it does not look like dependence has a big impact on the design point (unlike HW3, where there was a big effect!
  • \n", "
\n", "
" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# Definition of the dependence structure: here, Clayton copula with parameter theta\n", "theta = 2.5\n", "clayton_copula = ot.ClaytonCopula(theta)\n", "indep_copula = ot.IndependentCopula(2)\n", "composed_copula = ot.ComposedCopula([clayton_copula, indep_copula])\n", "\n", "inputDistribution_2 = ot.ComposedDistribution((M1, M2, P, Y), composed_copula)\n", "inputDistribution_2.setDescription([\"M1\", \"M2\", \"P\", \"Y\"])\n", "inputRandomVector_2 = ot.RandomVector(inputDistribution_2)\n", "\n", "# Vector obtained by applying limit state function to X1 and X2\n", "outputvector_2 = ot.CompositeRandomVector(myfunction, inputRandomVector_2)\n", "\n", "# Define failure event: here when the limit state function takes negative values\n", "failureevent_2 = ot.ThresholdEvent(outputvector_2, ot.Less(), 0)\n", "failureevent_2.setName('LSF inferior to 0')" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "FORM result, pf = 0.0048\n", "FORM result, beta = 2.586\n", "\n", "[0.944368,0.52656,0.960543,-2.14427]\n", "[320.828,165.266,2934.09,29732.5]\n" ] } ], "source": [ "algo = ot.FORM(optimAlgo, failureevent_2, inputDistribution_2.getMean())\n", "algo.run()\n", "result_2 = algo.getResult()\n", "x_star_2 = result_2.getPhysicalSpaceDesignPoint()\n", "u_star_2 = result_2.getStandardSpaceDesignPoint()\n", "pf_2 = result_2.getEventProbability()\n", "beta_2 = result_2.getHasoferReliabilityIndex()\n", "print('FORM result, pf = {:.4f}'.format(pf_2))\n", "print('FORM result, beta = {:.3f}\\n'.format(beta_2))\n", "print(u_star_2)\n", "print(x_star_2)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "tags": [ "hide-input" ] }, "outputs": [], "source": [ "outputSample = outputvector_2.getSample(montecarlosize)\n", "\n", "number_failures = sum(i < 0 for i in np.array(outputSample))[0] # Count the failures, i.e the samples for which Z<0\n", "pf_mc_2 = number_failures/montecarlosize" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The failure probability computed using FORM for M1 and M2 having the bivariate normal distribution is: 0.004364\n", "The failure probability computed using MCS for M1 and M2 having the bivariate normal distribution is: 0.007\n", "The failure probability computed using FORM for M1 and M2 having the Clayton copula is: 0.004849\n", "The failure probability computed using MCS for M1 and M2 having the Clayton copula is: 0.0061\n" ] } ], "source": [ "print(\"The failure probability computed using FORM for M1 and M2 having the bivariate normal distribution is: \",\n", " \"{:.4g}\".format(pf))\n", "print(\"The failure probability computed using MCS for M1 and M2 having the bivariate normal distribution is: \",\n", " \"{:.4g}\".format(pf_mc))\n", "print(\"The failure probability computed using FORM for M1 and M2 having the Clayton copula is: \",\n", " \"{:.4g}\".format(pf_2))\n", "print(\"The failure probability computed using MCS for M1 and M2 having the Clayton copula is: \",\n", " \"{:.4g}\".format(pf_mc_2))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "By comparing the probabilities, we can see that the different dependence model does not have a huge effect on the result. \n", "
" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Let's redraw our plots from above and see how things are different. Can you tell?" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "tags": [ "hide-input" ] }, "outputs": [], "source": [ "y_sample = np.linspace(10000, 50000, 200)\n", "m2_sample = [f_m2(x_star[0], x_star[2], k) for k in y_sample] # For now, take (Y, M2) plane" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAHVCAYAAADcq97KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/kElEQVR4nOzdd3hUVfrA8e+dPpkkk94g9C5NQWkqvShVUFAwgLjo2pAVXNuquBawr8rPsjawoqvi6qqIoChIEdAovUiHNNKTSaae3x935iZDEgiQkML5PE8ezcy5954ZJjPvnPOe9yhCCIEkSZIkSZJUI3R13QFJkiRJkqTGRAZXkiRJkiRJNUgGV5IkSZIkSTVIBleSJEmSJEk1SAZXkiRJkiRJNUgGV5IkSZIkSTVIBleSJEmSJEk1SAZXkiRJkiRJNUgGV5IkSZIkSTVIBleSJEmSJEk1SAZXkiRJkiRJNUgGVw3M9OnTURSF6dOnn5fXl8Dr9fLcc89x4YUXYrPZUBQFRVH4/PPP67prta6hvv7qe78HDBiAoijMmzevrrtS4+r7c38u/OMf/0BRFJ566qm67kq9MGLECBRF4fvvv6+1a8jgqg7NmzdP+2BsDBYtWsS8efNYtWpVo7xuXT2+E82ePZs5c+aQmpqKx+MhPj6e+Ph4LBZLnfbrbNSX57Yxks/t+e3IkSM899xzxMbGctttt1XZrlmzZtrnkdFoxOVynfS8qamp6PV67ZiLLrqoprtepd9//x2dToeiKDz33HOnbP/ZZ59pfX322We1LxFz587F5/PVSh8NtXJWqdYkJibSvn17EhMT6931Fy1axI8//gio34TPlXN13bp6fOUVFhby2muvAfDUU08xd+7cRhGcV/e5revX/5mqy37Xh9etVHceeOABSkpK+Oc//4nNZqu0TXZ2NocPH9Z+93g87Ny5k65du1Z53lmzZgUFJj169Ki5Tp9Ct27dGDVqFF9++SX/+te/uOOOOzAajZW2XbduHVOmTMHn83H77bczZ84cAIYPH863337Le++9x9SpU2u8j3LkqoGZP38+O3fuZP78+efl9c93O3fuxO12A3DLLbc0isDqdDTU119D7bfUsB09epT3338fk8nEjBkzqmy3efNm7f9btmwJwJYtW6psv2TJElavXk3Tpk2196BzGVwBPPjggwAcPnyYDz/8sNI2e/bsYfTo0ZSWljJ27FheeOEF7b6//vWvALU2VSqDK0lqQBwOh/b/oaGhddgTSZLqu9dffx2v18uVV15JVFRUle0CwVVcXBxXXnklUHVw5XA4+Pvf/w7ADTfcgBAC4JxOCwJcfPHFDBs2DIBnnnmmwv1ZWVlcccUVZGdnc8kll/DBBx+g05WFPIHnZNu2bfz8888130Eh1ZmHH35YAOJ0/hmmTZsmADFt2rQK9/Xv318A4uGHHxYej0c899xzonv37sJms4nY2FgxduxYkZqaqrUvLi4Wjz76qLjgggtESEiIiIqKEhMnThR79+49reu//fbb2uOo6mf//v3VfowfffSRGDFihIiLixMGg0HY7XbRpk0bMXr0aLFw4UJRUlJyRtfNy8sTH374oZg8ebLo3LmziIyMFGazWTRr1kxcd911Yt26dZX250weX1pamrjnnntE165dRXh4uDCbzaJly5bixhtvFNu2bav2c1HdPvTv319r27x5cwGIt99+u8rzVfU6Kv8a8vl84t///re45JJLRFhYmAgNDRW9e/cW77777in7e+jQIXH33XeLbt26ifDwcGGxWESrVq3EmDFjxOLFi8/43/Bkr/+AH374QVx99dUiKSlJmEwmER0dLQYNGiTeeust4fF4Kj2mph53Var7d1uT1z6d57am+lDTr/sT++Z0OsX8+fNFly5dREhIiIiIiBBDhgwRX3/9dZXHn+y5P9P3hMr6dqbPW208Z0II4fP5RNOmTQUgPv7445O2vfrqqwUgRowYIV5//XUBiCuvvLLStg8++KAAxODBg8Ubb7whAGEwGLS/6XNp9erV2mu5/GuguLhY9OrVSwCiVatWIiMjo9LjZ86cKQAxderUGu+bDK7qUG0FV/fff78YMmSIAITJZBI2m027TmhoqNi4caM4fvy4uPDCCwUgLBaLsFqtWpu4uDhx8ODBal9/yZIlIj4+XhiNRgEIm80m4uPjg34OHTpUrcc3Y8aMoDf/0NBQERISUukHwulet/zzHTi32WzWflcURbzwwgsV+nS61/nyyy9FaGiodl6j0Rj0b2AymcTixYur9Xyc2IfIyEjtPOWvf9VVV2ltayK4+sc//iHGjh2rvXGGh4cHPXcPPfRQled+5513hMViCXq8drs96PjffvvtjJ7bUwVXf/vb34L+PSMiIoRer9duGzRokCgoKKhwXE087pOpzt9tTV/7dJ7bmuhDbbzuy/ftvvvuE5dddpnWt4iIiKC+Pfzww5Uef7Ln/kzfE07s25k+b7X1nAkhxB9//KGdJy0t7aRtW7ZsqX12bNy4UQAiOTm5QrsDBw4Ii8Ui9Hq92LJli7jlllsEILp163ZGfawJgX+DAQMGCCGE8Hq9YsyYMQIQ0dHRYteuXVUe++6772qfeTVNBld1qLaCq4iICBEdHS3+85//CJfLJXw+n/jll19Eq1atBCD69u0rrrrqKtGiRQvx7bffCq/XK7xer1ixYoWIjY0VgJgyZcoZX7+qN7lTCXwL0el04sknnxTZ2dnafcePHxfffvutmDZtmjh69OgZXfeVV14Rf/vb38T69etFbm6uEEL9drdv3z5x5513CkVRhF6vF7/++mulx1fnOhs2bBAmk0kA4uabbxY7duzQRksOHjwobr31Vu0NeOPGjad+Uk7www8/nPI1UxPBVWRkpLDb7WLRokXC4XAIIYQ4fPiwGD16tPZvtHv37grn/eqrr4SiKAIQ/fr1E6tXrxZer1cIIUR+fr746aefxMyZMyt8I6/uv+HJXn8vvfSS9tzcdNNN2gdKUVGReP7554XBYBCAmDRpUoVjz/Zxn0p1/m5q69rVeW7Ptg+1+boP9M1utwuz2SxeffVVbZTk0KFD2qgLIP773/9WOP5kz31NvSecyfNW2+8VCxcurDJIKi8nJ0d7/j755BNRUlKi/a3k5eUFtZ0wYYIAxO233y6EENro0A033HDa/asp3333ndb/X375Rdx2220C1EGDn3/++aTH7t69Wzt2x44dNdovGVzVodoKrgCxevXqCvevXLlSu99qtYo9e/ZUaPPmm29q97tcrjO6/pkGV08++aQAxLBhw07ruLO9bkDgj/LGG2884+tcfPHFAhAPPvhglW1mzZolADF27NjT7uO5Cq4A8f3331c4rrS0VCQlJQlAPPbYY0H3ud1u7RvwpZdeKpxOZ7Uf19kGVw6HQ0RFRQlAXHfddZUe++KLL2qP7cQPq7N53NVR3b/b2rj26QRXZ9qH2nzdl+/bm2++WeF+r9crLr/8cgGITp06Vbi/OlPJVanue8KZPG+1/V6RkpIiADFq1KiTtluxYoX2GPbt2yeEEOKCCy4QgFizZo3W7vvvv9dGg7Kzs4XH49FmPBYuXHja/atJvXv3FoA2DaooivjPf/5TrWMDI4dvvfVWjfZJJrQ3QpdeeimXXnpphdv79++P2WwG4Oqrr6ZNmzYV2gwfPhyAkpIS9uzZU7sdPUFERASgJiJ6vd5zem2AkSNHArBmzZozOv73339n48aNGI1GbblvZQLLflesWFEnj7M6+vXrx8CBAyvcbjabtdfIH3/8EXTfDz/8wP79+wF4/vnnMZlMtd9Rv++++46cnByAKgth3nrrrVophKpWF53J464pdXnts+nDuXrdJycnc8MNN1S4XafT8Y9//AOA7du3n3SV2+mq7nvC6T5v5+I5O3bsGACxsbEnbffrr78CEBkZqa0U7N69O1CW1O71ernzzjsB+Oc//0lUVBTbt2+npKQEOPcrBU8U+Pc/cuQIoCa4X3311dU6Njo6Gih7vmqKrHPVCF1yySWV3q7X64mJieHo0aNcfPHFlbaJj4/X/j83N7dW+leVIUOGYLFY+O2337jsssu48cYbGTRokPYHXxP27dvHyy+/zA8//MCff/5JYWFhhSJygT/Q0xV4A/b5fLRv377KdoE3yeLiYrKzs4mLizuj69WmXr16VXlfUlISgBbMBKxduxaAhIQEevbsWXudq8SmTZsA9QO4Xbt2lbbR6/UMGjSI999/X2t/ojN53DWlLq99Nn04V6/7QBX5ylx++eUYDAY8Hg+bNm2iS5cu1T5vTbwnnO7zdi6es6ysLICTrhKEspWCF154oXZb9+7def/997Xg6tVXX2XLli106dKFm2++Oeg4vV5Pt27dtGN//fVX3nvvPVauXMn+/fvx+Xx07tyZO+64gylTplS7/6dj5MiRxMbGkpWVxfjx47nrrruqfWxUVBQHDx7Unq+aIoOrRigsLKzK+wwGw0nbBO4HtHpK50qrVq144403+Otf/8q6detYt24doH7zGjhwIJMnT2bMmDFnXNtp6dKlXHfddTidTu228PBwLBYLiqLgcrnIzc2luLj4jM4f+Obj9XrJyMio1jHlSyvUJ9V5DZ34+khPTwegefPmtdexKmRmZgLQpEmTk7Zr2rRpUPsTncnjril1ee2z6cO5et2f7N/WbDYTHR1NRkZGlf+2lamp94TTfd7OxXNWWloKoM1WVCUwclW+lEIg0NqyZQs5OTk89NBDALzwwgvo9fqg4zp27IjVatWOfeqpp1i5ciUTJkzgtttuo6ioiLfffpvrr7+evXv38vDDD5/W46iO/Px8jh8/DsDgwYNP69hA3wPPV02R04JSvTJlyhQOHjzIq6++yqRJk0hOTiYrK4uPP/6YcePG0b9/fwoKCk77vNnZ2UyfPh2n08mgQYNYtWoVDoeD/Px8MjIySE9P5z//+c9Z9T3wLbNDhw4INZ/xlD8tWrQ4q2vWR3VZ2LS61z7fiq/WpnP1uq/pf7Nz8Z5QlXPxnAWmu042A1FQUMDevXuB4OAqMC24detWHnzwQXJycpgwYULQ1GcguDpxSnDWrFkcPnyYV199lZtuuom77rqLX375hXbt2vH444/XyozIb7/9dsb1tgIjioHnq6bI4Eqqd6Kiorj55ptZsmQJhw4dYu/evdx7770oisLq1avPaHPZr7/+moKCAiIjI/nyyy/p379/0LctKBt5OVMJCQmAOs1wpqNfNSHwTflk38Ty8/Nr/LqBfKZA3tW5FJguKb+FR2UC0zunykORqu9cve5PNjXndDrJzs4GqPbU2bl4T6jKuXjOAq/xk00lVxWUREdH07RpU3Jzc3nllVewWCxBhTp9Ph+pqakVjgPo27dvhX1OrVYro0aNwu12s2vXrrN6XJUJBHonTlFWR+D5qen3BBlcSTUmUP028MdaU1q3bs38+fOZPHkyoCYvn+51Ax+67du3JyQkpNI2K1asOGk/TnWdfv36AeByuVi6dOlJz1WbIiMjgaoDDZ/PV2XO0dno27cvABkZGad9/rN97QRyvI4cOcLu3bsrbeP1evnhhx8Aqsw5bIxq6+8y4Fy97n/88ccqH8Pq1avxeDwA1c73q4n3hDN1Lp6zTp06AWoAV5VAUBIaGlohVzEweiWEYO7cuUEjZ7t27dKCwuoms1c3wf5MBB5Hhw4dKgTIJ1NYWKhNJ3bs2LFG+ySDK6nGhIeHA5CXl3dGx5fPe6hM4I8mMOd/Ote12+0A7N69u9IRndTUVD744IOTXv9U1+nZs6eWq/DAAw+cMkGytpKTA9/cli5dWumH0eLFi884af9kBg4cSKtWrQD429/+hsvlqvaxZ/vaGTp0qDasX9XI5muvvaa9wV933XVndJ2G6Gyf21M5V6/7Q4cOsXjx4gq3+3w+nnjiCUD9gKxuMntNvCecqXPxnF1++eWAujKxqvfWQFJ69+7dK0y73nTTTcyZM4e7776be++9t9LjdDqdFoSdzPbt2/nss8/o3bs3rVu3Pt2HckqV5Y1Vx6ZNm/D5fBgMBi3grSkyuKonjh8/ftKf2npjrEmdO3cG1OH2o0ePnvbxt99+OxMnTuTTTz8NSkotKiri1Vdf5Z133gHQ9r46nesOGzYMnU5HTk4OU6ZM0dq5XC4+/vhjhg0bdtKk1OpcR1EUXn31VcxmM4cOHaJXr1588sknQYmoR48e5b333mPo0KHcc889p3pKzkggcNixYwc33XSTNl1SUFDA888/z1//+tdTriA6E3q9noULF6IoCmvWrGHw4MGsWbNGW3lVUFDAqlWruP7669m+fXvQsWf72rFarVpQ9eGHH/LXv/5VSxR2OBy89NJLzJ49G4BJkybV+dLxc+lsn9tTOVeve7vdzi233MLrr7+uBUOHDx/muuuu00YkH3/88WqfrybeE87UuXjO+vXrh8FgwOVyaVN4JzpZUDJ69GieeeYZnnrqKWw2W6XHtW/fvsJ9JyooKOCaa65Bp9Px2muvVdrmwIEDKIqCoiinnfbhcDi00erTDa42bNigHVfTe7XK4KqeiI2NPenPgAED6rqLpzRt2jQsFgt79+6lWbNmJCQk0KJFC1q0aFGtkRK3281//vMfrr76auLj4wkLCyMyMpKwsDBuueUWXC4Xl156KQ888MBpX7dt27bcfffdAHz22Wc0bdqUiIgIQkNDmTRpEqGhobz44otn/fguueQSvvzyS6Kjo9m/fz/XXHMN4eHhxMTEYLPZaNq0KSkpKbU23QDqaplAfZw33niDmJgYIiMjiYyM5K677uKmm25i9OjRtXLtK664gkWLFmE2m1mzZg2XXXYZISEhREZGYrfbGThwIO+//36FUa2zfe2AGpz/7W9/A9RRqsTERKKiorDb7cyaNQu3283AgQN5/fXXa/xx12c18dyeyrl43d9666307NmTm266ifDwcKKiomjWrBkff/wxoNY6uuqqq6p9vpp4Tzgbtf2chYeHa3W6vvjiiwr3FxcXa/lPpxuUBEauTvUlpaSkhNGjR7N7926WLFlC165dT+s61ZGamqotEDjdxxF4XgIpJzVJBldSjWnbti0//PADY8aMITY2luzsbA4ePMjBgwe1fIiTefDBB3nxxRe56qqr6NChAwaDgaKiIuLi4hg6dChvvfUWq1atqvBNqbrXXbBgAe+88w6XXHIJVqsVt9tNmzZtuP/++/ntt9+0ejRn+/iGDh3K3r17mT9/Ppdeeil2u528vDx0Oh2dOnXixhtv5IsvvuCll146zWe4+t566y1eeOEFunfvjtVqxefz0a9fPz766KNavS6ohQ937tzJ7Nmz6dSpk/btuXXr1owbN4533323Qn7D2b52Ap577jm+//57JkyYQHx8PEVFRYSFhTFw4EDeeustvvvuu1objaivauq5PZXaft2bTCZWrlzJE088Qfv27XE6ndjtdgYPHsxXX33Fo48+etrnPNv3hLNV289ZoCbVBx98UCFFIDU1VRtVPp2gRAhRZTJ7eS6Xi6uuuoo1a9bw7rvvMnbs2Crblh9R7d27d7X7AmpSPqijgdWZogzYv38/69atw2q1al9Ga1SN1nuXJEmSpBpUU9tbnY+8Xq9o3bq1AMSPP/54zq7rdrvF2LFjhaIo1dpW5tFHH9W2zTpXHnnkkVrdF1GOXEmSJElSI6TT6bQRvQULFpyTa/p8Pq6//nr++9//8n//93+Vbll0ou+//x5AW5hQ24qLi3nppZcwm821UtQUZIV2SZIkSWq0rr32Wv71r3/xzTffsGHDhpNu1VMT5s6dy0cffcTll19OWFgY7733XtD9ffv21VYVg7pKfN26dYwYMYLLLrusVvsWsHDhQo4fP87dd99daztKyOBKkiRJkhopRVF47bXX+Pzzz7WaTrUpsJLwp59+4qeffqpw/9tvvx0UXJnNZm0D6HPFZrMxb948bQVxbah304Lz5s3TlmQGfgLVbEFNpps3bx5JSUlYrVYGDBjAtm3bgs7hdDq54447tFUXY8aMqbAqJjc3l5SUFOx2O3a7nZSUlArlDg4dOsTo0aOx2WzExMQwa9as06rdI0mSJEl1rXv37sybN09bPVibVq1addJtfKZPn17rfTiV22+/nYcfflirdVYb6l1wBXDBBReQlpam/QR25gZ1U8jnnnuOhQsXsnHjRhISEhg6dCiFhYVam9mzZ7N06VKWLFnCmjVrKCoqYtSoUdpyTVCXXqamprJs2TKWLVtGamoqKSkp2v1er5eRI0dSXFzMmjVrWLJkCZ9++ilz5sw5N0+CJEmSpH1Yn8m2V5JUZ2olTf4sPPzww6Jbt26V3ufz+URCQoJYsGCBdltpaamw2+3i1VdfFUIIkZeXJ4xGo1iyZInW5ujRo0Kn04lly5YJIYTYvn27AMT69eu1NuvWrROA2LlzpxBCiK+//lrodDpx9OhRrc2HH34ozGazyM/Pr7HHK0mSJElS41Ivc6727NlDUlISZrOZXr168cQTT9CqVSv2799Peno6w4YN09qazWb69+/P2rVrufnmm9m8eTNutzuoTVJSEp07d2bt2rUMHz6cdevWYbfbgxL7evfujd1uZ+3atbRv355169bRuXPnoDonw4cPx+l0snnz5qDdwctzOp1BWw34fD5ycnKIjo6u8V3dJUmSJEmqHUIICgsLSUpK0vborK56F1z16tWLd955h3bt2pGRkcFjjz1G37592bZtm7ZDeXx8fNAx8fHxHDx4EFB3MTeZTNrmteXbBI5PT0+vdOf0uLi4oDYnXicyMhKTyXTSndLnz5/PI488cpqPWpIkSZKk+ujw4cM0bdr0tI6pd8HVFVdcof1/ly5d6NOnD61bt2bx4sVa5dYTR4CEEKccFTqxTWXtz6TNie677z7uuusu7ff8/HyaNWvG4cOHtQ1UJUmSJOl8IwQ4/anPZj3Ux8mc+fPnazXBLrvsMlavXn1GuzrUu+DqRDabjS5durBnzx7GjRsHqKNKiYmJWpvMzExtlCkhIQGXy0Vubm7Q6FVmZiZ9+/bV2gQ2dS0vKysr6DyBTR0DcnNzcbvdFUa0yjObzZjN5gq3h4eHy+BKkiRJOm/V9+DqkUce0QKrYcOGcdFFF7F69eozSumpl6sFy3M6nezYsYPExERatmxJQkIC3333nXa/y+Xixx9/1AKnHj16YDQag9qkpaWxdetWrU2fPn3Iz8/nl19+0dps2LCB/Pz8oDZbt24lLS1Na7N8+XLMZvMpN6uUJEmSJKnheOSRR7QVqUOHDtVigTNV70au5s6dy+jRo2nWrBmZmZk89thjFBQUMG3aNBRFYfbs2TzxxBO0bduWtm3b8sQTTxASEqLtam2327nxxhuZM2cO0dHRREVFMXfuXLp06cKQIUMA6NixIyNGjGDmzJm89tprANx0002MGjWK9u3bA2rU2qlTJ1JSUnj66afJyclh7ty5zJw5U45ASZIkSVIj8c9//lMLrIYNG3bWgRXUw+DqyJEjXHfddRw/fpzY2Fh69+7N+vXrtRL1f//73ykpKeHWW28lNzeXXr16sXz58qA50eeffx6DwcDEiRMpKSlh8ODBLFq0CL1er7V5//33mTVrlraqcMyYMSxcuFC7X6/X89VXX3HrrbfSr18/rFYrkydP5plnnjlHz4QkSZIkSbXpn//8p7a/YE2MWAUoQghRI2eSKlVQUIDdbic/P7/KES+fzycrv0unxWg0Bn1ZkCRJqu/qW87Vo48+ykMPPQSogVW/fv2C7i8tLWXBggUn/fyuSr0buTrfuFwu9u/fj8/nq+uuSA1MREQECQkJsn6aJEnSaTpVYHW2ZHBVh4QQpKWlodfrSU5OPu0iZdL5SQiBw+EgMzMTIGjlrCRJknRyjz32WK0GViCDqzrl8XhwOBwkJSUREhJS192RGhCr1QqoJUbi4uLkFKEkSVI1lM+xGjJkSK0EVtAASjE0ZoGNpE0mUx33RGqIAgG52+2u455IkiTVf/PmzQtKXr/00ktr7VoyuKoHZM6MdCbk60aSJKl65s2bp21NV1tTgeXJaUFJkiRJkholIQTz5s3jn//8J1BzdaxORQZXkiRJkiQ1OkIIHnroIR577DEAhg8fTp8+fc7JteW0oHTapk+fru3zeKLffvuNUaNGERcXh8VioUWLFkyaNInjx48DcODAARRFqfBz/fXXn8NHIEmSJDVmQggefPDBOgmsQI5cSTUoMzOTIUOGMHr0aL799lsiIiLYv38/X3zxBQ6HI6jtihUruOCCC7TfA6vfJEmSJOlsCCH4xz/+wRNPPAHAiBEj6N279zntgwyu6pFA/aK6EBISctYJ0mvXrqWgoIA33ngDg0F9abVs2ZJBgwZVaBsdHU1CQsJZXU+SJEmSyhNC8MADDzB//nygbgIrkMFVveJwOAgNDa2TaxcVFWGz2c7qHAkJCXg8HpYuXcrVV18tV7NJkiRJ54wQgvvuu48nn3wSgCuuuIJevXrVSV9kzpVUY3r37s3999/P5MmTiYmJ4YorruDpp58mIyOjQtu+ffsSGhqq/fz222910GNJkiSpMRBCcO+992qB1ZVXXllngRXIkat6JSQkhKKiojq7dk14/PHHueuuu/j+++9Zv349r776Kk888QQ//fQTXbp00dp99NFHdOzYUfs9OTm5Rq4vSZIknV+EENxzzz08/fTTAIwcOZKLL764Tvskg6t6RFGUs56aqw+io6O55ppruOaaa5g/fz4XXnghzzzzDIsXL9baJCcn06ZNmzrspSRJktTQCSG4++67efbZZ4H6EViBDK6kWmYymWjdujXFxcV13RVJkiSpERFCMHfuXJ577jkARo0aRc+ePeu4VyoZXElnJD8/n9TU1KDb/vjjD5YvX861115Lu3btEELw5Zdf8vXXX/P222/XTUclSZKkRkcIwZw5c3j++ecBdcSqvgRWIIMr6QytWrWKCy+8MOi2lJQUQkJCmDNnDocPH8ZsNtO2bVveeOMNUlJS6qinkiRJUmMihOBvf/sbL7zwAlC/RqwCZHAlnbZFixaxaNGiMzq2RYsWCCFqtkOSJEnSeeHEwGrMmDFcdNFFddyrimRwJUmS1Ih4fAKn24fLI/D4BF6fwCcgUHZOr1Mw6MCo12E2KBj1iqxJJzUIQgjuvPNOXnrpJQBGjx5dLwMrkMGVJElSg+cTAofLR7HTi9Nz8pFhtzdwvw8AnQJWo44Qkx6LUQZaUv0khGDWrFksXLgQqL8jVgEyuJIkSWqghBAUOr0UlHjxlYupTHoFk0HBqNeh14HOHzAJIfD61NEtl8eH06uOahW7fBS7fOgVCLXoCTPr0elkkCXVD0II7rjjDv7v//4PRVHq9YhVgAyuJEmSGiCnx0d2kQePP6rS6yDMrCfErMdQzcBICIHTI3C4vDhcPrwC8kvUYC3MoifcqtcCM0mqC0IIbr/9dl5++WUURWHMmDEVFlPVRzK4kiRJakCEEBSWeskr8QKgV8BuNWAz6057Sk9RFCxGBYtRR2SIOrVYUOrF7RUUlHopcnqJCDFgM53+uSXpbPl8Pm6//XZeeeUVFEVh7NixdO/eva67VS0yuJIkSWoghBDkODwUO9V8qRCTjsgQA/oamMJTFAWbWU+ISUeJ20eew4PHBznFHhwuhSibsdojYpJ0tnw+H7feeiuvvfYaiqIwbtw4unXrVtfdqja5cbMkSVIDIIQgu7gssIoMMRBtq5nAqjxFUQgx6Um0m4iw6lGAUrcgPd9Fictbo9eSpMr4fD5uueWWBhtYgQyuJEmS6j0hBLkODw6XGljFhBoIs+hrdapOURTCrQYS7EZMegWfgKwiD/klHlmrTqo1Pp+Pv/71r/z73/9GURSuuuqqBhdYgZwWlCRJqveKnD6KnGWBVYhJX2Vb4S/LkO9wU+L24XT78PgEiqKuGjQbdFiMOsIsekItpx75Mup1xIcbyXV4KHL6yC/x4vEKomwGmYcl1Sifz8fNN9/MG2+8oQVWXbt2retunRE5ctUYeL2wahV8+KH6X2/jGLpftGgRERERdd2Najlw4ACKolTYb1GSzpbT4yPX4QEgwqqvMrDy+gTp+U62HCliZ1oxafku8hweStw+3F6ByyModfvIL/GQUeBib2YJvx8q5M9MB/kO90lHoxRFzbmKClG/jxe7fBwvkiNYUs3x+XzMnDlTC6zGjx/fYAMrkMFVw/fZZ9CiBQwcCJMnq/9t0UK9vZZMnz4dRVGLDRqNRuLj4xk6dChvvfUWPp+vxq4zadIkdu/eXWPnq03JycmkpaXRuXPnah8zb968BrPyRaobPiHILlIDqxCTOtp0IiEEmQUuthwu5GiuE7dXoFPUnKzkKDNt4qx0SLTRITGEtvEhNIuyEBNqxGRQEECew8PezBK2Hysmt/jkQVaoRU9MqBpglbhlgCXVDK/Xyw033MBbb72lBVZdunSp626dFTkt2JB99hlcfTWc+OZ29Kh6+yefwPjxtXLpESNG8Pbbb+P1esnIyGDZsmXceeedfPLJJ3zxxRcYDGf/0rJarVit1hrobe3T6/UkJCTUdTekRibf4cXjE+gViAqpOA3n9vo4kFVCQak6Wm0x6kiwm4i0GauuT+X/kxJCUOL2kV3oJrvYRanbx76sEkLNeprHWLAYKx8hCzHpiQ1TyCpUpx2ziz1EyylC6Qx5PB6mTZvGBx98gE6nY8KECVxwwQV13a2zJkeuGiqvF+68s2JgBWW3zZ5da1OEZrOZhIQEmjRpwkUXXcT999/Pf//7X7755pugTZ3z8/O56aabiIuLIzw8nEGDBvH7779r9//+++8MHDiQsLAwwsPD6dGjB5s2bQIqnxZ87LHHiIuLIywsjL/85S/ce++9QaM/06dPZ9y4cTzzzDMkJiYSHR3NbbfdhtvtrvKxBEaQXnvtNZKTkwkJCeGaa64hLy9Pa+Pz+fjnP/9J06ZNMZvNdO/enWXLlmn3nzgtuGrVKhRFYeXKlfTs2ZOQkBD69u3Lrl27tMf2yCOP8Pvvv2ujgGe6GbbUOLk8Pgqd6t9vlM1YoWJ6qdvHzrRiCkq9KAokR5nplGQjOtRUrcKfgVWBydEWujQNI8FuQqdAkdPL9qPFpOc7qxyVshp1xPpHsAK1sSTpdHk8Hq6//notsLrmmmsaRWAFMrhquFavhiNHqr5fCDh8WG13jgwaNIhu3brxmX9KUgjByJEjSU9P5+uvv2bz5s1cdNFFDB48mJycHACmTJlC06ZN2bhxI5s3b+bee+/FaDRWev7333+fxx9/nCeffJLNmzfTrFkzXnnllQrtfvjhB/78809++OEHFi9ezKJFi04ZuOzdu5ePP/6YL7/8kmXLlpGamsptt92m3f/CCy/w7LPP8swzz/DHH38wfPhwxowZw549e0563gceeIBnn32WTZs2YTAYmDFjBqBOec6ZM4cLLriAtLQ00tLSmDRp0knPJZ1f8krU6UCrUYfVFPxWXer2sju9GJdHYDYodEy0ERduPuPRI71OoUmkhQuahBJu0SOAo7lO9mWV4PVVEWCZ9FoOVn6JF4cs0yCdBrfHzbXXXstHH32EXq9n4sSJdOzYsa67VWPktGBDlZZWs+1qSIcOHfjjjz8ANcjZsmULmZmZmM1mAJ555hk+//xzPvnkE2666SYOHTrE3XffTYcOHQBo27Ztled+6aWXuPHGG7nhhhsAeOihh1i+fDlFRUVB7SIjI1m4cCF6vZ4OHTowcuRIVq5cycyZM6s8d2lpKYsXL6Zp06batUaOHMmzzz5LQkICzzzzDPfccw/XXnstAE8++SQ//PAD//rXv/i///u/Ks/7+OOP079/fwDuvfdeRo4cSWlpKVarldDQUAwGg5xOlCoodfsodatBTURI8Nu02+tjT7oDt1dgMepoFx+C0VAx+DqSV0pOiZuCEjdOrw8FBYNeIdxiIMJiJNFuxm4J/iJjMuhoEx/C8SI3h7NLyXN42JVWTJv4EEyGit/FQy163F51f8PsYg8mvQ6DXk4PSqc2NSWFTz/9FL1ez6RJk2jXrl1dd6lGyZGrhioxsWbb1RAhhPbtefPmzRQVFREdHU1oaKj2s3//fv78808A7rrrLv7yl78wZMgQFixYoN1emV27dnHJJZcE3Xbi7wAXXHABen1ZvkhiYiKZmZkn7XezZs20wAqgT58++Hw+du3aRUFBAceOHaNfv35Bx/Tr148dO3ac9LzlV7sk+v8tTtUXScr3j1qFmnUYywUrQgj2Z5Xg8grMBh3tEoIDq/xSNz/vz+Gr7ZmkHivgUG4JeaXqikGH20tBqYcjeaVsTS/ku13HWb4ri33ZxfjKjU4pikJsmIl2CSEYdAolbh+70x24PJUvVokI0WPSKwgB2adIiJekgC+//BKDwcC1117b6AIrkCNXDddll0HTpmryemVvZoqi3n/ZZee0Wzt27KBly5aAmqeUmJjIqlWrKrQL5FLNmzePyZMn89VXX/HNN9/w8MMPs2TJEq666qpKz3/itEdlb+QnTisqinLaqxgD1yl/vcqufappmPJ9CbStyRWVUuPj8vhwetTXdbgl+C06Pd9FYakXnQJt4qwY9Wpg5fUJtqUXsiermMBfRGSIkaRwdXTKYtRp584v9XC82EV6oZOCUg+/HilgZ0YxnRPDSI6waK/TUIuBDok2dmcU4/SoAVb7xBDtmgGKohATaiQt34XTo+5JaLfKjxapIqezFAwWAAwGAxMmTKB169Z13KvaUa9HrubPn4+iKMyePVu7rXwZgMBP7969g45zOp3ccccdxMTEYLPZGDNmDEdOyE/Kzc0lJSUFu92O3W4nJSUlKIEZ4NChQ4wePRqbzUZMTAyzZs3C5XLV1sM9PXo9vPCC+v8nfsAHfv/Xv9R258j333/Pli1bmDBhAgAXXXQR6enpGAwG2rRpE/QTExOjHdeuXTv+9re/sXz5csaPH8/bb79d6fnbt2/PL7/8EnRbIPn9bB06dIhjx45pv69btw6dTke7du0IDw8nKSmJNWvWBB2zdu3as8oRMJlMeBtJTTKp5gSS2ENMwVNsJS4vx/KcACRHWbD46125PD5++jOb3f7AKinczLD2MQxuG0PH+DCS7BaiQkxEhZhICLfQPi6Ufi2jGH1BPN2SwrEYdDjcXn45lMf6g3mUustek2ajjnbxNkx6BafHx58ZJUGjXAEGvUKkrSz/yu2Vo1dSsJKSEiZOnKj9PmnSpEYbWEE9Dq42btzIv//970qLiI0YMUJLAk5LS+Prr78Oun/27NksXbqUJUuWsGbNGoqKihg1alTQB9nkyZNJTU1l2bJlWgJzSkqKdr/X62XkyJEUFxezZs0alixZwqeffsqcOXNq70GfrvHj1XILTZoE3960aa2WYQA1gE1PT+fo0aP8+uuvPPHEE4wdO5ZRo0YxdepUAIYMGUKfPn0YN24c3377LQcOHGDt2rX84x//YNOmTZSUlHD77bezatUqDh48yM8//8zGjRurDFjuuOMO3nzzTRYvXsyePXt47LHH+OOPP2pkCbjFYmHatGn8/vvvrF69mlmzZjFx4kQtH+ruu+/mySef5KOPPmLXrl3ce++9pKamcuedd57xNVu0aMH+/ftJTU3l+PHjOJ3Os34cUsPm8wkc/krsoeayL0ZCCA5llwJqDlZ0qDoi6nB5+WFvNtkON0a9Qt8WkfRtGUW4pfJFIeWZ9Draxtq4omMcneJDUYCj+aWs2H2cXEfZ6lqzUUfbhBD0Oih2eTmQXVLpiLHNpMNiUP8WA0VPJQnA4XAwevRoVq5cqd3WokWLuuvQOVAvx26LioqYMmUKr7/+Oo899liF+wNlACqTn5/Pm2++ybvvvsuQIUMAeO+990hOTmbFihUMHz6cHTt2sGzZMtavX0+vXr0AeP311+nTpw+7du2iffv2LF++nO3bt3P48GGSkpIAePbZZ5k+fTqPP/444eHhtfToT9P48TB2rLoqMC1NzbG67LJaH7FatmwZiYmJGAwGIiMj6datGy+++CLTpk1Dp1NjdkVR+Prrr3nggQeYMWMGWVlZJCQkcPnllxMfH49eryc7O5upU6eSkZFBTEwM48eP55FHHqn0mlOmTGHfvn3MnTuX0tJSJk6cyPTp0yuMZp2JNm3aMH78eK688kpycnK48sorefnll7X7Z82aRUFBAXPmzCEzM5NOnTrxxRdfnDQB/1QmTJjAZ599xsCBA8nLy+Ptt99m+vTpZ/1YpIar2OVDAEa9gtlQ9qUhv8RDkVOdDkyOUqfuPF4fa/bnUOj0YDXquLRlFHZrWVBV6vZyJL+UYwVOilwedesbvY7EcDPJERZsJvXtX69T6JQQRmK4hV8O5VLo9PLjn9n0bhFJQpi6EMVi1NM6NoTdGQ5yiz2Emt3EhZuC+q4o6uhVWr6bUrePEpevwipH6fxTVFTE6NGjWbVqVYPZcaMmKKIeZh9OmzaNqKgonn/+eQYMGED37t3517/+BajTgp9//jkmk4mIiAj69+/P448/TlxcHKBOTQWW+kdGRmrn7NatG+PGjeORRx7hrbfe4q677qowDRgREcHzzz/PDTfcwEMPPcR///vfoJpMubm5REVF8f333zNw4MBK++50OoNGIAoKCkhOTiY/P79CQFZaWsr+/ftp2bIlFovlbJ6y89bQoUNJSEjg3XffPeNzzJs3j88//7zBbV0jXz+NT3qBC5dHEGHVE+7PWxJCsONYMSVuHwl2E00iLQghWH8wj6P5pVgMOga2jdaCpVyHm7UHc/k9rbDKMgoAbaJDuDjZTuvoEG301+31sfZALllFLnQK9G0ZpQVYABn5To7kOlGAjkk2rJVsxZNb7KHQ6cWoV0gIN8riouexwsJCRo4cyerVqzGbzdxwww08/5JaPue5p544af3B+qC0tJQFCxZU+vl9KvVu5GrJkiVs3ry5ylyaK664gmuuuYbmzZuzf/9+HnzwQQYNGsTmzZsxm82kp6djMpmCAiuA+Ph40tPTAUhPT9eCsfLi4uKC2sTHxwfdHxkZiclk0tpUZv78+VWOvEhnx+Fw8OqrrzJ8+HD0ej0ffvghK1as4LvvvqvrrknSWfP49/8DsJWbEswvUVf76RSID1cDnf05Do7ml6Io0KdFJDaTASEEGw7lsXJvNoGYKtJqpKndQoTVgEAtEHo0v5SsYhd7sx3szXbQPMLCyI5xRNtMGPU6LmsZxYZDauC2/kAu/VtHExmijojFhZsoLPWSX+Lh4PFS2ieGVAiewq16ilxq3lWJ23fSTaalxqugoIArrriCtWvXYjabSUlJITk5ua67dc7Uq+Dq8OHD3HnnnSxfvrzKb+LlCy127tyZnj170rx5c7766ivGnyTH6MSVXZV9mzqTNie67777uOuuu7TfAyNX0tkLTDM+9thjOJ1O2rdvz6effqpN/0pSQ1biVnOtzAYFfblq7Bn56iKa2DATBr1CidvL78cKAeiSGEa0zYTL6+O/2zLYmVkMQKsoK5e2jKJZudV/5eU4XGw6nM+vRws4mFfKaxsOM6xtDD2T7eh0Cr2aRbB6fw5ZRS5+3p/D4HYxWI16FEWhWbSFbUeLKHZ5ySqsOD2o1ymEmfUUlHopKPFiNerk6NV5Ji8vjxEjRrBhwwYsFgspKSk0OTE3uJGrVxPimzdvJjMzkx49emAwGDAYDPz444+8+OKLGAyGSldWJSYm0rx5c61SdkJCAi6Xi9zc3KB2mZmZ2khUQkICGRkZFc6VlZUV1ObEEarc3FzcbneFEa3yzGYz4eHhQT9SzbBaraxYsYKcnByKi4v59ddfTxpQV9e8efMa3JSg1PiU+oMrq7HsbbnE5aXIv3owEMRs9U/3RYcYaRtjw+sTfPJHOjszi9ErcEWHWCZfmETzSGuVQU1UiIlh7WO5uU8zWkeH4PUJvtmVxXe7jyOEQKdTk+PDLQZKPT5+OZSnJbGbDDqaRKpffo/lOfFUsjIwzKJHAVxeoZWVkM4Pubm5DB06lA0bNmC1Wpk6dep5F1hBPQuuBg8ezJYtW0hNTdV+evbsyZQpU0hNTQ0qDBmQnZ3N4cOHtQKNPXr0wGg0Bk0VpaWlsXXrVvr27QuoBSLz8/ODEqE3bNhAfn5+UJutW7eSVq7C+fLlyzGbzfTo0aNWHr8kSecnIQSl/iKdlnLB1fEiNSfFbjVgMujIL3FzMLcEgK5J4SiKwre7s/gz24FBp3D9RU3o2dSuBVVFTg8bDubx9fZMlu/M4ud9ueSVlOW5RFqNXNc9kUFtogFYfyiP/27LRAiBUa+jd/NI9DqFrCIXu/yjYgCxYWrtLK9PkJZfcZWrXqdgM6uPQ+47eP7Izs5m8ODBbNq0iZCQEKZNm6YtCDvf1KtpwbCwMDp37hx0m81mIzo6ms6dO1NUVMS8efOYMGECiYmJHDhwgPvvv5+YmBit6KTdbufGG29kzpw5REdHExUVxdy5c+nSpYs2fdSxY0dGjBjBzJkzee211wC46aabGDVqFO3btwdg2LBhdOrUiZSUFJ5++mlycnKYO3cuM2fOlKNRkiTVKKdHIAToFLSK7EIIcovVQCgmTM152pmpbvXUxG4h2mbij7QCNh8pAGB8lwSaRVoB2JtVzIe/prEjo4jKxo1aRlkZ2SmOPi0j0CkK/VpEYrcY+O+2DLakFxJq1jOkbQzhFgMXNgln0+F8tmcU0iTCQpjZgKIoNI2ysDfDQVahiwS7qUJx0TCLniKnj1K3D49XyG1xGrmsrCyGDh3K77//rgVWJ5vlaezq1cjVqej1erZs2cLYsWNp164d06ZNo127dqxbt46wsDCt3fPPP8+4ceOYOHEi/fr1IyQkhC+//DJo5Ov999+nS5cuDBs2jGHDhtG1a9egFWd6vZ6vvvoKi8VCv379mDhxIuPGjeOZZ545p49ZkqTGLzAlaCmXn1TsVJPCdYpaqd3h8nI4T6111SEulGKXl2W7jgNweaso2sfacHl8vLn+MA9+s4ft/sCqid1CnxYR9Gpup2W0Gnztzylh4ZqDPPj1bg7mqCNhnRPCGNVRXeiz7mAeqcfUoK15pJX4MDM+Ab8dydf6HG7RYzPpEaIsL6w8o16nlZMolps6N2qZmZkMGjSI33//HZvNxvTp08/rwArq2chVZcpvnWK1Wvn2229PeYzFYuGll17ipZdeqrJNVFQU77333knP06xZM/73v/9Vu6+SJElnwhmYEiy/T6B/f0F7iAGdTmFftgOA2FATkSFGvt6RidPjIyHMzGUtI3F6fDz7w362pKnJ7pe1iuSa7onEhgYnnOeXuPl+TzZfbstkX3YJDy/bwy39mtGreQTdksLJK3Hz0/5cvtmZRRO7hVibiQubhPPtriwyi9RtcxLCzCiKQkKEiT8zS8gqdJEYYQ5KxAd11aPT48Hh8mG31trTJ9Wh9PR0Bg8ezPbt2wkNDWXatGnExsbWdbfqXIMauZIkSWpshCgrwWA2lgUnef4q5xFWI0IIDuaqwVWr6BCyi138elQdWRrWLgafgBd+PMCWtELMBh33DWnFrZc2rxBYAditRq7qmsBz4zrSJTEMp8fHv348wHflRsFaR4fg8Qm+3JaBEIJQs4E20TYAtqYVaMntdqsBi1GHT0B2UcWaRSH+/DG3V1S58bPUcB07dowBAwawfft2wsLCuOGGG2Rg5VfvR67OR/n5+TgcjnN2vZCQEOx2+zm7niRJZdxegUDdEtTgH/lxeXzaVGG41cDxYhclbh9GnUJSuIWvdmQigLYxITSPtPLB5mP8drQAo17h3sGt6BAfGnSNykrIRFiN3DO4Fe9sPMryXcd5e8MRIqwGLm4WwehOcby89iBHC5z8erSAHk3tdIgPZV+Og7wSDxmFThLC1TIPsWEmDueUcrzQRWxYcNFQnU7BatRR4vbhcPkwGeT3+cbiyJEjDBo0iD179mC327Xi35JKBlf1TH5+PgsXLsTjOXd7cxkMBm6//fZzEmAtWrSI2bNna9XxG2p19FOZPn06eXl5fP7553XdFamec/lLGZj0ihaYFJaqf/+BzZuP5qu5Vkl2C6UeL1vS/VN/LaM4kOPgf9szAbjt0uZaYHUkt4Svt6SzfHsmR/JKMeoVIkKMDO4Qy6guCbSJC0WvU5h+SRO8QrBydzb/t+YQj19poUmEhYGto/l293F++DObCxJCsRj0tIoKYc/xYnZlFZMQrpZjiLIZOZJTSol/y5sQc/Cq7hCTGlyVuH1E1O5TKZ0jhw4dYuDAgezbt4+IiAimTZtWoXD3+U5+jahnHA7HOQ2sADwez2mNlE2fPh1FUSr87N2795THTpo0id27d59NdxuEF154gUWLFtV1N6QGwO0JBFdlb8dF/vIFYRa18npagVruoIndwh9phfgEJIWbSQo3s+iXowgBvZtH0Kt5BACf/nqMa1/fyFtrD3HEnwTv9gqyCl0s2XiU69/azIJluyl1e1EUhRsuaUqnhFCcHh8v/HQAt9dHz6Z2YmxGStw+NhxSE9nbxIYAkFXkoqBUnQY06BXsIWVb75zIUm5q0HOS7XikhuHAgQP079+fffv2ERkZyfTp02VgVQkZXElnZMSIEaSlpQX9tGzZ8pTHWa3WSrceOhsuV8WVSmeiJve5stvt59UmpdKZc/vU6T9juVIFgcKhoRZ1K5lil7ppc1yoiT/8CesXJqklEnZlFmM26Li+ZxI+IXh+xV6eXr4Hj09wUTM7/xzTkS9v680Xt/bmmas7M6BdDArweWoaN72XSnp+KXqdwh2XNSfcYuBwXinf7MhCp1Po30qtf/XLoTxcXh82k4EkbQueEq2/ge1xcos9nLhdrV6nYPI/tsBUp9Qw7du3j/79+3PgwAGioqKYPn26fJ+rggyupDNiNptJSEgI+tHr9Tz33HN06dIFm81GcnIyt956K0VFRdpxixYtOukf44ABA5g9e3bQbePGjWP69Ona7y1atOCxxx5j+vTp2O12Zs6cCcDatWu5/PLLsVqtJCcnM2vWLIqLi6nKvHnz6N69O2+99RatWrXCbDYjhCA/P5+bbrqJuLg4wsPDtSXG5T322GPExcURFhbGX/7yF+699166d++u3T99+nTGjRun/e50Opk1axZxcXFYLBYuvfRSNm7cqN2/atUqFEVh5cqV9OzZk5CQEPr27cuuXbuq7L/UOLj904KBOlA+n9CCkBCTnqwiddQqKsREfqmHTP+myh3jQ/l8i7rTxBUdY4m2mVi87hAfbToKwC39W/J/13VjWKc4YsPMxIWbubRNNAvGX8AL13Ylwmpkd0YRdyz5g/wSNxFWI1N6qAUfl/6RQa7DTYc4G5FWI6UeH7/7SzO0iFJHrw7nlpQltocYUFBXPVYWQJn9o1dOmdTeYO3Zs4f+/ftz6NAhoqOjtfdfqXIyuJJqlE6n48UXX2Tr1q0sXryY77//nr///e81fp2nn36azp07s3nzZh588EG2bNnC8OHDGT9+PH/88QcfffQRa9as4fbbbz/pefbu3cvHH3/Mp59+quV9jRw5kvT0dL7++ms2b97MRRddxODBg8nJyQHUGmmPP/44Tz75JJs3b6ZZs2a88sorJ73O3//+dz799FMWL17Mr7/+Sps2bRg+fLh2zoAHHniAZ599lk2bNmEwGJgxY8aZP0lSvSeEwOuPNwIjV4E9Bg06BZNBR1aROjIbF2pi93H1y0KLSCsZhU72ZZdg0Clc0TGWPRlFvLHmIAD3jmjHtD7Nqtz+5pIWkSyafhEJ4WYO55bw8Jc78PoEl7aKpE1MCKUeH//dmoFOUbgkWf0A/fWoukowIcyMUa9Q6vGR7S9yqtcphFnUXKuCkoppDYF6V063nBZsiHbs2EH//v05cuQIMTExTJ8+XRbTPgUZXEln5H//+x+hoaHazzXXXAPA7NmzGThwIC1btmTQoEE8+uijfPzxxzV+/UGDBjF37lzatGlDmzZtePrpp5k8eTKzZ8+mbdu29O3blxdffJF33nmH0tLSKs/jcrl49913ufDCC+natSs//PADW7Zs4T//+Q89e/akbdu2PPPMM0RERPDJJ58A8NJLL3HjjTdyww030K5dOx566CG6dOlS5TWKi4t55ZVXePrpp7niiivo1KkTr7/+OlarlTfffDOo7eOPP07//v3p1KkT9957L2vXrj1p/6WGLRBYKajV2UHdTxDAalLfnrP9eUzRNhN/+mtdtYmx8eOfamDeM9mOzaTnsa934fUJ+reLYWy3hFNeO8Fu4ekJnTEbdKzfl8vidYfQKQqTLlS3Evt+dzZ5JW66JIah1ylajSudTiHRn8x+tKDstRluVfOuKg+u1Mfi8Ql8QgZYDckff/xB//79SUtLIy4ujunTpwcV7ZYqJ4Mr6YwMHDgwaA/IF198EYAffviBoUOH0qRJE8LCwpg6dSrZ2dknnZ47Ez179gz6ffPmzSxatCgo4Bs+fDg+n4/9+/dXeZ7mzZsH1WXZvHkzRUVFREdHB51r//79/PnnnwDs2rWLSy65JOg8J/5e3p9//onb7aZfv37abUajkUsuuYQdO3YEte3atav2/4H9MjMzM6s8t9SwBRK89bqylYLlq7U7PT4c/mArkA8F6sjVhgNqkvllrSP5ZmsGuzKKCDMb+Puwttq5XB4fS9YeZN4nW5j/+TbeXrWPotKy3MK28aHcO6IdAIvXHSI9v5QLEkJpExOC2ydYtTcHq1FP+1i1xtW2DHWKP5B3lV4uuArzB1dFTm+leVeBfH2X3Mi5wfj1118ZOHAgWVlZJCYmMn36dEJDQ099oCRLMUhnxmaz0aZNm6DbDh48yJVXXslf//pXHn30UaKiolizZg033nhjtZPFdTpdhTfmyo612WxBv/t8Pm6++WZmzZpVoW2zZs1O+jhOPE9iYmLQzgAB5XPFTpxuObHPld1X2TEn3mY0Gitcw+eTeSqNVSC4Kl/+yVluA+fAJss2k57jxS48PkGIUU9BiZvcEjdWo47OCaE8++0eAKb1bUa0v3Do99syePDjPziYFfzF5sVlu3hwfGeuurgpiqIw4oI4vvwjjV8P5fPv1Qd4aFQHhrSPYe/xQ3y/J5sxnePoGBfK9owidmQWMbhNNHFhZhSg0OnF4fISYtJjNerQKeATVFqSwaTXUeLz4fL4gjanluqnDRs2MGLECPLy8mjSpAnXX389Vqsss19d8hUu1ZhNmzbh8Xh49tln6d27N+3atePYsWOndY7Y2FjS0tK0371eL1u3bj3lcRdddBHbtm3TpgnL/5hMFatUn+w86enpGAyGCueJiYkBoH379vzyyy9Bx23atKnKcwb6sGbNGu02t9vNpk2b6NixY7X7JjU+Hn8yu77cSkGnf+TKbNBR4K93ZbcaOJqvJrY3tVv4PU0dQeqaFMa+4w7+zFJXDI7tpo52fvdHGtNeXsfBrGJiw83MHNSaGwa0okWsjawCJ7MWbebpL9VRU0VRuGNgawC+3ZbBsbwSejePwOLP99p73EGbmBD0CuSVeMh2uDHpddoKwaxip3Yemz+gclSyl6DJn3cVqOsl1V9r1qxh6NCh5OXl0axZM1JSUmRgdZpkcCXVmNatW+PxeHjppZfYt28f7777Lq+++uppnWPQoEF89dVXfPXVV+zcuZNbb71VKzh6Mvfccw/r1q3jtttuIzU1lT179vDFF19wxx13nNb1hwwZQp8+fRg3bhzffvstBw4cYO3atfzjH//QAqg77riDN998k8WLF7Nnzx4ee+wx/vjjjyqTh202G7fccgt33303y5YtY/v27cycOROHw8GNN954Wv2TGhevNnKlvnaEENrIldlYFlyFm42kF6pBTFK4mW3+cgxdEsP4Zqu6YvDyttGEWQwczXEwa9FmhIAJlySzet4QHr66C49O7MrKfwzib1e2B+DFZbv5fOMRADomhtGrZSReAUs2HsVs0NHDn8i+4UAeJr2OZpHqh2tgj8MYm/qlJZDUDurqRqg8uAok7LtlcFWvff/99wwfPpzCwkJatGjBlClTsFgsdd2tBkcGV/VMSEgIBsO5na01GAyEhISc9Xm6d+/Oc889x5NPPknnzp15//33mT9//mmdY8aMGUybNo2pU6fSv39/WrZsycCBA095XNeuXfnxxx/Zs2cPl112GRdeeCEPPviglrdUXYqi8PXXX3P55ZczY8YM2rVrx7XXXsuBAwe0Xd6nTJnCfffdx9y5c7nooovYv38/06dPP+kb0IIFC5gwYQIpKSlcdNFF7N27l2+//VYW3zvPecvlXAV+D9TZNBl0FLnU4CrMrCfTX5KhfGJ7x3gbP+5W9wQc2jEOIQRz3/uNwlIPF7WM5JmUCwm1lE01m4165ozqyO3D1Tyrez5IZV+mOgo2+ZKmAHyzNQOXx8fFzdTgKtW/h2ELf3B12F8tPipQ26pc4dBAEn5JJeUYAsGVxytOOo0u1Z1vv/2WkSNH4nA4aN26NVOmTMFsNtd1txokRchXea0qKCjAbreTn59fYelqaWkp+/fvp2XLlkEfzHJvwYZn6NChJCQk8O67756za1b1+pEajrR8F26vIDbUiNWkw+H0siOtGINeoVtyGN/syKTY5eXyVlG8sfEIXp9gTKc4FqzYh82k555BLUl5azNmg45v7+zLqm0Z/OXfv2Ax6ll+/0BaxVeefOzx+pj0ws9s2JvN0C4JvH1Lb7w+wdiX13O8yMWzV3fmwmYRzPxoCz4BL47vRLHLw7u/HiPcbODOy1pQ5PSwbGcWOgXGdUlApygUO73sTCvGoFPo1ix4RZkQgsO5almJJhEmLaCU6of//e9/TJgwAZfLRfv27bn66quDckBrgtFo5K6/3w/Ac089UaOFm2tDaWkpCxYsqPTz+1RkQns9ZLfbZbBTjzkcDl599VWGDx+OXq/nww8/ZMWKFXz33Xd13TWpgfFpI1fq7y5/bQaTXkEIgcOtTq/5hMDrE+gUtCT3ZpEWfj2YB8CFyXYsRj0frz8EwPT+LasMrAAMeh1PTelO/0dW8t2WdPZlFNEqPpTL28bw2W/HWPNnNv3aRNMyOoQ/jzvYnVlMT/9IVoHTg8PlxWbSo9cpeH2CYpeXMLNBS1T3+AQer9AKo4I6KqzXqeUnPD4hg6t65NNPP+Xaa6/F4/HQqVMnxo8ff85nUBobOS0oSacpMHV42WWX0aNHD7788ks+/fRThgwZUtddkxoQIQSB9COdUjZlBmDUq2UYAvMKDv80W4TVyLFAYnuEld+PqOUYLmwWQZ7Dxff+/KtJfZqf8vqt48MY2kWth/XOarVcSb/WUQBs2JcLQDt/CYbd/oT5SKs6kpFR5ERRFML8CeyBjab1OkWb/qusGnv56U+pfvjwww+ZNGkSHo+HLl26MGHCBBlY1QAZXEnSabJaraxYsYKcnByKi4v59ddfGT9+fF13S2pgyocXOv87cfmtcEo9ZasGC53+VYMWAxn+xPaEMBN7MtUyCx0Tw1i1LROPT9AuMYy2idUr8jjl0hYA/HfTETxeH92T7egUOJZfSlahk5bRap7VoVx1H8EYmxpcHS9Wp/dsJvVDuLhcArvJX1fCVVlwpQSCq2p1T6plixcv5vrrr8fr9dK9e3euuuoq9Hr9qQ+UTkkGV5IkSXWg/OBNYIKs/OpBZyXBVZjZQGahGthEhhg54g96WsfY+GmHWmx2cOdTV2cP6N8pjkibiawCJxv/zMFmNtAmVp1O3HasUFsheDivFCGEtkIwx1FWfwtOCK70ZQVMTxSY/pQjV3Xv3//+NzfccAM+n48ePXowZswYdDoZEtQU+UzWA3JNgXQm5OumYSsrLltWMLZ8xfay/CudVtrAZtJr2+H4fD4EavmDKJuRX/7MBqBPu5hq98Go19G/UxwAP/qDs3b+XK09mUUkhKkrxYpdXgqdXiL804J5/mlAq1ENrkrdZcGV0T9yVVnJhcD0p9wCp2699NJL3HzzzQgh6NWrF6NGjZKBVQ2TE6t1KDD86nK5ZIE26bQFVpTW9Ioe6dwIxBflP9J85YKrEncg/0ohr9Rftd2g0/KbAnsQJtotFJS4OeCvxH5Ry+DyHu+s2Mm6HWk0iQ7lghZRjOvTKqgm2+UdYvl84xF+2asGZ61i1bIsB7IdmA06okKM5DjcZBW5sFv8+wdqwZW/9IKnLLgK1OzyVDI6FRi5kgNXdeeZZ57h7rvvBqBv374MHTq0yhp90pmTwVUdCtSXysrKwmg0ym8OUrUIIXA4HGRmZhIRESFzJBqoQIBR/oOtLMFdLZcAarBSWi54EajTiA6neltsmIldx9SiokmRViJCynYk+HVvFn996QfKDxS99bfBXDewnfZ75+QIAHYdK0AIQdMI9Yve0Tx1yjHSH1zlOFw0iVBLfhT7629Vll+lBVeVjFxpWzrJ4KpOPP744/zjH/8AoH///gwYMEAGVrVEBld1SFEUEhMT2b9/PwcPHqzr7kgNTEREBAkJ1c+vkeqn8p9tgZErnU7BIwL5Vzot/yownWYtt+9gVIiJ/VlqIdA2J5RfWPjFHwgBFpOeVgnhbD+Uy//9b0tQcBUo2ZBf4ia32EWCXQ2gMgrUxPkI/2hVfqmHtsbgCuxm/1BU+S1ttBWBlUz9BaovyCntc0sIwUMPPcRjjz0GqDthXH755XXcq8ZNBld1zGQy0bZtW1wuV113RWpAjEajHLFq4LScq/K3+f+rU8pXby/LXwrs4W016rXpwXCrgTR/YntSVNlOC7lFTj77+U8Avps/jmaxobS+4V0278lkx6EcOjZTyy5YjHpiw81kFTg5lltCgj+JPb/EjdcnCDWrHxNFTq9Wx8orwO31aXWs3OWW/wUG4H2VDE8FHquMrc4dIQT33HMPTz/9NADDhg2jb9++ddyrxk8GV/WATqeTFbYl6TyjxRfloquygEvRps50iqLlLwVGg8yG8knuBo76g6uo0LIpwfU70nG6vbRJstOjTSyKotC/SxIrU4+weusxLbgCiAlTg6vsQhftEtVK1D6hjlAFtrQpdXsx6ctSF9xeoU0B+oTad0VRtKT1ygKowBSUjK3ODSEEs2fP5sUXXwTgyiuv5JJLLqnjXp0fZJKPJElSHQoaudLysMoCLZ2iaEGV8A8QGfSKtkLPbNRR5B/FspnLvi9v2qMWFO3dIUELai5up+6P+everKA+hPtXARaUuDHqFW1qr8Tt1ab+nF4fOkXRpvbcPp8WSEH5HLLg3ysjR65qn8/n45ZbbtECq9GjR8vA6hySI1eSJEn1RPmYo7JAK9BCryh4/XOEekXRkt8DCeYAWf6E9OZxZQVFk/01rLILSoOua/Yf5/R4URS1yrrXv4VNINAKTEnqFAWfEAgRnIyv9lEpFyzKCKqueL1e/vKXv7Bo0SIURWHs2LF07969rrt1XpHBlSRJUgNRfiqxfPDl00a5ytoGSjWYTWW5eWZ/QnqJf7VfgE4XPJWn5UYhtP/3nZAjJqg8X6yq36Vzw+PxMG3aND744AN0Oh1XXXUVXbp0qetunXdkcCVJklSPCVE2HqSUy2fSlytrYNRXLNwZE1j1l+vQbsvMV0ezosODczwDpRQC5/GUqxQfOKU2guU/RqcEr/o7cUm/QvDvUu1zuVxMmTKFTz75BJ1OxzXXXEPHjh3rulvnJRlcSZIk1aHyIzzlw5Gy5G+h5TEF/uvxCQzGsm1mzIbAiFRZPayW8Wpi+s7Dudpte47mAcFTheWPs5r0+ITQgjSjXhdUb0sIUVYuQlEov8FNYEJSnJB7VRlZWqnmlZaWcvXVV/PVV1+h1+uZNGkS7dq1O/WBUq2QwZUkSVJdKr/HYLk6ULpyieGBVXk6ykofhPiLhZa6vYRZ1bfyQn/tK4DLOicBsGZbGsWlbkLMBlamHgGgb6fEoC7k+DdijrSZtOKkoCbIBzaQthh0eH1C624gLwvUoPDERPbKAiiZyF47iouLGTt2LCtXrsRgMHDdddfRunXruu7WeU2uFpQkSaoD5XOXtNvKTfVp+/D5ykoeBAKuUrePEH8uVZHTS7R/D8DjhU7tXB2SI2keF4bT7WXpz3+ycXcmhzILMRv1WuAFaiCX5U9wjwkzk1+qBmhmgy6o5IPFqMdZbtrRpNMF7YVY1veyka0TBUIzOXBVc/Lz8xk+fDgrV67EZDJx/fXXy8CqHpDBlSRJUh2obNuRsgrmZaNVXiG0VYC6ciUStPIJpW6aRKmFP4/klOVXKYrCjSM6ATDzhR/of/dnAFx9aWtslrL9KHOLXdpoVVKUleNF6ihWtE0dGSvy3xdmMZSVf9Dr0OkUrXioUV++JENgRWPFx1ydKUOp+nJychgyZAg///wzFouFlJQUWrRoUdfdkpDBlSRJUp0oq1ZeNhqkKzf6oy+3AXIg0TwQfLm8gjD/tjS5xW6ax9gA2J9ZHHS+G4d3ItRaFkiZDDruHNc9qB/7M9UNnxMiLFiMejL9o1+xYWpwlR+oBG82UOIPrgIbNpfPzQoIFGvX6SoZuapkP0XpzGRkZDBgwAA2bdpESEgI06ZNIzk5ua67JfnJnCtJkqQ6oJQbpQrQto4RImgDZIt/5EqgBlg+oSafAxwvctI6Pgydoo5CZRU4ifOvFIwKs7BywTj+2Hec5vHhXNA8iqiw4JWC247kA9A+SU2AP5anThEm2dXRsFxtD0MjRVpVePXagT0PzUHBVdlKwxP5qFgyQjp9R44cYfDgwezevZvQ0FCmTp1KXFxcXXdLKkcGV5IkSXVASwAvd1ugvILXVzbV5vb5tJGiUo+PcIuBvBIPFv8KwcxCJxajjlZxoezNKGLL4TwG28s29O7aMoauLWOq7Mcvf2YDcGGLSAAOZqtTi00jLTg9Pgr8I1fRNiM7M9Upw8B+g1pwVa54qcdblod1orJCpFV2RzqFffv2MXjwYA4cOIDdbmfq1KlER0fXdbekE9TracH58+ejKAqzZ8/WbhNCMG/ePJKSkrBarQwYMIBt27YFHed0OrnjjjuIiYnBZrMxZswYjhw5EtQmNzeXlJQU7HY7drudlJQU8vLygtocOnSI0aNHY7PZiImJYdasWXKDZUmSakT5mlXaVjeBPKtyU4FuryDEX/zT4fIS4Z/m0xsC+Vc+8krcdPcHR7/uLyu9cCpCCNbuUrfC6dcuFoD9x9XgqmWMjcwidYowxKjDZtJrye52/5RkIAfLYiwrVOr2VczDCii/X6J0+nbu3Mnll1/OgQMHiIqK4oYbbpCBVT1Vb4OrjRs38u9//5uuXbsG3f7UU0/x3HPPsXDhQjZu3EhCQgJDhw6lsLBQazN79myWLl3KkiVLWLNmDUVFRYwaNQqvt2yJ8eTJk0lNTWXZsmUsW7aM1NRUUlJStPu9Xi8jR46kuLiYNWvWsGTJEj799FPmzJlT+w9ekqRGr7LRG0O54MqkBVc+bCY1mCl2eYkKUYOrQqeXOP8qwSO5JfRsrX7Irt9zvNp9+ONQHpkFTkLMei5qGYnH6+PPrCIA2sTZSC9Qg6v4cDOKopAXyL/yB1cl/pGrwMia2t+KeVgBlVWSl6rnjz/+oH///hw9epTY2FhuuOEGIiIi6rpbUhXqZXBVVFTElClTeP3114mMjNRuF0Lwr3/9iwceeIDx48fTuXNnFi9ejMPh4IMPPgDUZalvvvkmzz77LEOGDOHCCy/kvffeY8uWLaxYsQKAHTt2sGzZMt544w369OlDnz59eP311/nf//7Hrl27AFi+fDnbt2/nvffe48ILL2TIkCE8++yzvP766xQUFJz7J0WSpEalfHwRGNEpn8Ru8o9MOT0+bCb1rbrI5SXGv4rveJGLZv5VggeOO+jXTp36+3V/DsWlwdvbVOXb39MAGNApHrNRz77jDlxeQahZT9NIK0fz1eCqiT+HK5B/FekfPdOKj5YfufIEgqvKpgWDR+ik6tm4cSMDBgwgMzOThIQEpk+fTlhY2KkPlOpMvQyubrvtNkaOHMmQIUOCbt+/fz/p6ekMGzZMu81sNtO/f3/Wrl0LwObNm3G73UFtkpKS6Ny5s9Zm3bp12O12evXqpbXp3bs3drs9qE3nzp1JSiqrBzN8+HCcTiebN2+usu9Op5OCgoKgH0mSpBMpilKu8GZwErjHJ7Sq6z5RFrwUOj3E+VfxZRa5aBOnrhLclVFEi1gbzWNCcHsFq3dmnvL6Pp9g6UY1XeLK7ur73B9H1eT2Tonh6BSFQ7nqdjlN7RaEEOQ4ypLbAYr904KBmltCCFyVbCIdoG2lI6cFq23NmjUMHjyY3NxcmjZtyrRp07DZbHXdLekU6l1wtWTJEjZv3sz8+fMr3Jeeng5AfHx80O3x8fHafenp6ZhMpqARr8raVLayIi4uLqjNideJjIzEZDJpbSozf/58LY/LbrfLpbGSJFWpfBV2AIO+bIWgQadowVYgYby43MhVeoGTTonqCr/taYUoisKQLmoi+zepaae89oa92RzOdhBqMTC8m3pc6mE1uOrWVD3vwRw1uGoeZaXY5dUS2KOsRnxCaCNXgdWDHp/QVj8aDRUDKK9WdPSU3ZOAFStWMHz4cAoLC2nRogUpKSlYrda67pZUDfXqJX748GHuvPNO3n//fSwWS5XtTqyRIoQ4Zd2UE9tU1v5M2pzovvvuIz8/X/s5fPjwSfslSdL5q3wVdggOrgCtBANCaNNsof5A5liBk85J6tTQ7owiSt1exvRoCsAXm49wOLu4yusKIXjmfzsAGNuzKVaTAZ8QbDqQB0CP5pEUuzwc8+dctYoOIdNfXDQqxIhBr6PY5UWgTmUG+ul0lyWzn5i0LoSoMP0pVe1///sfo0aNwuFw0KZNG6ZMmYLZbK7rbknVVK+Cq82bN5OZmUmPHj0wGAwYDAZ+/PFHXnzxRQwGgzaSdOLIUWZmpnZfQkICLpeL3Nzck7bJyMiocP2srKygNideJzc3F7fbXWFEqzyz2Ux4eHjQjyRJUmX0J4xcBQIodQRIaKvwSj2CCH9VdYNeQa+ouVgGvY7YMBMen2DbsQJ6tIrisg6xuL2CBf/dUeV1P/vlCBv2ZmMx6rlzhLq57460QvJK3ISY9HROCmNPlrpqMD7MRLjFoK0cjPOPnBX687pCTXrtC6fLn29lrmxK0F+GQUEmtJ/Kf/7zH6666iqcTicdO3bk2muvxWg0nvpAqd6oV8HV4MGD2bJlC6mpqdpPz549mTJlCqmpqbRq1YqEhAS+++477RiXy8WPP/5I3759AejRowdGozGoTVpaGlu3btXa9OnTh/z8fH755RetzYYNG8jPzw9qs3XrVtLSyobXly9fjtlspkePHrX6PEiSdH4oX3oBggtvur1Cy2VyuMtWCeaXekjyJ5gfyiulR7MIADYezAPggasuQFHgv5uO8Mve7ArXzCly8sinWwC484p2JEWFAPD9TrUkQ9/WURj0Onb5K7e39+d1pfkrtyf4VygWnLByEMrVvTJW/GipbB9CqaLFixdz7bXX4vF46NKlC1dffTUGgyxJ2dDUq+AqLCyMzp07B/3YbDaio6Pp3LmzVvPqiSeeYOnSpWzdupXp06cTEhLC5MmTAbDb7dx4443MmTOHlStX8ttvv3H99dfTpUsXLUG+Y8eOjBgxgpkzZ7J+/XrWr1/PzJkzGTVqFO3btwdg2LBhdOrUiZSUFH777TdWrlzJ3LlzmTlzphyNkiSpRgQSu33ltoXRiod6BSH+IMVRrgRDjsNNy2g172Z/toOL/fWt1u/LAaBzcgTX9W0OwKxFm9h2OE+73sHjxVz34lpyily0Twrnr0PbAmpwt3yHmgQ/uINa72pbulrepkNcKIA2RZgQHgiu1OT28HL7FAamBSsbufJoAWT1n5/zzauvvsr06dPx+XxcdNFFXHXVVej1+lMfKNU7DS4c/vvf/05JSQm33norubm59OrVi+XLlwctS33++ecxGAxMnDiRkpISBg8ezKJFi4JepO+//z6zZs3SVhWOGTOGhQsXavfr9Xq++uorbr31Vvr164fVamXy5Mk888wz5+7BSpLUqAW2uwmMXIG6ys7t9eLy+AgpV99KK8HgcNE62sZPf+ay97iDm/qoi2Z2pheRVegkNszMfWMv4KcdmRzJKWH00z9x1cVNMep1fLH5CAUlHqJCTbw47SKtFtXGA7lkFboItxjo1zoah8vLn/5iol0Sw3C4vNpKwSbh6qhZoOZVhLXsY6TUP3JlqWzkyhucVyYFe+6557Q6ir169WL48OHodDISbajqfXC1atWqoN8VRWHevHnMmzevymMsFgsvvfQSL730UpVtoqKieO+990567WbNmvG///3vdLorSZJUbYHEbm+5DQbLj1wFVuEVuzy0ilan77KKXPRrro5W7c0qJtJqpFNiGNvTCvlpTzYTLkoiMtTEN/cOZM57v7L8j3Q+WndIO/+FLSJ57S8Xa9OBAJ/7VxcO6xSHyaDj1wN5+AQkhZuJCTWxO0udIowOMRJi0uPx+rScq0DFeCGEVrH9ZNOCle05eD4TQvDYY4/x0EMPAXDZZZcxaNAgOXXawNX74EqSJKmxKr+XYICxXGX2SJu/npTLS7R/WrDI5SXaZsJi0OFw+zicV8qgDrFsTyvkyz/SGH9hIoqiEBlq4s2be7F04xF+P5iLzWygSVQI1/RuFlSDKqOglNX+qu7jL1TrXf3q38z5okBJBn+9q2aR6nRkXokHgbqaMVCDy+0V2uOobOSqrHK7DBoChBDcd999PPnkkwAMGjSIyy+/vI57JdUEGVxJkiTVEX2l04JlK++sRh06Rc3J8vgEUVYjOSVujhe7aB9n4/djhWxLL2Rkl3heX32AnelFpB7O50J/kruiKIy/JJnxl1Rdb++NNQfxCujRLIJWsTY8Xh+/HlGLH1+UbAfggD+4ah6hBlfZjrKyDAGBmlcWo67SMgxyWjCYz+fjzjvv1NJRRowYQe/eveu4V1JNkRO6kiRJdSSwWtBXbvPmwKiSy+NDURTCzOp34IJSj5ZMnlbo5IIENc90a1oRkSEmruyiloh5Z331a+vtySziqy1qyZmbL28BwO/HCil2eYmwGmgfa8Ph8pLuXynY0r/dTiD/KtqfBwbgcPn3GTRVXoYhED7KaUF179qZM2eycOFCFEVh1KhRMrBqZGRwJUmSVEfKD+IEBq9M+rI9BaGs1EGB00OSP7g6ml9KlyR1Fd/2jCJcXh+TL0lGr8C6fTlsO3bqbbeEEDyzfA8+oa4Q7NpUHaX66U911WHfFpHodAp/5qiJ7XGhJkLNBoQQHC8OjFyVD66Ct8Ipz10u3+p8zyVyuVxcd911vPXWWyiKwrhx4+jZs2ddd0uqYTK4kiRJqiOKomgFNQNTg4FkcLdX4BNCK3VQUOLWVuodzS+lWYSFCKsBp8fHjvQikiOtjOisjl79a+WfuMsnclXi481H+f1IARajjlmDWgGQV+Jms38LnAFtogDYe1xNZm8ToybAB7bB0SnB04IOZ/BWOOV5ZL4VAA6Hg3HjxvGf//wHvV7PxIkT6datW113S6oFMriSJEmqQ9qKQX8sZNCVBVwujw+7f+Qqv9RDYrgZnaImtec7vfT050St829bc2O/FtjMerYcLeC57/ZWec0fdmXxrxV/AnDzZS2J9wdtq/bm4BXQOiaE5EgrXp9gj78kQ7sYtZhoYBucyBCj1neXx4fLH0CFmCsZufKWbYtzviooKOCKK67gm2++wWg0MnnyZDp27FjX3ZJqiQyuJEmS6pCW1O7PuVIURRu9KnX7sFvLcq50ikKif2rwUG4J/VqqJRk2HMyj1O0lKcLCP0d3RAGWpqbx5poDWgkEUKcCv9mawcNf7EAA47oncu3FTQA1YX7FLnXV4LD2MQDsz3Hg9PiwmfQ09VeFzwpsgxNats9dsX/UymrUVbpvoOs8H7nKzs5m8ODB/PTTT5jNZq6//npat25d192SapFcLShJklSH1GBEBK0YtBh0lLh8ON0+7FYTRr2C2ysoKPXQPNLK0XwnB3NLGN0pjoQwE+mFLtYdyGNg22j6tYnmtoGtWPjDPl5fc5DlO7IY6Z8u/HHPcbYdUyuv928Xw9xhbbUcqDX7csh2uAm3GOjdIgJQ87kAOsTZUBQFIQQZ/uT2+EqCK5ul4qiVEAK35/wNrtLS0hg6dCjbtm0jJCSE66+/nqSkpLrullTLZHAlSZJUhwKr5wJ5SVBWJ6rEra4YjLAaySpykVfipmVkCGsP5LE/Ry2PMLBtNB/+msbK3dkMbBsNwJRLmmIx6Hh9zQEOZjt4+cf9Qeee2rsZKb2TtWu7vT4+/V1dNTj6gjhMeh1ur4+d/v0FL4hXVybmONy4vAKDTiHKVpZvVeQPrkIrmRL0lFspeL4FV/v372fIkCHs27ePsLAwpk6dSmxsbF13SzoHZHAlSZJUh7TgqvzIlT8pvNS/V1+UP7jKcbjpmhSGXqdQ4PSQVeyif+so/pOazp/ZDvZmFdMmVh1lurpHE0ZcEM/Hm4/yZ1YxZoOOmFAT1/RoQmyYOagPy3cd53ixm6gQI0P9U4I7s4pxen1EWAw0i1CnBNP8+wvGh5m1WlY+n9CS2UPNFT9SXP5Vjyb9+bVScOfOnQwZMoSjR48SGRnJ1KlTiYyMrOtuSeeIDK4kSZLqUFlCe1lwZQ2MXLm8CCHKbdrswqjX0TLSyt5sB7uzirm0ZRR9W0bw05+5fPJ7OvcMbqUFMaEWAzP6NT/p9QtKPSz9IwOAq7slaJsupx5Vyzl0TQzTzpdWUAqglYQAdUpQoI5KBQqglhfIt6rsvsbqt99+Y9iwYRw/fpzY2FhSUlIIDw+v625J55BMaJckSapDgYrlHl9ZIVGLUYeCWvvK5RFE+Yt15pd6cHt9tI9TV+4Fpu3GdUlAr1P4/Vghm4+cusZVgBCC19cdptjlpXmkhf6t1fILx4tdHMgtQQG6N1GDgmKnh/xSDwqQ4F9dCGh7DIZZ9JWOTGkjV4bz4+Pm559/ZuDAgRw/fpzExESmT58uA6vz0PnxapckSaqn9AoEQpJAOQZFUbD4K507XF6sRr1WPyq72E372FAU1ErtOQ43ieFmRnZUc3kWbTiibaB8Kst2HmfT4Xz0OoWb+zbTKsZv8te6ahMTgt1fZ+tIvjpqFWMzaaNbAAWl6rXCLBUnQoQQuPzJ7ObzYOTqu+++Y9iwYeTn59OsWTOmTZuGzWar625JdUAGV5IkSXVIURRt9MpdLqk9UOk8sGdfjH/0KqvYic2k17ai2Zaurv67qms8saEmsh1uFm88qo2CVWVrWiHvbzoKQErPJFpGq0VCS9xeUtPU0a9e/j0KAY7kqcFV04iyUSuPV2grBcOtleRbeQUC0CmNf9ubpUuXMmrUKBwOB23atOH666/HYrGc+kCpUZLBlSRJUh2rLKk9RBu5UoezYkP9wZW/iGdn/96Cf6QXIoTAYtTzl95NAbUY6FsbjuCrIsBadyCXJ1fuwyugV/MIra4VwPpDebi9gvhQEy0i1QCu0Okht8SNAjSxlwUMBSXqlKDFqKt02i8wamUyNO5k9nfffZdrrrkGl8tFp06duPbaazGZTKc+UGq0ZHAlSZJUx4z6spIIAVb/yFVgz75A0U61HIKPDnGhGHUKOQ43h/1Tdl2TwrmpTzIKsGJ3Nv/68QCHcku0c2YVOXlrwxFe+ukgHp/gkmZ2br20mRb4OFxeNh5SpwQvaxWl3R44R3yYGYuxrNxCvj+4slcyagVl+yOa9I33o+bll19m6tSpeL1eunfvzoQJEzAY5Fqx8518BUiSJNUx40mmBd1egdvrI8SkJ8ysp9DpJbPQSdMIKxckhJJ6rJANB/NoFqGOMg1sG41ep/Dq2kNsPJTPxkP5JIab8QlBVpFL2yB6WPsYpl3cRMuzAvj5QC5Or4/4UBMdYtVcISEEB/01tZr7R7ICtwdGriqbEoSy4MrcSJPZFyxYwH333QdAr169GD58ODpd43ys0umRwZUkSVIdKx9cCSFQFAW9TsFs0OH0+HA4vdhDdCSEWSh0FpNeoAZXvZtFknqskJ1ZxWQVu4j152Vd3jqKJnYLX27L5JdDeVp9KoAuiWGM6RxH58SwoD7kOtxsPKKOWg1qE62NWmUUunC4vRj1CknlpgQdLi8en0CnQGglldk9PqEl6JuNjWtKUAjB/fffz4IFCwDo378/AwYMaNRTn9LpkcGVJElSHQsktPuE+hMoZG4z63F6fBQ7vdhDjCSEm9lzvJi0QidCCGJDTbSPtbErq5jV+3IY3yVBO2frmBBm929BdrGLtAInRr2C3aKe40RCCL7amYnXJ2gZZaW1P7kdYF+2Wu6heaQ1aN/A3OKyKUFdJUGF0122WXNl9zdUPp+PO+64g5dffhmAYcOG0bdv3zrulVTfyPFLSZKkOqZTFG0D5/JTgzb/djKBFXmxoSaMOgWnx0d2sRuAy1uptam2ZRSRWeTkRNE2E50Tw2gfF1ppYAWQeqyQ/TklGHQKV3aI1UZgil0ejvlHvVqVC7iEEOQ51OAqotw2OOUFqssHtvJpDDweD9OnT+fll19GURRGjx4tAyupUo3nVS9JktSAGfUVVwwG9uorcqqV2nWKQqJ/au5IvpoHlRBmpqO/qOjXO7OqXCFYlRyHi+W7swAY0DqKqJCyVW57jzsAiAs1EW4pC6JKXD6cHh+KUnkyuxCCUn++laWR5Fs5nU4mTpzIu+++i06nY/z48fTo0aOuuyXVU43jVS9JktTAGf2J0OVHrqwmHTpFnSoMlGRo6g+ujuaXarWsBreNwaRXOJxXypr9udW+psPl5cPUNFxeQXKEJaiulcvrY3+2Gly1jQ0uhJnjHzWzWw1BU4UBjS3fqrCwkJEjR7J06VIMBgOTJk2iS5cudd0tqR6TwZUkSVI9UFk5BkVRtMrnRf5tZuLDzBj1CiVuH5n+mleRViNXdIgD4Kd9ORzIcZzyem6vj49+TyPH4cZuMTChS0JQbtSfx4vx+AThFgMJ5TZ6FkJowVVUlVOCZVXZG3q+VXZ2NkOGDGHlypWYTCYmT55M+/bt67pbUj0ngytJkqR6QAuuPMHTemH+lXiBbWb0OoVkf9mF/eWCqK6JYXRLDEMAS1LT2JVVXOW1chwu3tp4hCP5pVgMOq67MIkwc9n0ntvrY7f/+A5xoUGr4IqcXtxedZVgVfWtGku+1dGjR7n88sv55ZdfsFqtTJ06lVatWtV1t6QGoGG/8iVJkhqJQHDlFeAtl3dVfuQqMA0YSC4/ml8atI/giA6xtIqy4vYJPv49jZV7j1PgH/ECdWub9QfzeOOXI2QWuQgx6rmue6JWwiFgd1Yxbq8gzGwgOSJ4C5fsInXUKtJmDKqRFRCUb9WAg6u9e/dy6aWXsn37dsLCwrjhhhto2rRpXXdLaiBkKQZJkqR6QKdTVwx6fWreVSCXyWrSodcpeH3qPn6hFgMRViNRIUZyHG72ZTvo5N8Kx6TXcW33JL7dlcXmowWsPZDHugN5xIWa8AnILXFrCfNN7RYmdEkg/IQNl0vcXvb4R60uSAgetfL6BLn+KcHo0MqnBJ0egRDqfoImfcOcEvz9998ZPnw4GRkZREVFkZKSQmRkZF13S2pAGu7XCkmSpEYmsE2MyxOcdxUemBosKRuFahujJpn/me0IGunS6xSu6BDL+C7xNIuwIICMIhdZxS48PnXPwJEdYpnao0mFwApgS1ohHp8gMsQYtI8gQG6xG59QK64HVjKeqPyUYEMsqvnzzz/Tv39/MjIyiI+PZ8aMGTKwkk6bHLmSJEmqJ0wGhRI3uLzBeVfhVgO5Dg/5JR6S/J/zTSIsWNN0lLh9HMhx0DqmbEWfoihcEB/GBfFh5DhcZDvcGHQKISY9cTZTlUFPZpFT20fwwibhFdplFaoJ9DFhxirPEVjVaG2AU4LLli1j/PjxlJSUkJyczOTJk7Farac+UJJO0PBe/ZIkSY1UYA8+Z7mRKyhLHHe4fLj99+kUhfZxoQBszygKWmVYXlSIibYxNlpGhRAfaq4yKPL4BL/6t79pHR0SVO8K1EKmDpcPBYipYkrQ7fVp045WU8P6eFmyZAmjR4+mpKSENm3akJKSIgMr6Yw1rFe/JElSIxbIUfL6gpPajQYdIf5gJVAZHdTE9lD/Fjk7MorO6tq/H82nyOnFYtBV2HcQILPAX/bBZsSgr/yjo8QVmBJsWCUYXn31VSZPnozH46Fz585ce+21mEymUx8oSVWQwZUkSVI9odMp2qrBE0evIv01pXId7rL2ikK3pHAA9hwvDloZeDoO5jrYn6NOB17cLALjCcGTy+PTEtnjwqsOOhzuwJRg5flY9Y0QgieeeIJbbrkFIQQXX3wx48ePx2CQGTPS2ZHBlSRJUj0SGL1ynVDvKiJEDa4KS714yk0BJoZbSAgzIwT8cjA36L7qyC528ethdTqwY3wo8WEV9x/MLHAhULfjsVWRyO71Ca3PDWFKUAjB3XffzQMPPADA5ZdfzpVXXolOV//7LtV/8lUkSZJUj5j8eVeuE4Iki7FsajC3OHiE6qKmdswGHXmlHjYeztfqYZ1KdrGL1fty8Ap1j8JO8aEV2ni8Qktkj7efZNTKPyVo0isYKql/VZ94PB7+8pe/8OyzzwIwYsQIBg0a1CBXN0r1kwyuJEmS6hGzoWzk6sQgKbDdTHaxO+j2EJOePi0i0SlqYdHUowWn3MA5raCU1fty8PgEMTYTvZtHVBpcZBY48Ql19V9VFdlB3adQ7Uv9/lgpLS1l4sSJvPXWWyiKwrhx4+jdu3ddd0tqZOr3X4EkSdJ5xqhXUFA3a/b4Kg+uip3eoMrsADE2Ez2a2gG19tWqvdkUOyvmYDk9PjYfzuPn/bl4fIJYm4lLW0ZWmqTu8QotkT0x4iQrDb0Cp39KMKSKacP6oLCwkFGjRrF06VL0ej2TJk2ie/fudd0tqRGqd8HVK6+8QteuXQkPDyc8PJw+ffrwzTffaPdPnz4dRVGCfk781uF0OrnjjjuIiYnBZrMxZswYjhw5EtQmNzeXlJQU7HY7drudlJQU8vLygtocOnSI0aNHY7PZiImJYdasWbhcrlp77JIkSYqiYPKPXjndwcGV0VA2enS80F3h2OZRIfRpEYlRp5DjcPPNzix+3JvN1rRCtqYV8PP+HP63LUNLXm8bY+PSVlFVrv5Lz3fi9Y9aRYRUPWpV7B+1Mhvq75TgiRswX3/99XTo0KGuuyU1UvUuuGratCkLFixg06ZNbNq0iUGDBjF27Fi2bdumtRkxYgRpaWnaz9dffx10jtmzZ7N06VKWLFnCmjVrKCoqYtSoUXi9Zd/0Jk+eTGpqKsuWLWPZsmWkpqaSkpKi3e/1ehk5ciTFxcWsWbOGJUuW8OmnnzJnzpzafxIkSTqvBepdlXoqJqfHhPmnBovc+HwVp/6a2C0MaRdDbKiaH5VV7GJnZhE7M4tJK3AigEirkctbR9GtSbi2zc6JnB4fmf5cq6TIqketoCzfymaqn6NW5TdgDgkJYdq0abRs2bKuuyU1YvVuveno0aODfn/88cd55ZVXWL9+PRdccAEAZrOZhISESo/Pz8/nzTff5N1332XIkCEAvPfeeyQnJ7NixQqGDx/Ojh07WLZsGevXr6dXr14AvP766/Tp04ddu3bRvn17li9fzvbt2zl8+DBJSUkAPPvss0yfPp3HH3+c8PDw2noKJEk6z1mMOgpKvTjdPoQQQYGN3WrAqFdwewU5xW5iwiommdvMBvq3jqbY5eFIXinFLq+6159BR1O7hXBL5UVAyzuaU4oQ6grBk+VauTw+3P6K8vUx32rPnj0MHTqUgwcPEhYWRkpKCnFxcXXdLamRq39/CeV4vV6WLFlCcXExffr00W5ftWoVcXFxtGvXjpkzZ5KZmandt3nzZtxuN8OGDdNuS0pKonPnzqxduxaAdevWYbfbtcAKoHfv3tjt9qA2nTt31gIrgOHDh+N0Otm8eXOVfXY6nRQUFAT9SJIknY7AtKC3krwrRVGI99eaSs93nXRloM1koH1cKBc1tdO9iZ1O8WHVCqwKSjzk+ouVJkdZTjpqVews2+5GV8+mBFNTU7n00ks5ePAgUVFRzJgxQwZW0jlRL4OrLVu2EBoaitls5q9//StLly6lU6dOAFxxxRW8//77fP/99zz77LNs3LiRQYMG4XQ6AUhPT8dkMlXYaDM+Pp709HStTWV/YHFxcUFt4uPjg+6PjIzEZDJpbSozf/58LY/LbreTnJx85k+EJEnnJZ2iaKsGS90Vg6eYMBN6nYLT46tQluFs+XyCQ9mlAMSGGU+aoC6E0PKtQs316+NkzZo1DBgwgMzMTBISEuQGzNI5Vb/+Gvzat29Pamoq69ev55ZbbmHatGls374dgEmTJjFy5Eg6d+7M6NGj+eabb9i9ezdfffXVSc954tB6Zd/EzqTNie677z7y8/O1n8OHD5/y8UqSJJ3I4t/4uNRdMe9KrysbvTqW56x2XavqOJbnxOnxYdArJEVYTtrW4fLhE6BXyvpbH3zxxRcMHTqU/Px8mjVrxrRp0wgNrVjDS5JqS/35ayjHZDLRpk0bevbsyfz58+nWrRsvvPBCpW0TExNp3rw5e/bsASAhIQGXy0Vubm5Qu8zMTG0kKiEhgYyMjArnysrKCmpz4ghVbm4ubre7wohWeWazWVvpGPiRJEk6XVpw5fFVGjzFhZeNXlW2cvBMFJZ4yPCXXmgebcGgP/k0X7FTHbWymfX1pgDn22+/zfjx4yktLaVdu3Zcf/31cgNm6Zyrl8HViYQQ2rTfibKzszl8+DCJiYkA9OjRA6PRyHfffae1SUtLY+vWrfTt2xeAPn36kJ+fzy+//KK12bBhA/n5+UFttm7dSlpamtZm+fLlmM1mevToUeOPUZIkqTyTXkFRQIiKW+GAOnqVFKFuVXMktxRXJSsLT4fb42P/cbVEQ0yoUdtup8r2Xh+l/n6F1oPaVkIInnrqKWbMmIHX66V79+5MmjRJbsAs1Yl6t1rw/vvv54orriA5OZnCwkKWLFnCqlWrWLZsGUVFRcybN48JEyaQmJjIgQMHuP/++4mJieGqq64CwG63c+ONNzJnzhyio6OJiopi7ty5dOnSRVs92LFjR0aMGMHMmTN57bXXALjpppsYNWoU7du3B2DYsGF06tSJlJQUnn76aXJycpg7dy4zZ86Uo1GSJNU6RVGwGnU4XD5K3D7MlUy7xYYZySlyU+zycii7lNZx1jMaQfL6BHszHbi9AotRR9Ook08HAhT5E9ktRt0pR7hqm8/n4+677+a5554DoF+/fgwZMqTejKZJ5596F1xlZGSQkpJCWloadrudrl27smzZMoYOHUpJSQlbtmzhnXfeIS8vj8TERAYOHMhHH31EWFiYdo7nn38eg8HAxIkTKSkpYfDgwSxatAi9vuzb1fvvv8+sWbO0VYVjxoxh4cKF2v16vZ6vvvqKW2+9lX79+mG1Wpk8eTLPPPPMuXsyJEk6r1nKBVcRldyvKArNYyzsOFZMfomH44VuYsNPb6RGCMH+rBIcLh96nULrOGuVta8CfEJQ5J8SDKvjRHa3282MGTN47733APWLcWAGQpLqiiJqMhNSqqCgoAC73U5+fr4c8ZIk6bR4fYKjef5CnnZTlSNE6flOjuaqqROtYq1E2k5dbgHUlYH7skrIL/GgAO0SQgi1nPo7d2Gpl1yHB4NOIdFurLMRouLiYq655hq++eYbdDodY8eOpVu3bnXSF+nUjEYjd/39fgCee+oJ3O6ayRWsLaWlpSxYsOCMPr/r3ciVJEmSpNLr1JIMTo+gxO0lTF/5W3Z8uAmn28fxIjf7s0pQFE6ZM+Xy+NiXVUKx04uiqEFZdQIrIQSFpWr5hzBL3SWy5+TkMHLkSNavX4/RaGTixIm0bdu2TvoiSSeSwZUkSVI9ZjXpcHq8OFw+wqpIhVIUhWbRFrw+Qa7Dw5+ZJcSEemgaZakwxSeEIKvQzdHcUrWMgg7axFVvxAqgxO3D4wOdArY6mhI8cuQIw4cPZ/v27VrKhqwpKNUnMriSJEmqx0KMevLw4vQIvD5RZT6Uoii0iLVizHGSWejieJGbnGI34VYDNrMehFozK6/Ejde/sNBm0tMi1oLFWL3VfkIICkoCRUP16Opg1Grnzp0MGzaMw4cPy+1spHpLBleSJEn1mEGvYNIruLzCP3pVdSCkUxSSoy1EhBg4mF2K0+Mjz+EhzxFcxd3gL+MQE3Z6+VKlboHLK1DgpP2oLRs2bGDkyJFkZ2cTHR1NSkoKERER57wfknQqMriSJEmq50LMOlwOL8VOb7WCmjCrgQua2HC4fOQ53Lg8AkVRgyp7iIHQMyj6KYQg359rFWrWn3JFYU379ttvGT9+PA6HgyZNmjB58mRsNts57YMkVZcMriRJkuo5m0lPnsOLyytwe30Y9afOdVIUBZtZr04J1oBSt08N0oBw67kdtfrwww+ZOnUqHo+H1q1bM3HiRMxm8zntgySdjgZRoV2SJOl8ptcp2nY4xc6zq8R+JoQQ5AVyrSzndtTqxRdfZPLkyXg8Hrp06cJ1110nAyup3pPBlSRJUgMQag4EV94a3ai5OhwuH25/rlX4Ocq1EkLwwAMPcOeddwLQq1cvrrrqKgwGOeEi1X/yVSpJktQAWI06dAp4hRrs1NR036n4hCCvRM21Creem1Erj8fDLbfcwhtvvAHA4MGDufTSS+V2NlKDIYMrSZKkBkBRFELNegpKvRQ6vecsuCoo8eL1qfWwzsUKwdLSUq677jo+//xzFEVh9OjRXHTRRbV+XUmqSTK4kiRJaiDCLGpw5fIInB4fZkPtZna4vYLCUjXXKjLEUOt1rXJzcxk3bhw//fQTBoOBq6++mg4dOtTqNSWpNsjgSpIkqYHQ6xRsJh3FLh8FJV5iw2ovuBJCkOtwIwCzQcFqrN1A7siRI4wYMYJt27ZhNpu57rrraNGiRa1eU5JqiwyuJEmSGpBwq55il48Stw+Xx4eplkavil0+St1q4nyUzVCr+U7btm1jxIgRHDlyhLCwMKZMmUJCQkKtXU+SaptcLShJktSAGPU6QkzqW3cg0bymebyC3GL13BFWfbXqap2p1atXc+mll3LkyBFiYmK48cYbZWAlNXgyuJIkSWpg7FZ10qHULShx1WzdKyEE2cVl04G1mcT+2WefMXToUPLy8khOTmbGjBlyOxupUZDBlSRJUgNj1JcFPbkOT43WvcpzqJtEK0C07fT2HjwdL7/8MldffTVOp5MOHTowdepUQkJCauVaknSuyeBKkiSpAbJb9OgU8PgE+f7q6WeryKmWeQCIDjVg0Nd8YBUoDnrbbbchhKBnz55MnDgRo9FY49eSpLoiE9olSZIaIJ1OIcpm4HiRh4JSLxajTtsi50yUuHzk+POswi16Qkw1Px3odru5+eabefvttwEYNGgQl112mSwOKjU6MriSJElqoEJMemxmH8VOH8eL3CTYTRjOoIJ6ictHVpHbf04d9lrYmLm4uJhrrrmGb775Bp1Ox6hRo2RxUKnRksGVJElSAxYZYsDlceP2CjIL3MSFG08rwCp2esn2j1hZjTqia6HsQlZWFiNHjmTjxo0YjUauueYa2rVrV6PXkKT6ROZcSZIkNWA6RSE21Ihep+ZfZRS4cHtPvYJQCLXcQvnAKia05gOrffv20bdvXzZu3IjVamXq1KkysJIaPTlyJUmS1MAZ9ArxYSYyC914fIL0fDfhVj3hFn2FYEkIgcPlI6/EQyAGC7fosVsrtj1bmzdv5sorryQzM5OIiAiuv/56YmJiavQaklQfyeBKkiSpETDoFeLDjRwvcuP0qCsIC0q9WAw6TAYFIdSRrVK3D5+/coNegUiboVaS15cvX86ECRMoKioiISGBKVOmEBYWVuPXkaT6SAZXkiRJjYRepxAXZgwamSpx+yhxB7dTFHW0Ksyir5XNmN977z1uuOEGPB4PLVu2ZNKkSVgslhq/jiTVVzK4kiRJakQURcFm1hNi0uHyqiNVXv9QlU5RsBh1mA1KrZQ/EELw9NNPc8899wDQpUsXxo4di8EgP2qk84t8xUuSJDVCiqJgNiiYa2lj5xN5vV7uvPNO/u///g+Avn37MmTIEHQ6uW5KOv/I4EqSJEk6Kw6Hg8mTJ/Pf//4XgOHDh9OnT5867pUk1R0ZXEmSJElnLCsri9GjR7NhwwYMBgPjx4+nU6dOdd0tSapTMriSJEmSzsiePXu44oor+PPPP7FarVx77bU0b968rrslSXVOBleSJEnSaVu3bh2jR48mOztb1rCSpBPI4EqSJEk6LUuXLmXy5MmUlpaSlJTE5MmTCQ0NretuSVK9IZdxSJIkSdX24osvMmHCBEpLS2nXrh3Tp0+XgZUknUCOXEmSJEmn5PP5uPvuu3nuuecAuPjiixkxYgR6fc1Xd5ekhk4GV5IkSdJJlZaWkpKSwieffALAkCFD6NevX60UIpWkxqDa04L33HMPbrf71A0lSZKkRiM7O5shQ4bwySefoNfrufrqq7n00ktlYCVJJ1Ht4Orpp5+mR48e/P7777XZH0mSJKme2LdvH/369ePnn3/GYrEwdepUOnfuXNfdkqR6r9rB1QMPPMDOnTu55JJLePzxx/H5fLXSoVdeeYWuXbsSHh5OeHg4ffr04ZtvvtHuF0Iwb948kpKSsFqtDBgwgG3btgWdw+l0cscddxATE4PNZmPMmDEcOXIkqE1ubi4pKSnY7XbsdjspKSnk5eUFtTl06BCjR4/GZrMRExPDrFmzcLlctfK4JUmS6pONGzfSp08fdu3ahd1uZ8aMGbKGlSRVU7WDq0cffZR169bRtm1bHnroIfr27cuePXtqvENNmzZlwYIFbNq0iU2bNjFo0CDGjh2rBVBPPfUUzz33HAsXLmTjxo0kJCQwdOhQCgsLtXPMnj2bpUuXsmTJEtasWUNRURGjRo3C6/VqbSZPnkxqairLli1j2bJlpKamkpKSot3v9XoZOXIkxcXFrFmzhiVLlvDpp58yZ86cGn/MkiRJdcrrhVWr4MMPYdUq/vff/zJgwAAyMzNJSEjgxhtvJC4urq57KUkNhiKEEKdzgMvl4qGHHuLZZ5/FZDKxYMEC7rjjjtrqHwBRUVE8/fTTzJgxg6SkJGbPnq3tuu50OomPj+fJJ5/k5ptvJj8/n9jYWN59910mTZoEwLFjx0hOTubrr79m+PDh7Nixg06dOrF+/Xp69eoFwPr16+nTpw87d+6kffv2fPPNN4waNYrDhw+TlJQEwJIlS5g+fTqZmZmEh4dXq+8FBQXY7Xby8/OrfYwkSdI589lncOedUG50/zBwJ7ClTRuuueYazGZznXVPajyMRiN3/f1+AJ576ol6n8ddWlrKggULzujz+7TrXAUCqjVr1tCsWTNmz55NkyZNaNWqVYWf1q1bn+7pg3i9XpYsWUJxcTF9+vRh//79pKenM2zYMK2N2Wymf//+rF27FoDNmzfjdruD2iQlJdG5c2etzbp167Db7VpgBdC7d2/sdntQm86dO2uBFaibkTqdTjZv3lxln51OJwUFBUE/kiRJ9dJnn8HVVwcFVgBNgE+Af3bvLgMrSToDZ1yKITY2lqioKIQQpKWl1WSf2LJlC3369KG0tJTQ0FCWLl1Kp06dtMAnPj4+qH18fDwHDx4EID09HZPJRGRkZIU26enpWpvKhrjj4uKC2px4ncjISEwmk9amMvPnz+eRRx45zUcsSZJ0jnm96ohVJZMXOkAAVy5fzp5OnRA6WW9akk7HGf3FvPzyy3Tr1o3169cza9YsHA4HPp+v0p8z0b59e1JTU1m/fj233HIL06ZNY/v27dr9Jy4BFkKcclnwiW0qa38mbU503333kZ+fr/0cPnz4pP2SJEmqE6tXVxixKk8B7AUFNPN/cZUkqfpOa+TqyJEjzJgxg5UrV5KcnMyXX37JgAEDarxTJpOJNm3aANCzZ082btzICy+8oOVZpaenk5iYqLXPzMzURpkSEhJwuVzk5uYGjV5lZmbSt29frU1GRkaF62ZlZQWdZ8OGDUH35+bm4na7K4xolWc2m+UwuiRJ9V81ZxzCiopquSOS1PhUe+Rq0aJFdOnShRUrVjBt2jS2bNlSK4FVZYQQOJ1OWrZsSUJCAt999512n8vl4scff9QCpx49emA0GoPapKWlsXXrVq1Nnz59yM/P55dfftHabNiwgfz8/KA2W7duDZryXL58OWazmR49etTq45UkSaptqZV8waxModw3UJJOW7VHrmbMmEF8fDzvvPMOo0ePrrUO3X///VxxxRUkJydTWFjIkiVLWLVqFcuWLUNRFGbPns0TTzxB27Ztadu2LU888QQhISFMnjwZALvdzo033sicOXOIjo4mKiqKuXPn0qVLF4YMGQJAx44dGTFiBDNnzuS1114D4KabbmLUqFG0b98egGHDhtGpUydSUlJ4+umnycnJYe7cucycOVOu+pMkqUF75513uOnuu9mDmrxe2bdsARSEh3NI1raSpNNW7eBqwoQJvPrqq0RHR9dmf8jIyCAlJYW0tDTsdjtdu3Zl2bJlDB06FIC///3vlJSUcOutt5Kbm0uvXr1Yvnw5YWFh2jmef/55DAYDEydOpKSkhMGDB7No0aKgDUbff/99Zs2apa0qHDNmDAsXLtTu1+v1fPXVV9x6663069cPq9XK5MmTeeaZZ2r18UuSJNWWQBHmf/7znwA8m5zM84cPI1BzrLR2/v8uGzFCJrNL0hk47TpX0umRda4kSaoPnE4nM2bM4IMPPgDgsssuY+DAgXTauZMRy5ZhL1c2Jj88nGUjRrCzU6e66q7UCJ1Pda7OuBSDJEmS1DBkZ2dz1VVXsXr1anQ6HWPGjKF79+4A7OzUiV0dOtDs4EHCioooDA3lUPPmcsRKks6CDK4kSZIasT179jBy5Ej27NmDxWJh0qRJtGzZMqiN0Ok4eMJtkiSdORlcSZIkNVKrV69m3Lhx5OTkEBERweTJk+UegZJ0DsjgSpIkqRH64IMPuOGGG3C5XDRp0oTrrruOUFlWQZLOCTmpLkmS1IgIIXj00UeZMmUKLpeLTp06MW3aNBlYSdI5JEeuJEmSGgnX/7d352FR1vv/+J8DDCPgOLLIpmiEiiiICcpiiriAyOJCuSVhx1BTVC6lPOrJpZNimlqXlpl5zNyoT66lEpopuRtKghqVoqCCuMAAKsP2/v3hj/vbKFoqMDPwfFzXXFfc9wt8vTwHePqe+37fZWUYN24c1q9fDwDo0aMH+vbtCyNenE5UrxiuiIgagFu3bmHo0KHSHYEDBw6Et7e3rtsiapQYroiIDNz58+cRHh6OS5cuQaFQYNiwYXBxcdF1W0SNFsMVEZEB++GHHzBs2DAUFRXB0tISI0eO5B2BRDrGN+KJiAzUypUrERoaiqKiIrRu3RpvvvkmgxWRHuDKFRGRgamoqMDUqVPx6aefAgC6dOmCsLAwmJjwRzqRPuB3IhGRASksLMTw4cORnJwMmUyGfv36wd/fHzKZ7O8/mYjqBcMVEZGBuHjxIsLCwvDbb79BLpcjMjISHTp00HVbRPQQhisiIgOQkpKCoUOH4vbt21AqlRg1ahQcHBx03RYR1YDhiohIz61btw7jx49HeXk5HB0dMWLECDRr1kzXbRHRYzBcERHpqcrKSsycORNLliwBAHTq1AmDBg2CqampjjsjoidhuCIi0kMlJSUYPXo0du7cCQAICAhAQEAAH2VDZAAYroiI9ExOTg7Cw8Px66+/wsTEBIMGDYKHh4eu2yKif4jhiohIj5w8eRKDBg1CXl4eLCwsMGLECDg5Oem6LSJ6CgxXRER6YuPGjXjzzTeh0Whga2uLUaNGoXnz5rpui4ieEsMVEZGOVVZWYtasWVi8eDEAoH379oiMjIRCodBxZ0T0LBiuiIh0SK1WY9SoUdizZw8AoGfPnggMDOSF60QGjOGKiEhH/vzzT0RERODChQswMTHB4MGD4e7uruu2iOg5MVwREenA/v37MWzYMBQUFECpVGLEiBFo2bKlrtsiolrAcEVEVI+EEFixYgWmTZuGyspKtGzZEiNGjIBSqdR1a0RUSxiuiIjqiUajwaRJk7B27VoAgKenJ8LCwiCXy3XcGRHVJoYrIqJ6kJ+fj6FDh+LIkSOQyWQICgqCr68vZDKZrlsjolrGcEVEVMfS0tIQERGBnJwcNGnSBK+88gratm2r67aIqI4wXBER1aFvv/0W0dHRuHfvHqytrTFy5EjY2Njoui0iqkPcSIWIqA5UVVVh3rx5ePXVV3Hv3j24uLjgzTffZLAiagS4ckVEVMuKiorw+uuvY+fOnQAAPz8/9OvXD8bGxjrujIjqA8MVEVEtyszMxODBg/Hbb7/B2NgY4eHh6NKli67bIqJ6xHBFRFRLvv/+e7z22msoKiqCUqnE8OHD0apVK123RUT1jNdcERE9p6qqKvz3v/9FREQEioqK0Lp1a4wfP57BiqiR4soVEdFzKC4uxuuvv44dO3YAALp164bg4GCYmPDHK1FjpXcrVwkJCejWrRuUSiVsbW0xePBgZGZmatWMGTMGMplM6+Xr66tVo9FoMHnyZNjY2MDCwgIRERG4evWqVk1BQQGioqKgUqmgUqkQFRWFwsJCrZrs7GyEh4fDwsICNjY2mDJlCsrKyupkdiIyLL///jt8fHywY8cOGBsbY9CgQQgNDWWwImrk9C5cHTp0CJMmTcLx48exb98+VFRUICgoCHfv3tWqGzBgAHJzc6XXnj17tM7HxcVh+/btSExMxOHDh1FSUoKwsDBUVlZKNaNGjUJaWhqSkpKQlJSEtLQ0REVFSecrKysRGhqKu3fv4vDhw0hMTMTWrVsxffr0uv1LICK9t3v3bnTv3h0XLlyAUqnEG2+8gZdeeknXbRGRHtC7f14lJSVpfbxu3TrY2toiNTUVvXr1ko4rFArY29vX+DXUajXWrl2LDRs2oF+/fgCAjRs3wsnJCfv370dwcDAuXLiApKQkHD9+HD4+PgCANWvWwM/PD5mZmXB1dUVycjLOnz+PnJwcODo6AgCWLl2KMWPGYMGCBWjWrFld/BUQkR4TQmDhwoV49913IYSAk5MThg0bxgcvE5FE71auHqZWqwEAVlZWWscPHjwIW1tbtG/fHjExMcjPz5fOpaamory8HEFBQdIxR0dHuLu74+jRowCAY8eOQaVSScEKAHx9faFSqbRq3N3dpWAFAMHBwdBoNEhNTa2xX41Gg6KiIq0XETUMxcXFeOWVV/Cf//wHQgh069YN0dHRDFZEpEWvw5UQAtOmTcPLL78Md3d36XhISAg2bdqEAwcOYOnSpTh16hT69OkDjUYDAMjLy4OpqSksLS21vp6dnR3y8vKkGltb20f+TFtbW60aOzs7rfOWlpYwNTWVah6WkJAgXcOlUqng5OT07H8BRKQ3/vjjD/j6+mLbtm0wNjZGREQEr68iohrp9U+F2NhYnD17FocPH9Y6Pnz4cOm/3d3d4e3tjTZt2mD37t0YOnToY7+eEELrCfQ1PY3+WWr+aubMmZg2bZr0cVFREQMWkYHbu3cvRo4cCbVaDaVSiWHDhvH7mogeS29XriZPnoxdu3bhp59++tu9YhwcHNCmTRv88ccfAAB7e3uUlZWhoKBAqy4/P19aibK3t8eNGzce+Vo3b97Uqnl4haqgoADl5eWPrGhVUygUaNasmdaLiAxT9f5VoaGhUKvVcHJywrhx4xisiOiJ9C5cCSEQGxuLbdu24cCBA3B2dv7bz7l9+zZycnLg4OAAAPDy8oJcLse+ffukmtzcXGRkZMDf3x/Ag2d9qdVqnDx5Uqo5ceIE1Gq1Vk1GRgZyc3OlmuTkZCgUCnh5edXKvESknwoKChAREYE5c+ZACAFvb29eX0VE/4jevS04adIkbN68GTt37oRSqZRWjlQqFczMzFBSUoJ58+YhMjISDg4OuHz5MmbNmgUbGxsMGTJEqh07diymT58Oa2trWFlZIT4+Hh4eHtLdg25ubhgwYABiYmKwevVqAMC4ceMQFhYGV1dXAEBQUBA6duyIqKgoLFmyBHfu3EF8fDxiYmK4IkXUgKWlpSEyMhKXLl2CiYkJwsLC+HxAIvrH9G7latWqVVCr1ejduzccHByk19dffw0AMDY2Rnp6OgYNGoT27dsjOjoa7du3x7Fjx7T+Rbl8+XIMHjwYw4YNQ48ePWBubo7vvvtO66n0mzZtgoeHB4KCghAUFITOnTtjw4YN0nljY2Ps3r0bTZo0QY8ePTBs2DAMHjwYH374Yf39hRBRvVq/fj38/Pxw6dIlNG/eHGPHjmWwIqKnIhNCCF030ZAVFRVBpVJBrVZztYtIj2k0GkydOlVayW7Xrh2GDh0KMzMzHXdG1DDI5XJMe2cWAGDZ4oUoLy/XcUdPVlpaikWLFj3T72+9e1uQiKi+ZWdn45VXXsGpU6cgk8nQu3dv9OzZE0ZGere4T0QGgOGKiBq1/fv3Y8SIEbh9+zbMzMwQGRmJtm3b6rotIjJg/GcZETVKVVVVWLhwIYKDg3H79m04ODhg3LhxDFZE9Ny4ckVEjU5hYSGio6Oxa9cuAEDXrl0REhICuVyu486IqCFguCKiRuXs2bMYOnQoLl68CBMTEwwcOBBdu3bVdVtE1IAwXBFRo7Fx40aMGzcO9+/fh0qlwvDhw7UezE5EVBsYroiowSstLcW0adOwatUqAICLiwsiIyNhbm6u486IqCFiuCKiBu3SpUt49dVXcfr0aQBAQEAAAgICuM0CEdUZhisiarC2b9+ON954A2q1mtssEFG9YbgioganrKwM//73v7F8+XIAgJOTE1555RWoVCodd0ZEjQHDFRE1KNnZ2Rg+fDiOHz8OAPD390ffvn21nitKRFSXGK6IqMHYs2cPoqKicOfOHTRp0gRDhgyBq6urrtsiokaG4YqIDF5FRQXmzJmDhIQEAICjoyNeffVVWFpa6rgzImqMGK6IyKDl5uZi5MiROHToEACge/fuCAoKgokJf7wRkW7wpw8RGawDBw5g5MiRyM/Ph6mpKQYNGoROnTrpui0iauQYrojI4FRWVmLBggWYN28ehBCwtbXFsGHDYGNjo+vWiIgYrojIsFy/fh2vvfYaDh48CIAPXSYi/cNwRUQGY8+ePYiOjsatW7dgamqKsLAwdO7cWddtERFpYbgiIr1XVlaGWbNmYenSpQAAe3t7vPLKK3wbkIj0EsMVEem1S5cuYcSIETh16hQAwMfHB/379+fdgESkt/jTiYj01tdff41x48ahqKgIZmZmGDx4MDcFJSK9x3BFRHrn3r17iIuLw5o1awA8eDZgZGQkmjdvrtvGiIj+AYYrItIr586dw/Dhw3Hu3DnIZDL06tULvXr14rMBichgMFwRkV4QQuCLL77A1KlTcf/+fTRt2hSRkZFwdnbWdWtERE+F4YqIdE6tVmP8+PH4+uuvAQAuLi4YMmQImjZtquPOiIieHsMVEenU4cOHMXr0aFy5cgVGRkbo168ffH19YWRkpOvWiIieCcMVEelERUUF3nvvPSxYsABVVVVo3rw5IiMj4eTkpOvWiIieC8MVEdW7ixcvYvTo0Th+/DgAwNPTEyEhIWjSpImOOyMien4MV0RUb4QQ2LBhAyZNmoSSkhI0adIEYWFhcHd313VrRES1huGKiOpFYWEhJkyYIF203rp1awwdOpR7VxFRg8NwRUR17ueff8bo0aORnZ0NIyMjBAYGokePHrxonYgaJIYrIqoz5eXleO+997Bw4UJUVVXB0tISkZGRaNWqla5bIyKqMwxXRFQnLl68iNdeew0nTpwAALz00ksYMGAAFAqFjjsjIqpbDFdEVKuEEFi/fj0mT54sXbQeERGBjh076ro1IqJ6wXBFRLXm1q1bmDBhArZu3QoAaNOmDYYOHQqVSqXjzoiI6o/eXU2akJCAbt26QalUwtbWFoMHD0ZmZqZWjRAC8+bNg6OjI8zMzNC7d2+cO3dOq0aj0WDy5MmwsbGBhYUFIiIicPXqVa2agoICREVFQaVSQaVSISoqCoWFhVo12dnZCA8Ph4WFBWxsbDBlyhSUlZXVyexEhmz37t1wd3fH1q1bYWRkhL59+yI6OprBiogaHb0LV4cOHcKkSZNw/Phx7Nu3DxUVFQgKCsLdu3elmsWLF2PZsmVYuXIlTp06BXt7e/Tv3x/FxcVSTVxcHLZv347ExEQcPnwYJSUlCAsLQ2VlpVQzatQopKWlISkpCUlJSUhLS0NUVJR0vrKyEqGhobh79y4OHz6MxMREbN26FdOnT6+fvwwiA1BSUoJx48YhLCwMN27cQIsWLRATE4OePXvybkAiapRkQgih6yae5ObNm7C1tcWhQ4fQq1cvCCHg6OiIuLg4zJgxA8CDVSo7Ozt88MEHGD9+PNRqNVq0aIENGzZg+PDhAIDr16/DyckJe/bsQXBwMC5cuICOHTvi+PHj8PHxAQAcP34cfn5++O233+Dq6oq9e/ciLCwMOTk5cHR0BAAkJiZizJgxyM/PR7Nmzf62/6KiIqhUKqjV6n9UT2RIjhw5gtdffx2XLl2CTCaDr68v+vTpA7lcruvWiEjPyOVyTHtnFgBg2eKFKC8v13FHT1ZaWopFixY90+9vvf9npVqtBgBYWVkBALKyspCXl4egoCCpRqFQICAgAEePHgUApKamory8XKvG0dER7u7uUs2xY8egUqmkYAUAvr6+UKlUWjXu7u5SsAKA4OBgaDQapKam1tivRqNBUVGR1ouoodFoNJg5cyZ69eqFS5cuQaVS4fXXX0dwcDCDFRE1enp9QbsQAtOmTcPLL78sPR4jLy8PAGBnZ6dVa2dnhytXrkg1pqamsLS0fKSm+vPz8vJga2v7yJ9pa2urVfPwn2NpaQlTU1Op5mEJCQmYP3/+045KZDDS09MxevRonD17FgDQpUsXDBgwgM8FJCL6/+n1ylVsbCzOnj2LLVu2PHJOJpNpfSyEeOTYwx6uqan+WWr+aubMmVCr1dIrJyfniT0RGYrKykosWbIE3t7eOHv2LMzNzTFixAgMHjyYwYqI6C/0duVq8uTJ2LVrF1JSUrR2c7a3twfwYFXJwcFBOp6fny+tMtnb26OsrAwFBQVaq1f5+fnw9/eXam7cuPHIn3vz5k2tr1O9AWK1goIClJeXP7KiVU2hUHCTRGpwLl68iDfeeAM///wzAMDV1RXh4eFo2rSpjjsjItI/erdyJYRAbGwstm3bhgMHDsDZ2VnrvLOzM+zt7bFv3z7pWFlZGQ4dOiQFJy8vL8jlcq2a3NxcZGRkSDV+fn5Qq9U4efKkVHPixAmo1WqtmoyMDOTm5ko1ycnJUCgU8PLyqv3hifRMVVUVVq5cic6dO+Pnn3+GqakpIiIiMGLECAYrIqLH0LuVq0mTJmHz5s3YuXMnlEqldG2TSqWCmZkZZDIZ4uLisHDhQrRr1w7t2rXDwoULYW5ujlGjRkm1Y8eOxfTp02FtbQ0rKyvEx8fDw8MD/fr1AwC4ublhwIABiImJwerVqwFAup3c1dUVABAUFISOHTsiKioKS5YswZ07dxAfH4+YmBje+UcNXlZWFv71r3/h4MGDAIAXXngBgwYNeuRaRiIi0qZ34WrVqlUAgN69e2sdX7duHcaMGQMAeOedd3D//n1MnDgRBQUF8PHxQXJyMpRKpVS/fPlymJiYYNiwYbh//z769u2LL7/8EsbGxlLNpk2bMGXKFOmuwoiICKxcuVI6b2xsjN27d2PixIno0aMHzMzMMGrUKHz44Yd1ND2R7lVVVeGzzz7DO++8g7t370Iul6N///7w9vbmvlVERP+A3u9zZei4zxUZksuXL2Ps2LE4cOAAgAePrxk0aJC0FQoR0bNqTPtc6d3KFRHVPyEEPv/8c8THx6OkpISrVUREz4HhiqiRu3LlCt58803s378fANC6dWsMGjQI1tbWOu6MiMgwMVwRNVJCCHzxxReYPn06iouLIZfL0a9fP3Tr1o2rVUREz4HhiqgRunjxIsaNGyddW+Xk5ITBgwdztYqIqBYwXBE1IpWVlfjoo4/w7rvv4v79+5DL5ejTpw98fHy4WkVEVEsYrogaifT0dIwdOxanTp0C8GDfqoiICN4JSERUyxiuiBo4jUaDhQsXYuHChaioqIBCoUBwcDBeeumlv30eJxERPT2GK6IG7NixYxg7diwuXLgAAOjQoQMGDhzIPdeIiOoQwxVRA1RSUoLZs2djxYoVEELAwsICoaGhcHNz42oVEVEdY7giamCSk5Mxbtw4XLlyBQDQpUsXBAUFwdzcXMedERE1DgxXRA3EzZs3ER8fj6+++grAgweYh4eHo23btjrujIiocWG4IjJwQgisW7cOb7/9Nu7cuQOZTIbu3bujT58+UCgUum6PiKjRYbgiMmAXLlzAhAkTkJKSAgCws7NDWFgYnJycdNwZEVHjxXBFZIDu37+PBQsWYPHixSgvL4dcLkdgYCB8fHxgbGys6/aIiBo1hisiA7Nv3z689dZbuHjxIgCgXbt2CA0NRfPmzXXbGBERAWC4IjIYN27cwLRp07B582YAgFKpxMCBA9GhQwdur0BEpEcYroj0XFVVFb744gvMmDEDhYWF0gXrgYGBaNKkia7bIyKihzBcEemx9PR0TJgwAUePHgUAODg4ICwsDC1bttRxZ0RE9DgMV0R6SK1WY968eVixYgUqKythamqKPn36oFu3brxgnYhIzzFcEekRIQQ2btyIt99+Gzdu3AAAuLm5YcCAAVCpVDrujoiI/gmGKyI98euvv2LSpEk4cuQIAMDa2hohISHcYZ2IyMAwXBHpWGFhIebMmYNPPvkEVVVVkMvlCAgIgK+vL0xM+C1KRGRo+JObSEeqqqqwfv16zJgxAzdv3gQAdOrUCUFBQXwLkIjIgDFcEenA6dOnERsbi2PHjgEAbGxsMHDgQLz44os67oyIiJ4XwxVRPbpz5w7+85//4LPPPoMQAqampggICICPjw/fAiQiaiD405yoHlRUVGDNmjV49913cfv2bQCAh4cH+vfvj2bNmum4OyIiqk0MV0R17Mcff0RcXBwyMjIAAC1atMDAgQPh7Oys486IiKguMFwR1ZE///wT8fHx2LlzJwDAzMwMgYGB8PLy4kagREQNGMMVUS0rKirC+++/j48//hhlZWUwMjJCt27dEBAQAHNzc123R0REdYzhiqiWVFZWYt26dZg9ezby8/MBAC4uLggODoatra2OuyMiovrCcEVUC1JSUhAXF4czZ84AeLC7+oABA9C2bVvIZDIdd0dERPWJ4YroOWRmZmLGjBnSdVUKhQK9e/dGt27duLUCEVEjxZ/+RM8gPz8f8+fPx+rVq1FZWQkjIyN07doVgYGBsLCw0HV7RESkQwxXRE/h/v37+Oijj5CQkIDi4mIAgKurK/r164cWLVrouDsiItIHDFdE/0BVVRU2btyI2bNn4+rVqwAABwcHBAUFcb8qIiLSYqTrBh6WkpKC8PBwODo6QiaTYceOHVrnx4wZA5lMpvXy9fXVqtFoNJg8eTJsbGxgYWGBiIgI6RditYKCAkRFRUGlUkGlUiEqKgqFhYVaNdnZ2QgPD4eFhQVsbGwwZcoUlJWV1cXYpMcOHDgAb29vREdH4+rVq1CpVIiMjERMTAyDFRERPULvwtXdu3fh6emJlStXPrZmwIAByM3NlV579uzROh8XF4ft27cjMTERhw8fRklJCcLCwlBZWSnVjBo1CmlpaUhKSkJSUhLS0tIQFRUlna+srERoaCju3r2Lw4cPIzExEVu3bsX06dNrf2jSS7/++isGDhyIvn374syZM1AoFOjfvz9iY2Ph4eEBIyO9+/YhIiI9oHdvC4aEhCAkJOSJNQqFAvb29jWeU6vVWLt2LTZs2IB+/foBADZu3AgnJyfs378fwcHBuHDhApKSknD8+HH4+PgAANasWQM/Pz9kZmbC1dUVycnJOH/+PHJycuDo6AgAWLp0KcaMGYMFCxbweXAN2MWLFzFnzhxs3rwZAGBkZITu3bujZ8+evFidiIj+lkH+0/vgwYOwtbVF+/btERMTI23YCACpqakoLy9HUFCQdMzR0RHu7u44evQoAODYsWNQqVRSsAIAX19fqFQqrRp3d3cpWAFAcHAwNBoNUlNTH9ubRqNBUVGR1osMQ15eHiZNmoQOHTpIwcrDwwOTJk3CgAEDGKyIiOgf0buVq78TEhKCV199FW3atEFWVhbeffdd9OnTB6mpqVAoFMjLy4OpqSksLS21Ps/Ozg55eXkAHvwSrWnHbFtbW60aOzs7rfOWlpYwNTWVamqSkJCA+fPnP++YVI/UajWWLFmC5cuX4969ewCAtm3bom/fvnBwcNBxd0REZGgMLlwNHz5c+m93d3d4e3ujTZs22L17N4YOHfrYzxNCaO2UXdOu2c9S87CZM2di2rRp0sdFRUVwcnJ6/ECkM/fv38cnn3yChIQE3LlzBwDQqlUr9O3blxeqExHRMzO4cPUwBwcHtGnTBn/88QcAwN7eHmVlZSgoKNBavcrPz4e/v79Uc+PGjUe+1s2bN6XVKnt7e5w4cULrfEFBAcrLyx9Z0forhUIBhULx3HNR3SkvL8f69esxb948XLt2DQDQokUL9OvXD+3bt+fjaoiI6LkY5DVXf3X79m3k5ORIb994eXlBLpdj3759Uk1ubi4yMjKkcOXn5we1Wo2TJ09KNSdOnIBardaqycjIQG5urlSTnJwMhUIBLy+v+hiNallFRQW++uoruLm5ISYmBteuXYNKpcKQIUPw1ltvwdXVlcGKiIiem96tXJWUlODPP/+UPs7KykJaWhqsrKxgZWWFefPmITIyEg4ODrh8+TJmzZoFGxsbDBkyBACgUqkwduxYTJ8+HdbW1rCyskJ8fDw8PDykuwfd3NwwYMAAxMTEYPXq1QCAcePGISwsDK6urgCAoKAgdOzYEVFRUViyZAnu3LmD+Ph4xMTE8E5BA1NZWYlvvvkG8+fPR2ZmJgDA3NwcPXv2hLe3N+RyuY47JCKihkTvwtUvv/yCwMBA6ePq65eio6OxatUqpKen46uvvkJhYSEcHBwQGBiIr7/+GkqlUvqc5cuXw8TEBMOGDcP9+/fRt29ffPnllzA2NpZqNm3ahClTpkh3FUZERGjtrWVsbIzdu3dj4sSJ6NGjB8zMzDBq1Ch8+OGHdf1XQLWkqqoKW7duxbx583D+/HkAgJmZGXr06IHu3bvD1NRUxx0SEVFDJBNCCF030ZAVFRVBpVJBrVZzxaueCCGwc+dOzJ07F2fPngUANGnSBP7+/ujevTuaNGmi4w6JiBofuVyOae/MAgAsW7wQ5eXlOu7oyUpLS7Fo0aJn+v2tdytXRM9KCIE9e/Zgzpw5OH36NIAHNxj4+fnBx8cHZmZmOu6QiIgaA4YrMnjVoeq9996TblKQy+Xw8/ODr68vzM3NddwhERE1JgxXZLCqqqqwY8cOvP/++zhz5gwAwMTEBD4+PvD39+eO6kREpBMMV2RwKioq8M0332DBggXShepyuRzdu3eHr6+v1s0NRERE9Y3higxGeXk5Nm7ciIULF0rbdSgUCvj6+sLHx4dv/xERkV5guCK9V1painXr1uGDDz7AlStXADzYUsHPzw/dunXjhepERKRXGK5Ib927dw+ff/45lixZguvXrwMALCws0KNHD3h5efExQ0REpJcYrkjv3Lp1C5988glWrFiB27dvAwCUSiVefvlldO3alTuqExGRXmO4Ir2RlZWFZcuWYe3atbh//z4AoHnz5ujZsyc8PT1hYsL/uxIRkf7jbyvSuTNnzmDx4sX45ptvUFVVBQBwcHBAjx494ObmpvXYIiIiIn3HcEU6IYTAjz/+iMWLF2Pfvn3ScRcXF/To0QPOzs6QyWQ67JCIiOjZMFxRvaqoqMC3336LxYsXSxt/GhkZoVOnTvD394eDg4OOOyQiIno+DFdUL4qLi/Hll19i+fLlyMrKAvBgN3UvLy/4+vrC0tJSxx0SERHVDoYrqlNZWVlYsWIF1q5di6KiIgCAubk5fHx84O3tzUfUEBFRg8NwRbVOCIGUlBR8/PHH2Llzp3SRurW1NXx9feHp6QlTU1Mdd0lERFQ3GK6o1mg0GiQmJuKjjz5CWlqadNzFxQW+vr5wcXGBkZGR7hokIiKqBwxX9Nzy8vLw2WefYdWqVcjPzwfw4HqqLl26oHv37rC1tdVxh0RERPWH4Yqe2ZkzZ/Dxxx9jy5YtKCsrA/BgJ3UfHx907dqVD1ImIqJGieGKnopGo8G3336LVatW4ciRI9LxVq1awc/PDx06dOCmn0RE1KgxXNE/cunSJaxevRr/+9//cOvWLQAP9qfq2LEjfHx84OTkpOMOiYiI9APDFT1WZWUl9uzZg08//RQ//PADhBAAHrz15+3tjZdeegnNmjXTcZdERET6heGKHpGXl4e1a9fi888/R3Z2tnTcxcUF3t7eaN++Pd/6IyIiegyGKwLw//am+vTTT7Ft2zZUVFQAAMzMzNC1a1d07doV1tbWOu6SiIhI/zFcNXIFBQXYuHEjPvvsM5w/f1463qpVK3Tr1g0dO3aEXC7XYYdERESGheGqEaqqqsLBgwexdu1abN26FRqNBgAgl8vRuXNneHt78wHKREREz4jhqhG5du0avvzyS/zvf//DpUuXpON2dnbw8vJC586d0aRJEx12SEREZPgYrhq48vJy7N69G1988QX27t0rPedPoVDAw8MDXbt2hYODA2QymY47JSIiahgYrhqojIwMrF+/Hhs2bMCNGzek461bt4aXlxfc3Nz48GQiIqI6wHDVgNy8eRObN2/GV199hdOnT0vHLSws8NJLL6FLly6wsbHRYYdEREQNH8OVgSsrK8P333+P9evXY8+ePdIWCkZGRnB1dUXnzp25LxUREVE9YrgyQEII/PLLL1i/fj22bNmCO3fuSOccHR3RpUsXdOrUCRYWFjrskoiIqHFiuDIgf/75J7Zs2YLNmzfjt99+k44rlUp4enqic+fOsLW11WGHRERExHCl5/Ly8vDNN99g06ZNOHnypHTcxMQEbm5u8PT0xIsvvggjIyMddklERETVGK70UFFREbZv347Nmzdj//790vYJMpkML774Ijw8PNChQwfuSUVERKSHGK70RGlpKZKSkrB582Z89913KC0tlc61bNkSnTt3RqdOndC0aVMddklERER/R+/eS0pJSUF4eDgcHR0hk8mwY8cOrfNCCMybNw+Ojo4wMzND7969ce7cOa0ajUaDyZMnw8bGBhYWFoiIiMDVq1e1agoKChAVFQWVSgWVSoWoqCgUFhZq1WRnZyM8PBwWFhawsbHBlClTUFZWVmuzlpaWYteuXRg9ejRsbW0xZMgQ/N///R9KS0thY2ODPn36YMqUKYiJiYGPjw+DFRERkQHQu5Wru3fvwtPTE2+88QYiIyMfOb948WIsW7YMX375Jdq3b4/3338f/fv3R2ZmJpRKJQAgLi4O3333HRITE2FtbY3p06cjLCwMqamp0pYEo0aNwtWrV5GUlAQAGDduHKKiovDdd98BACorKxEaGooWLVrg8OHDuH37NqKjoyGEwIoVK555Po1Gg+TkZHzzzTfYuXMniouLpXPNmjWDu7s7PDw8YG9vz13TiYiIDJDehauQkBCEhITUeE4IgY8++gizZ8/G0KFDAQDr16+HnZ0dNm/ejPHjx0OtVmPt2rXYsGED+vXrBwDYuHEjnJycsH//fgQHB+PChQtISkrC8ePH4ePjAwBYs2YN/Pz8kJmZCVdXVyQnJ+P8+fPIycmBo6MjAGDp0qUYM2YMFixYgGbNmj3VXElJSfj++++xc+dOFBUVScebNWuGTp06oWPHjmjZsiUvTCciIjJweheuniQrKwt5eXkICgqSjikUCgQEBODo0aMYP348UlNTUV5erlXj6OgId3d3HD16FMHBwTh27BhUKpUUrADA19cXKpUKR48ehaurK44dOwZ3d3cpWAFAcHAwNBoNUlNTERgYWGOPGo0GGo1G+litVgMAhg8fLh1r2rQpOnTogA4dOqBly5bSClVtvuVIRESkTyorK6XFhdLSUpSXl+u4oyer/l0uhHjqzzWocJWXlwcAsLOz0zpuZ2eHK1euSDWmpqawtLR8pKb68/Py8mrcD8rW1lar5uE/x9LSEqamplJNTRISEjB//vwnzlFSUoJffvkFv/zyyxPriIiIGpL//ve/um7hqRUXF0OlUj3V5xhUuKr28LVIQoi/vT7p4Zqa6p+l5mEzZ87EtGnTpI+rqqpw584dWFtb6901VEVFRXByckJOTs5Tv81pCDifYeN8ho3zGTbO9+D3fXFxsdY7WP+UQYUre3t7AA9WlRwcHKTj+fn50iqTvb09ysrKUFBQoLV6lZ+fD39/f6nmxo0bj3z9mzdvan2dEydOaJ0vKChAeXn5Iytaf6VQKKBQKLSONW/e/CmmrH/NmjVrkN881TifYeN8ho3zGbbGPt/TrlhVM6irp52dnWFvb499+/ZJx8rKynDo0CEpOHl5eUEul2vV5ObmIiMjQ6rx8/ODWq3W2vH8xIkTUKvVWjUZGRnIzc2VapKTk6FQKODl5VWncxIREZHh0ruVq5KSEvz555/Sx1lZWUhLS4OVlRVat26NuLg4LFy4EO3atUO7du2wcOFCmJubY9SoUQAepMyxY8di+vTpsLa2hpWVFeLj4+Hh4SHdPejm5oYBAwYgJiYGq1evBvBgK4awsDC4uroCAIKCgtCxY0dERUVhyZIluHPnDuLj4xETE9OgUzwRERE9J6FnfvrpJwHgkVd0dLQQQoiqqioxd+5cYW9vLxQKhejVq5dIT0/X+hr3798XsbGxwsrKSpiZmYmwsDCRnZ2tVXP79m3x2muvCaVSKZRKpXjttddEQUGBVs2VK1dEaGioMDMzE1ZWViI2NlaUlpbW5fj1qrS0VMydO7dBzfRXnM+wcT7DxvkMG+d7PjIhnuEeQyIiIiKqkUFdc0VERESk7xiuiIiIiGoRwxURERFRLWK4IiIiIqpFDFdEREREtYjhqhGIiIhA69at0aRJEzg4OCAqKgrXr1/XqsnOzkZ4eDgsLCxgY2ODKVOmPPIg6fT0dAQEBMDMzAwtW7bEe++990wPtKxNly9fxtixY+Hs7AwzMzO4uLhg7ty5j/RuqPMBwIIFC+Dv7w9zc/PH7vZvyPPV5NNPP4WzszOaNGkCLy8v/Pzzz7pu6R9JSUlBeHg4HB0dIZPJsGPHDq3zQgjMmzcPjo6OMDMzQ+/evXHu3DmtGo1Gg8mTJ8PGxgYWFhaIiIjA1atX63GKx0tISEC3bt2gVCpha2uLwYMHIzMzU6vGkGdctWoVOnfuLO3a7efnh71790rnDXm2miQkJEAmkyEuLk46Zsgzzps3DzKZTOtV/WQXoJ5nq5MNHkivLFu2TBw7dkxcvnxZHDlyRPj5+Qk/Pz/pfEVFhXB3dxeBgYHi9OnTYt++fcLR0VHExsZKNWq1WtjZ2YkRI0aI9PR0sXXrVqFUKsWHH36oi5Eke/fuFWPGjBE//PCDuHjxoti5c6ewtbUV06dPl2oMeT4hhJgzZ45YtmyZmDZtmlCpVI+cN/T5HpaYmCjkcrlYs2aNOH/+vJg6daqwsLAQV65c0XVrf2vPnj1i9uzZYuvWrQKA2L59u9b5RYsWCaVSKbZu3SrS09PF8OHDhYODgygqKpJqJkyYIFq2bCn27dsnTp8+LQIDA4Wnp6eoqKio52keFRwcLNatWycyMjJEWlqaCA0NFa1btxYlJSVSjSHPuGvXLrF7926RmZkpMjMzxaxZs4RcLhcZGRlCCMOe7WEnT54UL7zwgujcubOYOnWqdNyQZ5w7d67o1KmTyM3NlV75+fnS+fqcjeGqEdq5c6eQyWSirKxMCPHgF4KRkZG4du2aVLNlyxahUCiEWq0WQgjx6aefCpVKpbXhWkJCgnB0dBRVVVX1O8DfWLx4sXB2dpY+bijzrVu3rsZw1VDmq9a9e3cxYcIErWMdOnQQ//73v3XU0bN5OFxVVVUJe3t7sWjRIulYaWmpUKlU4rPPPhNCCFFYWCjkcrlITEyUaq5duyaMjIxEUlJSvfX+T+Xn5wsA4tChQ0KIhjmjpaWl+OKLLxrUbMXFxaJdu3Zi3759IiAgQApXhj7j3LlzhaenZ43n6ns2vi3YyNy5cwebNm2Cv78/5HI5AODYsWNwd3fXevJ3cHAwNBoNUlNTpZqAgACth1IHBwfj+vXruHz5cr3O8HfUajWsrKykjxvafA9rSPOVlZUhNTUVQUFBWseDgoJw9OhRHXVVO7KyspCXl6c1m0KhQEBAgDRbamoqysvLtWocHR3h7u6ul/Or1WoAkL7fGtKMlZWVSExMxN27d+Hn59egZps0aRJCQ0OlR8JVawgz/vHHH3B0dISzszNGjBiBS5cuAaj/2RiuGokZM2bAwsIC1tbWyM7Oxs6dO6VzeXl5sLOz06q3tLSEqakp8vLyHltT/XF1jT64ePEiVqxYgQkTJkjHGtJ8NWlI8926dQuVlZU19qpPfT6L6v6fNFteXh5MTU1haWn52Bp9IYTAtGnT8PLLL8Pd3R1Aw5gxPT0dTZs2hUKhwIQJE7B9+3Z07NixQcwGAImJiUhNTUVCQsIj5wx9Rh8fH3z11Vf44YcfsGbNGuTl5cHf3x+3b9+u99kYrgxUTRfuPfz65ZdfpPq3334bZ86cQXJyMoyNjfH6669rXcwsk8ke+TOEEFrHH66p/vyaPvd5Pe18AHD9+nUMGDAAr776Kt58802tcw1hvifRt/meV0296mOfz+JZZtPH+WNjY3H27Fls2bLlkXOGPKOrqyvS0tJw/PhxvPXWW4iOjsb58+el84Y8W05ODqZOnYpNmzahSZMmj60z1BlDQkIQGRkJDw8P9OvXD7t37wYArF+/Xqqpr9lMnqqa9EZsbCxGjBjxxJoXXnhB+m8bGxvY2Nigffv2cHNzg5OTE44fPw4/Pz/Y29vjxIkTWp9bUFCA8vJyKeXb29s/ktzz8/MBPPovgdrwtPNdv34dgYGB8PPzw+eff65V1xDmexJ9nO9Z2djYwNjYuMZe9anPZ1F911JeXh4cHByk43+dzd7eHmVlZSgoKND613N+fj78/f3rt+EnmDx5Mnbt2oWUlBS0atVKOt4QZjQ1NUXbtm0BAN7e3jh16hQ+/vhjzJgxA4Bhz5aamor8/Hx4eXlJxyorK5GSkoKVK1dKd34a8ox/ZWFhAQ8PD/zxxx8YPHgwgHqc7amu0KIGITs7WwAQP/30kxDi/10Qff36dakmMTHxkQuimzdvLjQajVSzaNEivbgg+urVq6Jdu3ZixIgRNd7RYejzVfu7C9oNfb5q3bt3F2+99ZbWMTc3twZzQfsHH3wgHdNoNDVeUPv1119LNdevX9eLi4WFeDDDpEmThKOjo/j9999rPG/oMz6sT58+Ijo6ukHMVlRUJNLT07Ve3t7eYvTo0SI9Pb1BzPhXpaWlomXLlmL+/Pn1PhvDVQN34sQJsWLFCnHmzBlx+fJlceDAAfHyyy8LFxcX6c6x6lv5+/btK06fPi32798vWrVqpXUrf2FhobCzsxMjR44U6enpYtu2baJZs2Y6v5X/2rVrom3btqJPnz7i6tWrWrfgVjPk+YQQ4sqVK+LMmTNi/vz5omnTpuLMmTPizJkzori4WAhh+PM9rHorhrVr14rz58+LuLg4YWFhIS5fvqzr1v5WcXGx9L8PALFs2TJx5swZaRuJRYsWCZVKJbZt2ybS09PFyJEja7wVvFWrVmL//v3i9OnTok+fPnpxm7sQQrz11ltCpVKJgwcPan2v3bt3T6ox5BlnzpwpUlJSRFZWljh79qyYNWuWMDIyEsnJyUIIw57tcf56t6AQhj3j9OnTxcGDB8WlS5fE8ePHRVhYmFAqldLPjvqcjeGqgTt79qwIDAwUVlZWQqFQiBdeeEFMmDBBXL16VavuypUrIjQ0VJiZmQkrKysRGxurddt+9dfq2bOnUCgUwt7eXsybN0/nqx7r1q0TAGp8/ZWhzieEENHR0TXOV73yKIRhz1eTTz75RLRp00aYmpqKrl27Srf667uffvqpxv+toqOjhRAPVnbmzp0r7O3thUKhEL169RLp6elaX+P+/fsiNjZWWFlZCTMzMxEWFiays7N1MM2jHve9tm7dOqnGkGf817/+Jf3/rkWLFqJv375SsBLCsGd7nIfDlSHPWL1vlVwuF46OjmLo0KHi3Llz0vn6nE0mhJ5u0UxERERkgHi3IBEREVEtYrgiIiIiqkUMV0RERES1iOGKiIiIqBYxXBERERHVIoYrIiIiolrEcEVERERUixiuiIiIiGoRwxURERFRLWK4IiJ6jM6dO0Mmk0Emk+Hnn3+usaagoAA2NjZS3e+//17PXRKRvmG4IiKqQWlpKS5cuAATExMAQHp6eo11c+bMQUFBAQBAqVSiXbt29dYjEeknhisiohr8+uuvqKioQEhICIyMjGoMVxkZGVi1ahUGDhwIAOjSpQtkMll9t0pEeobhioioBqdPnwYA9OrVCy4uLjWGq7i4OCiVSgwZMgQA4OXlVa89EpF+YrgiIqpBamoqAKBr167o0qXLI+Fq27Zt+PHHHzF//nxcuXJFqiUiYrgiIqpB9cpVdbgqKipCdnY2AECj0SA+Ph5ubm6YOHGiVi0RkYmuGyAi0jdlZWXIyMjAiy++iObNm6NLly4AHlzU3rp1a3z44YfIysrCDz/8ABMTE6SmpsLc3BwdOnTQbeNEpBe4ckVE9JCzZ8+ivLxcWony9PQE8CBcXbt2DQkJCYiIiEBQUBDy8vKQm5sLT09PGBsbAwASEhLg7e0NpVIJOzs7DBs2DJcvX9bVOERUzxiuiIgeUv02X/UF6i1btkSLFi2Qnp6Od955B+Xl5Vi6dCkA7Wuzqh06dAiTJ0/GiRMnkJSUhMLCQoSEhKCioqKeJyEiXeDbgkRED6kpMHl6emLv3r0oKCjAjBkz0LZtWwCo8XqrpKQkra+3du1atG7dGufPn0fnzp3run0i0jGuXBERPaSmwNSlSxcUFBTA3t4es2fPlo5XB7EnbcOgVqsBAFZWVnXRLhHpGZkQQui6CSIifVFeXi5dK1W9xQIAZGVl4ddff4WLiws8PDyk461bt0Z+fj6Ki4shl8sf+XpVVVUICQmBiYkJdu/eXS8zEJFu8W1BIqK/OHfuHDQazSPbKjg7O8PZ2Vnr2K1bt5CTkwNvb+8ag5UQAuPHj0dWVhaOHDlSp30Tkf5guCIi+ouarrd6llohBCZOnIj9+/cjJSUFLVq0qN1GiUhv8W1BIqJaJoTApEmT8P333+PQoUOPrHgRUcPGlSsiolo2ceJEJCYm4rvvvoOZmRny8vIAPLig3dTUVMfdEVFd48oVEVEtk8lkNR7/6aef0Lt37/pthojqHVeuiIhqGf/NStS4cZ8rIiIiolrEcEVERERUixiuiIiIiGoRwxURERFRLWK4IiIiIqpFDFdEREREtYjhioiIiKgWMVwRERER1SKGKyIiIqJaxHBFREREVIsYroiIiIhq0f8HPe3sfRGdI0kAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, ax = plt.subplots(1)\n", "\n", "ax.plot(m2_sample, y_sample, label=\"LSF\", color=\"k\")\n", "# Contour plot\n", "X_grid,Y_grid = np.meshgrid(m2_sample,y_sample)\n", "pdf = np.zeros(X_grid.shape)\n", "for i in range(X_grid.shape[0]):\n", " for j in range(X_grid.shape[1]):\n", " # This is correct, but only works when ALL RV's are independent!\n", " # pdf[i,j] = M2.computePDF(X_grid[i,j])*Y.computePDF(Y_grid[i,j])\n", " pdf[i,j] = inputDistribution_2.computePDF([x_star[0], X_grid[i,j], x_star[2], Y_grid[i,j]])\n", "ax.contour(X_grid, Y_grid, pdf, levels=8, cmap=cm.Blues)\n", "\n", "ax.set_xlabel(r\"$M_2$\", fontsize=14)\n", "ax.set_ylabel(\"Y\", fontsize=14)\n", "ax.plot(x_star[1], x_star[3], 'ro', label=\"Design point\")\n", "ylim = ax.get_ylim()\n", "ax.fill_between(m2_sample, ylim[0], y_sample, color=\"grey\", label=\"Failure region\")\n", "ax.set_title(r\"Limit state function in the plane $(M_2, Y)$\", fontsize=18)\n", "ax.legend();" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAHVCAYAAAA3nGXJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADSkklEQVR4nOzdd3RU1drA4d/0mbRJ7yEkoXcEpDdpIlVpdixX7Iq9cK+iV7F8XkGxgAgiWBALWAAVpEhReiehpYf0Psn0Od8fkwyE9JCQgPtZK2uRmVP2ORlm3tn73e+WSZIkIQiCIAiCIDSYvLkbIAiCIAiCcKUTAZUgCIIgCMIlEgGVIAiCIAjCJRIBlSAIgiAIwiUSAZUgCIIgCMIlEgGVIAiCIAjCJRIBlSAIgiAIwiUSAZUgCIIgCMIlEgGVIAiCIAjCJRIBlSAIgiAIwiUSAZUgCIIgCMIlEgFVM7rrrruQyWTcdddd/8jzC2C323n33Xfp2bMn7u7uyGQyZDIZa9eube6mNbkr9fXX0ts9bNgwZDIZc+fObe6mNLqWfu8vh3//+9/IZDLefvvt5m7KVeX6669HJpOxefPmBh9DBFSNZO7cua4Pw6vB8uXLmTt3Llu3br0qz9tc13ex2bNn89RTT3Ho0CFsNhtBQUEEBQWh1WqbtV2XoqXc26uRuLf/bKmpqbz77rsEBATw8MMPV7tdq1atXJ9HKpUKi8VS43EPHTqEQqFw7XPNNdc0dtPrpDnbXf4F5Omnn8bhcDToGMoGn124ZCEhIbRv356QkJAWd/7ly5ezbds2wPmN93K5XOdtruu7UHFxMYsXLwbg7bff5umnn74qAvK63tvmfv03VHO2uyW8boXmM2fOHIxGI6+++iru7u5VbpObm0tKSorrd5vNRlxcHN26dav2uI899liFIKJXr16N1+g6au529+vXjzFjxvDbb7/xxRdfcOedd9b7GKKHqhm98cYbxMXF8cYbb/wjz/9PFxcXh9VqBeDBBx+8KoKp+rhSX39XaruFK1taWhpffvklarWae+65p9rt9u/f7/p3VFQUAEePHq12+1WrVrF9+3bCw8Nd70HNEVC1hHY/8MADAA0eThUBlSA0k9LSUte/PTw8mrElgiC0dEuWLMFut3PDDTfg6+tb7XblgUlgYCA33HADUH1gUlpayrPPPgvA3XffjSRJAM0y5NcS2l1+b48fP87OnTvrvb8IqJpRTQmWFyaW2u125s+fT8+ePfHw8CAwMJDJkydz+PBh1/alpaW89tprdOnSBXd3d/z8/JgxYwZnz56t1/mXL1+OTCZzDSu88sorrvHp8p/ExMQ6X+Pq1asZO3YsQUFBqFQqvL29adu2LRMnTuTDDz/EZDI16LyFhYWsWrWK2267ja5du+Lr64tWqyUyMpJbb72Vv//+u8r2NOT6MjIyeP755+nevTt6vR6tVkt0dDT/+te/OHHiRJ3vxcVtuHDI5sLzX/h469atkclkLF++vNrjVfc6uvA1JEkSS5YsoW/fvnh5eeHp6Un//v354osvam1vSkoKzz77LD169ECv16PT6YiJiWHSpEmsWLGiwX/DuiQYb926lWnTphEWFoZGo8Hf358RI0bw2WefYbfbq9ynsa67OnX9f9uY527o/8tLaUNjv+6h4v2xWCy8+eabdOvWDXd3d3x8fBg1ahQbNmxo0LEb+p5QVdsaet+a4p6B8++4dOlSAG699dYatz1w4ADgDC569OgBVB+YvPnmm6SkpDBixAgiIyMBUCqVNQ6zNZWW0G61Ws2UKVMA+OSTT+p/AEloFC+//LIESPW5pTNnzpQAaebMmZWeGzp0qARIL774ojRy5EgJkNRqteTu7u46j4eHh7R3714pJydH6tmzpwRIWq1W0ul0rm0CAwOlpKSkOp9/1apVUlBQkKRSqSRAcnd3l4KCgir8JCcn1+n67rnnHlc7ytvr5uZW4bGEhIQGnffC+11+bI1G4/pdJpNJ7733XqU21fc8P//8s+Th4eE6rkqlqvA3UKvV0ueff16n+3FxG3x8fFzHufD8N954o2vbyMhICZA+++yzao9X3euo/DX073//W5o0aZIESEqlUvLy8qpw71566aVqj71ixQpJq9VWuF69Xl9h/4MHDzbo3tb0+pckSXriiScq/D29vb0lhULheuy6666TioqKKu3XGNddk7r8v23sc9fn3jZGG5ridX9h21544QVp8ODBrrZ5e3tXaNvLL79c5f413fuGvidc3LaG3remumeSJElHjhxxHSc9Pb3GbaOiolyfHXv37pUAKSIiotJ2iYmJklarlRQKhXT06FHpwQcflACpe/fuDWrjpWop7V65cqXrs7O+REDVSJoqoPL29pb8/Pykb7/9VrJYLJLD4ZD27NkjRUdHS4A0YMAA6cYbb5Rat24t/fbbb5Ldbpfsdru0adMmKSAgQAKk2267rcHnr+6NrTbbt2+XAEkul0tvvfWWlJub63ouJydH+u2336SZM2dKaWlpDTrvxx9/LD3xxBPS33//LeXn50uSJEkOh0OKj4+XHn/8cUkmk0kKhUI6cOBAlfvX5Ty7d++W1Gq1BEj333+/FBsbK9lsNkmSJCkpKUl66KGHXG+6e/furf2mXGTLli21vmYaI6Dy8fGR9Hq9tHz5cqm0tFSSJElKSUmRJkyY4PobnTp1qtJx161bJ8lkMgmQBg4cKG3fvl2y2+2SJElSYWGh9Oeff0r33XefdPz48SrPW9vfsKbX38KFC133ZtasWa4PEYPBIM2fP19SKpUSIM2YMaPSvpd63bWpy/+bpjp3Xe7tpbahKV/35W3T6/WSRqORFi1aJBmNRkmSJCk5OVmaOnWq6+/+448/Vtq/pnvfWO8JDblvTf1e8cEHH1QbYFwoLy/Pdf++++47yWg0uv6vFBQUVNh2ypQpEiA98sgjkiRJUt++fSVAuvvuu+vdvkvVktp96tQpV1tiY2Prta8IqBpJUwVUgLR9+/ZKz//xxx+u53U6nXT69OlK2yxdutT1vMViadD5GxpQvfXWWxIgjR49ul77Xep5yz388MMSIN17770NPk+fPn0kQPrPf/5T7TaPPfaYBEiTJk2qdxsvV0AFSJs3b660n8lkkkJDQyVAeu211yo8Z7VaXd8YBw0aJJnN5jpf16UGVKWlpZKvr68ESLfcckuV+77//vuua7v4A+pSrrsu6vr/tinOXZ+AqqFtaMrX/YVtW7p0aaXn7Xa7NGTIEAmQOnXqVOn52no1a1LX94SG3Lemfq+44447JEAaP358jdtt2rTJdQ3x8fGSJElS586dJUDasWOHa7vNmzdLgOTn5yfl5uZKNpvNNbLxwQcf1Lt9l6qltbu8p3HZsmX12k/kULVwgwYNYtCgQZUeHzp0KBqNBoCpU6fSpk2bStuMGTMGAKPRyOnTp5u2oRfx9vYGIDs7u9pcl6Y0btw4AHbs2NGg/Q8fPszevXtRqVQ89dRT1W5XPrV206ZNzXKddTFw4ECGDx9e6XGNRuN6jRw5cqTCc1u2bCEhIQGA+fPno1arm76hZTZu3EheXh5AtcUpH3roIVfZgq+//rrKbRpy3Y2lOc99KW24XK/7iIgI7r777kqPy+Vy/v3vfwNw4sSJGmd51Vdd3xPqe98uxz07d+4cAAEBATVuV56H5OPj45opd3E+kt1u5/HHHwfg1VdfxdfXlxMnTmA0GoHmmeHX0trt5+cHnL/vdSUCqhbu2muvrfJxhUKBv78/AH369Klym6CgINe/8/PzG79xNRg5ciRarZaDBw8yePBgli5d6vqAbizx8fE8/fTT9OrVC29v7woF3spniaSmpjbo2OVvug6Hg/bt2xMcHFzlz/XXXw9ASUkJubm5jXNhjaxv377VPhcaGgrgCmDK7dq1C4Dg4GB69+7ddI2rwr59+wDnh267du2q3EahUHDddddV2P5iDbnuxtKc576UNlyu1315AnhVhgwZglLpLJFY3d+2Oo3xnlDf+3Y57ll2djZAjbP74PxMuZ49e7oeuzgwWbRoEUePHqVr167cf//9FfZTKBR0797dte+BAwd48skn6d69O15eXnh4eNCvXz++/PLLerW/No3dboPBwNy5cxk/fjzBwcH1rq5ffp/L73tdicKeLZynp2e1z5W/6VS3TfnzgKve0eUSHR3Np59+ygMPPMBff/3FX3/9BTi/YQ0fPpxbb72ViRMnNrj20po1a7jlllswm82ux7y8vNBqtchkMiwWC/n5+ZSUlDTo+OXfTOx2O5mZmXXa58IyCC1JXV5DF78+MjIyAFwzaC6nrKwsAMLCwmrcLjw8vML2F2vIdTeW5jz3pbThcr3ua/rbajQa/Pz8yMzMrPZvW5XGek+o7327HPesfCZt+ahEdS6cKVeuPEg5evQoeXl5vPTSSwC89957KBSKCvt17NgRnU7n2vftt9/mjz/+YMqUKTz88MMYDAY+++wzbr/9ds6cOcPLL79cr+u4XO3OycnhlVdeISQkhN69e7Nu3bp6taf8WOX3va5ED5XQZG677TaSkpJYtGgRM2bMICIiguzsbFavXs3kyZMZOnQoRUVF9T5ubm4ud911F2azmeuuu46tW7dSWlpKYWEhmZmZZGRk8O23315S28u75Dt06IDkzDWs9ad169aXdM6WqDmLjdb13P+0gqhN6XK97hv7b3Y53hOqcznuWfkQVE0jDUVFRZw5cwaoGJiU9/QcO3aM//znP+Tl5TFlypQKw5rlgcnFw2aPPfYYKSkpLFq0iFmzZvHkk0+yZ88e2rVrx+uvv94oIx9N0e6QkBBSU1M5d+4c3333Xb3bVN4DWX7f60oEVEKT8vX15f7772fVqlUkJydz5swZnn/+eWQyGdu3b2/QAq7r16+nqKgIHx8ffv75Z4YOHVrh2wmc72FpqODgYMA5hNDQXq7GUP6NuKZvSoWFhY1+3vL8pMYepq2LwMBAgArLUFSlfOimtrwSoe4u1+u+pmE3s9nsGhIrfy3U5nK8J1Tnctyz8td4TcPEBw8erLLApZ+fH+Hh4eTn5/Pxxx+j1Wp55513XM87HA4OHTpUaT+AAQMGVFpXVKfTMX78eKxWKydPnryk62qqdms0mlp7uGtSfp/r+94iAiqhSnK586VR/kJvLDExMbzxxhuu4nQbN26s93nLP2jbt2+Pm5tbldts2rSpxnbUdp6BAwcCYLFYWLNmTY3Hako+Pj5A9cGFw+God55JXQwYMACAzMzMeh//Ul875TlbqampnDp1qspt7HY7W7ZsAarPIbwaNdX/y3KX63W/bdu2aq9h+/bt2Gw2gDrn7zXGe0JDXY571qlTJ8AZtFWnvLfGw8OjUu5heW+PJEk8/fTTFXrITp486QoE65rYXdck+bq4nO2ui+LiYnJycgDnUGJ9iIBKqJKXlxcABQUFDdr/wjyGqpR/eywfC6/PefV6PQCnTp2qsufm0KFDfPXVVzWev7bz9O7d2zWGP2fOnFqTE5sqwbg80XLNmjVVfgB9/vnnDU68r8nw4cOJjo4G4Iknnqh11fcLXeprZ9SoUa6u9up6MBcvXux6U7/lllsadJ4r0aXe29pcrtd9cnIyn3/+eaXHHQ4H8+bNA5wfZl27dq3T8RrjPaGhLsc9GzJkCOCcUVjde2t5gnaPHj0qDanOmjWLp556imeeeYbnn3++yv3kcrkrgKnJiRMn+OGHH+jXrx8xMTH1vZRma3dd7du3D4fDgVKpdAXLdSUCqiaQk5NT409TvRk2pi5dugDOrvS0tLR67//II48wffp0vv/++wqJpQaDgUWLFrFixQoA18yb+px39OjRyOVy8vLyuO2221zbWSwWVq9ezejRo2tMLK3LeWQyGYsWLUKj0ZCcnEzfvn357rvvKiSTpqWl8cUXXzBq1Ciee+652m5Jg5QHC7GxscyaNcs1FFJUVMT8+fN54IEHap350xAKhYIPPvgAmUzGjh07GDFiBDt27HCt7F5UVMTWrVu5/fbbKy2pcamvHZ1O5wqkvv76ax544AFXsm9paSkLFy5k9uzZAMyYMaNZpnk3l0u9t7W5XK97vV7Pgw8+yJIlS1wBUEpKCrfccour5/H111+v8/Ea4z2hoS7HPRs4cCBKpRKLxeIa5rpYVYnd5SZMmMA777zD22+/jbu7e5X7tW/fvtJzFysqKmLatGnI5XIWL15c5TaJiYmumZV1Sem4HO2uj927d7vaU981VkVA1QQCAgJq/LlwrbaWaubMmWi1Ws6cOUOrVq0IDg6mdevWtG7duk49IlarlW+//ZapU6cSFBSEp6cnPj4+eHp68uCDD2KxWBg0aBBz5syp93nbtm3LM888A8APP/xAeHg43t7eeHh4MGPGDDw8PHj//fcv+fquvfZafv75Z/z8/EhISGDatGl4eXnh7++Pu7s74eHh3HHHHU02lAAwYsQIV/2aTz/9FH9/f3x8fPDx8eHJJ59k1qxZTJgwoUnOPXbsWJYvX45Go2HHjh0MHjwYNzc3fHx80Ov1DB8+nC+//LJS79WlvnbAGZA/8cQTgLM3KiQkBF9fX/R6PY899hhWq5Xhw4ezZMmSRr/ulqwx7m1tLsfr/qGHHqJ3797MmjULLy8vfH19adWqFatXrwbg3//+NzfeeGOdj9cY7wmXoqnvmZeXl6uO1k8//VTp+ZKSElc+U30XCC7v6anti4nRaGTChAmcOnWKVatWNcp6f5ej3fVVfn9rWzOxKiKgEqrUtm1btmzZwsSJEwkICCA3N5ekpCSSkpJc+Q01+c9//sP777/PjTfeSIcOHVAqlRgMBgIDAxk1ahTLli1j69atlb5Z1PW8b775JitWrODaa69Fp9NhtVpp06YNL774IgcPHnTVi7nU6xs1ahRnzpzhjTfeYNCgQej1egoKCpDL5XTq1Il7772Xn376iYULF9bzDtfdsmXLeO+99+jRowc6nQ6Hw8HAgQP55ptvmvS84CxGGBcXx+zZs+nUqZPrW3JMTAyTJ09m5cqVlfIMLvW1U+7dd99l8+bNTJkyhaCgIAwGA56engwfPpxly5axcePGJut1aKka697Wpqlf92q1mj/++IN58+bRvn17zGYzer2eESNGsG7dOv773//W+5iX+p5wqZr6npXXXvrqq68qDf8fOnTI1Xtcn8BEkqRqE7svZLFYuPHGG9mxYwcrV65k0qRJ1W57Yc9pv379ajx/U7e7vhISEvjrr7/Q6XSuL7L1Uq+66oIgCILQQI21tNQ/kd1ul2JiYiRA2rZt22U7r9VqlSZNmiTJZLI6LcXy3//+17VkVUtgNBrrvFzRK6+8cknrAooeKkEQBEFo4eRyuavn7s0337ws53Q4HNx+++38+OOPfPjhh1UuF3SxzZs3A7gmF1wpSkpKWLhwIRqNpsEFS0WldEEQBEG4Atx8880sWLCADRs2sHv37hqXyWkMTz/9NN988w1DhgzB09OTL774osLzAwYMcM0GBufs7r/++ovrr7+ewYMHN2nbavPBBx9QUFDgGgo/cuQIr732GuCcNVk+c/LC7XNycnjmmWcavEKECKgEQRAE4Qogk8lYvHgxa9euddVKakrlM+n+/PNP/vzzz0rPf/bZZxUCKo1G41qsuLm98847JCUluX4/ePAgBw8eBODll1+uFFC5u7szd+5c1wzihrhqAqq5c+fyyiuvVHgsKCjIVR1XkiReeeUVPvnkE/Lz8+nbty8ffvghnTt3dm1vNpt5+umn+frrrzEajYwYMYKPPvrItWaYIAiCIDSnHj16NGrdpZps3br1spynKSQmJtZr+0ceeeSSz3lV5VB17tyZ9PR010/5KtXgXOTx3Xff5YMPPmDv3r0EBwczatQoiouLXdvMnj2bNWvWsGrVKnbs2IHBYGD8+PGutZoEQRCEhtu6dSuSJDVoySlBaOlkktREaxhcZnPnzmXt2rVVFj2TJInQ0FBmz57tKqpmNpsJCgrirbfe4v7776ewsJCAgABWrlzJjBkzAGd5/YiICNavX8+YMWMu5+UIgiAIgnAFuWqG/ABOnz5NaGgoGo2Gvn37Mm/ePKKjo0lISCAjI4PRo0e7ttVoNAwdOpRdu3Zx//33s3//fqxWa4VtQkND6dKlC7t27ao2oDKbzRWWAnA4HOTl5eHn59foK6oLgiAIgtA0JEmiuLiY0NBQ17qZ9XHVBFR9+/ZlxYoVtGvXjszMTF577TUGDBjA8ePHXXlUQUFBFfYJCgpyJa1lZGSgVqtdi9FeuE1Nq5S/8cYblXK3BEEQBEG4MqWkpDQod/qqCajGjh3r+nfXrl3p378/MTExfP75565qrRf3GEmSVGsvUm3bvPDCCzz55JOu3wsLC2nVqpXr98jISCZMmFDvNYEEQRAEoaVTqVQ8MvtpAD5Y8A5Wq7WZW9RwZrOZ+fPnN3gFhqsmoLqYu7s7Xbt25fTp00yePBlw9kKFhIS4tsnKynL1WgUHB2OxWMjPz6/QS5WVlcWAAQOqPY9Go0Gj0VR6/J133uHFF18kKSmJzz77jClTplSYXioIgiAIVzqVSoWXlxcAWq0WhULRzC26dA1N17mqZvldyGw2ExsbS0hICFFRUQQHB7Nx40bX8xaLhW3btrmCpV69eqFSqSpsk56ezrFjx2oMqKpz3333sX//flq3bk1JSQkrVqxgy5YtrnWLBEEQBEG4elw1AdXTTz/Ntm3bSEhIYPfu3UydOpWioiJmzpyJTCZj9uzZzJs3jzVr1nDs2DHuuusu3NzcXCtK6/V67r33Xp566in++OMPDh48yO23307Xrl0ZOXJkg9rUpUsXjh8/zrRp0wDYtm0bn3/+OUVFRY123YIgCIIgNL+rZsgvNTWVW265hZycHAICAujXrx9///23q4T8s88+i9Fo5KGHHnIV9vz9998rjJXOnz8fpVLJ9OnTXYU9ly9ffkldmG5ubqxevZpPP/2URx55hKSkJBYtWsRNN91EmzZtLvm6BUEQBEFofldNHaqWoqioCL1eT2FhoWtcuVxsbCzjx48nPj4egEGDBjF8+PCrYsxZEAThcpLJZLi5uTV3M/7xVCoVd917PwDLly5u0UnpJpOpxkLdJpOJN998s8rP77q4anqorgQdO3bk+PHj3HvvvXz11Vfs2LGDpKQkpk6dil6vb+7mCYIgXBG0Wi19+vRBp9M1d1P+8WQyGWnJCYCzfFFL7qOx2+0kJSVx5syZJjm+CKguM61Wy5dffsmoUaN46KGHSElJYdGiRdx44420a9euuZsnCILQ4rVv3x5fX198fHxEAeUWwD8gEICc7Kxmbkn1JEnCarWiVqsBmiSoEgFVM7nrrrsYOHAg48eP59SpU3z11VcMGDCAESNGiCFAQRCEaqjVagICAtDr9ahUquZuzj+eTCZDq9UCzuG/ltxDVf56iYyMJCEhodHX6b1qZvldidq2bcuRI0eYOXMmALt27WLZsmXk5+c3c8sEQRBaJpVKhVwub9DSIIKgUqlQKBSuILAxiVdkM9NoNCxfvpyvvvoKNzc30tLSWLx4MbGxsc3dNEEQhBZLDPUJDdGUrxsRULUQt9xyC0ePHqVjx46YTCa++eYbNmzYgM1ma+6mCYIgCIJQCxFQtSDR0dEcOnSIf/3rXwDs3r2bpUuXkpeX18wtEwRBEAShJiKgamHUajVLlixh9erVuLu7k56ezuLFizl+/HhzN00QBEFooNmzZ3PPPfdU+dyxY8e488476datG9HR0fTt25cHHnjA9WU6JSWFsLCwSj+PPvro5bwEoRZill8LNW3aNPr27cv48eM5evQo3377LYmJiYwePVrMbBEEQbhK5OTkMGPGDEaNGsVXX32Fl5cXycnJ/P777xiNxgrbrlq1ivbt27t+b4rEaqHhREDVgrVq1Yr9+/fz+OOP8/HHH7N3715SUlKYNm0afn5+zd08QRCEZidJUqXA43LR6XSXnOS8b98+DAYD77zzDkql8yO5VatWDBo0qNK2Pj4+BAYGXtL5hKYjAqoWTqVS8dFHHzF69GjuvPNOMjIyWLx4MRMmTKBr167N3TxBEIRmZTQaadu2bbOc+/Tp05e8/E1AQAA2m40NGzYwfvx4MXvxCiZyqK4QkydPJjY2lh49emCxWPj+++/56aefWvS6SYIgCELNevXqxaOPPsojjzxCly5duP322/n444/Jzs6utO2kSZNo27at6+fYsWPN0GKhOqKH6goSFhbG3r17efrpp3n//fc5cOAAqampTJs2jYCAgOZuniAIwmWn0+k4ffp0s527MTz//PPMmjWLnTt3cuDAAVauXMnChQv5/vvv6dixo2u7jz/+uEJvXGhoaKOcX2gcIqC6wiiVShYsWMCoUaO47bbbyMrK4pNPPmHcuHH06NGjuZsnCIJwWclksksedmsJfH19mTBhAhMmTOCFF15gzJgxLFq0iPfee8+1TWhoKFFRUc3YSqEmYsjvCjVu3DhiY2Pp3bs3VquVtWvXsnbtWiwWS3M3TRAEQbgEarWayMhISktLm7spQj2IHqorWEhICH///TfPP/88//vf/zh06JBrCDAoKKi5mycIgiBcoKioqFLeU2xsLH/++ScTJ04kOjoaSZLYtGkTmzdv5t13322mlgoNIQKqK5xCoeD//u//GD16NDNmzCAnJ4clS5Zwww030LNnTzFjRBAEoYX466+/GDNmTIXHpkyZgk6n49VXX+XcuXNoNBqioqL4v//7P6ZOndpMLRUaQgRUV4lRo0YRGxvL5MmT+fvvv/npp59ISEhg/PjxaDSa5m6eIAjCP9qCBQtYsGBBg/aNiIggLS2tcRskNDqRQ3UVCQoKYufOnbzwwgvI5XKOHj3KJ598QkZGRnM3TRAEQRCuaiKgusrI5XLmzZvHxo0b8fPzIzc3lyVLlrB3714kSWru5gmCIAjCVUkEVFep6667jri4OAYNGoTdbmfdunV89913mEym5m6aIAiCIFx1REB1FfP392fbtm28/PLLyOVyjh8/zuLFizl37lxzN00QBEEQrioioLrKyeVy5s6dy9atWwkICCA/P5+lS5eye/duMQQoCIIgCI1EBFT/EIMHDyYuLo7hw4djt9vZsGED33zzTbOt0i4IgiAIVxMRUP2D+Pr68scff/Daa6+hUCiIi4tj8eLFpKamNnfTBEEQBOGKJgKqfxiZTMacOXPYsWMHQUFBFBQUsGzZMnbt2iWGAAVBEAShgURA9Q/Vr18/Tp48yahRo3A4HPz+++98/fXXYu0oQRAEQWgAEVD9g+n1en777TfefvttlEolp06dYtGiRSQnJzd30wRBEJqW3Y561y50a9ei3rUL7PbmblGj+Oabb+jYsWNzN6NOUlJSCAsLq7S+4ZVKBFT/cDKZjGeeeYZdu3YRGhpKUVERn332GTt27MDhcDR38wRBEBqddv16gvr2xX/aNHwefhj/adMI6tsX7fr1TXbO2bNnExYWRlhYGJGRkXTv3p2bb76ZVatWNep77cSJE9m+fXujHa8phYaGcvDgQTp06FDnff73v/8xatSoJmxVw4mASgCgT58+xMXFMXbsWNdq51999RUlJSXN3TRBEIRGo12/Hp9Zs5Cnp1d4XJ6Rgc+sWU0aVA0fPpyDBw/y999/88UXXzBgwABeeuklZs6cic1ma5Rz6HQ6/P39G+VYTU2hUBAYGIhSeXUsKywCKsHF09OTdevWsWDBAlQqFWfOnGHRokUkJiY2d9MEQRAund2O/qWXQJKQXfSUrGxSjtfLLzfZ8J9arSYwMJCQkBC6du3KY489xrJly9i8eTOrV692bVdUVMSzzz5Lt27daN++PdOmTeP48eOu548fP87UqVNp164d7du35/rrr+fw4cNA1UN+CxYsoFu3brRr146nn36aefPmVejlmT17Nvfccw+LFi2iZ8+edO7cmRdffBGr1VrttZT3FK1cuZLIVhF4uLsxa9YsCgsLXds4HA7mz59Pr169iIqKYtSoUWzZssX1/MVDfrt27SIsLIzt27czduxYYmJimDhxImfOnHFd27vvvsuJEydcvX3ffPNNQ/4UTUIEVEIFMpmMxx9/nN27dxMeHk5xcTGff/4527ZtE0OAgiBc0dS7d6NIT68UTJWTSRLKc+dQ79592do0aNAgOnXqxIYNGwCQJIk777yTrKwsVq5cyYYNG+jatSszZswgPz8fgEcffZSQkBDWr1/Phg0bePjhh6vt5fnhhx9YuHAhc+bMYcOGDYSFhbFixYpK2+3atYvExES+/fZbFixYwOrVqysEeVVJTEzk559/5seffmb9hl85fvw4c+bMcT3/6aefsnjxYl566SU2btzIsGHDuPvuu4mPj6/xuG+99RYvvfQSGzZsQKlU8tRTTwHO4cz777+f9u3bc/DgQQ4ePMjEiRNrPNblJAIqoUo9e/YkLi6OSZMmIUkSW7Zs4YsvvsBgMDR30wRBEBpEkZXVqNs1ljZt2pCSkgLAzp07XTUCu3fvTnR0NC+99BJ6vZ5169YBkJaWxuDBg2nTpg3R0dFMmDCBzp07V3nsZcuWcfPNNzNjxgxiYmJ44oknqsxZ0uv1vP7667Rp04ZRo0YxYsQIduzYUWO7zWYzCxYsoEePHgwZMoTXXnuNH3/8kayy+7d48WIeeughJk2aRJs2bZgzZw6dO3fm008/rfG4zz33HP3796ddu3Y8/PDD7Nu3D5PJhE6nw93d3TVUGBgYiE6nq/X+Xi4ioBKq5e7uztq1a/nwww9Rq9XEx8fz8ccf1/rtQhAEoSWyBwY26naNRZIkZDJnv9nRo0cpKSmhS5cutG3b1vWTnJxMUlISALNmzeKZZ55hxowZfPDBBzWmZcTHx9OjR48Kj138O0C7du1QKBSu34OCgsjJyamx3WFhYYSGhrp+79WrFw6Hg7Nnz1JcXExGRgZ9+vSpsE/v3r05ffp0jcft1KlThXYA5Obm1rhPS3B1ZIIJTeqhhx5i8ODBTJgwgaSkJFasWMHQoUMZOnQocrmIyQVBuDJY+vbFHhKCPCPDlTN1IUkmwx4SgqVv38varjNnzhAREQE4844CAwP57rvvKm2n1+sBeOqpp5g8eTJ//PEHW7Zs4X//+x8fffQRY8eOrfL45cFauaqKOKtUqkqP1bfYc/l5LjxfVee++LGLVTV8eSWknFyVn4ZvvPEGMpmM2bNnux6TJIm5c+cSGhqKTqdj2LBhFZL8wNl9+eijj+Lv74+7uzsTJ04Uy7KU6dq1KydOnGDq1KkAbNu2jRUrVlBUVNTMLRMEQagjhYLCV18FnMHThcp/L3rlFbigp6ap7dixg9jYWMaNGwc432uzs7NRKpVERUVV+PH19XXtFxMTw6xZs/j6668ZO3ZstcnZ0dHRHDp0qMJjR44caZS2p6WlkZGR4fp9//79yOVyoqOj8fT0JDg4mD179lTYZ//+/bRt27bB51SpVC02uLrqAqq9e/fyySef0K1btwqPv/3227z77rt88MEH7N27l+DgYEaNGkVxcbFrm9mzZ7NmzRpWrVrFjh07MBgMjB8/HvtVUvDtUrm5ufHtt9/yySefoNFoSExMZNGiRa4ZGIIgCC2d6YYbyP/kExzBwRUet4eEkP/JJ5huuKHJzm2xWMjKyiI9PZ2jR4/y/vvvc8899zBy5EjXl9XBgwfTq1cv7rnnHrZu3UpKSgp79+7lrbfe4vDhwxiNRubMmcOuXbtITU1l7969HD58uNog5Z577uHrr79m9erVxMfHs2DBAmJjY2vtJaoLjUbD448/zuHDh9m+fTv//ve/mTBhAoFlQ6YPPPAAH330ET/++CNnzpxh3rx5HD9+nHvvvbfB54yIiCA5OZljx46Rl5eH2Wy+5OtoLFfVkJ/BYOC2225jyZIlvPbaa67HJUliwYIFzJkzh5tuugmAzz//nKCgIL766ivuv/9+CgsLWbp0KStXrmTkyJEAfPHFF0RERLBp0ybGjBnTLNfUEt13330MGjSI8ePHEx8fzxdffMGgQYMYPnx4hTF4QRCElsh0ww2YxoxxzvrLysIeGOgc5mvi968tW7bQs2dPlEoler2eTp068d///pdp06a50idkMhkrV67krbfe4qmnniI3N5eAgAD69euHv78/CoWC/Px8Hn/8cXJycvD19WXs2LGumXAXu+mmm0hKSuK///0vZrOZCRMmMH36dA4ePHjJ19O6dWtuuOEGxo+7gby8PK677jrmzZvnev7ee+/FYDDw6quvkpubS9u2bfnss8+Ijo5u8DlvuOEG1q9fz/Tp0yksLOTdd99lxowZl3wtjUEmXUUr4s6cORNfX1/mz5/PsGHD6NGjBwsWLCA+Pp6YmBgOHDhAz549XdtPmjQJb29vPv/8czZv3syIESPIy8vDx8fHtU337t2ZPHkyr7zySpXnNJvNFSLkoqIiIiIiKCwsxMvLq+kutgUwmUzcfffdrFq1CoBWrVoxZcoU1zj/5SSTyVCpNSiUShRyBchAckg4HHasVgu2GuqpCIJw5XB3d2fgwIGEhYVdNQUhL7ebb76ZgIAAFi5c2OBj/O9//+PXX39l06ZNBAWHAJCZkV7vvKvLzWazkZaWxs6dOysVrjaZTLz55psN/vy+al6Nq1atYv/+/ezbt6/Sc+VjvOWzBcoFBQW5Zk1kZGSgVqsrBFPl21w4RnyxN954o9pg62qn1Wr5+uuvGTNmDA8++CDJycksWrSIG2+8kXbt2jX6+by8ffDxC0Dv44eXty/uHp64e3ihdXNDo9HWuK/D4cBiNmEsMVBaYqC4qIDiwgIK8nPJz8mixFBc4/6CIAhXIqPRyIoVKxg2bBgKhYK1a9eyfft2vv766+Zu2lXnqgioUlJSePzxx/n999/Raqv/YG3IbIPatnnhhRd48sknXb+X91D9k9x1110MHDiQ8ePHc+rUKb766isGDBjAiBEjGjwEqFKpCQwNJyg0nMDgcPwCAlHXEjSBM3By2O1ISMhkchQKBTKZDLlcjlbnhlbnho9/5SnRZpORnMx0sjPTyUxPJetcKjab6NUSBOHKt3nzZt5//33MZjMxMTEsWbKEIUOGNHezrjpXRUC1f/9+srKy6NWrl+sxu93On3/+yQcffMDJkycBZy9USEiIa5usrCxXr1VwcDAWi4X8/PwKvVRZWVkMGDCg2nNrNBo0Gk1jX9IVp23bthw5coRZs2axYsUKdu3aRXJyMlOnTsXb27tOx/Dw0hMZ056IyBiCQsORXxSM2WxW8nNzKMzPpSg/j+LiQkqKizCWlmAxm7CYTVXO/lAolajVGrQ6N3Ru7rh5eOLp5Y2Xtw/evv54+/ih0eoIi4wmLNI5tm+328lKTyM18QzJ8acpKsy/5HskCIJwuel0uiZZnuWpp56qNm/rn+qqCKhGjBjB0aNHKzx2991306FDB5577jmio6MJDg5m48aNrhwqi8XCtm3beOuttwBnQTKVSsXGjRuZPn06AOnp6Rw7doy333778l7QFUqj0fD5558zZswY7rvvPlJTU1m0aBGTJ0+udjVxrc6NmA5diGrbkYCgkArPFRXmk5mWQmZ6KjmZ6RTk5TRofN5us2G02TCWlpCfm13peblcgY+fP/5BoQQGhxIc1goPLz0h4a0ICW9Fn0HXkZ+TRfzpWOJPncBQVFjFWQRBEIR/sqsioPL09KRLly4VHnN3d8fPz8/1+OzZs5k3b56r6uy8efNwc3Pj1ltvBZwF0+69916eeuop/Pz88PX15emnn6Zr166uWX9C3dx6663069ePcePGERcXx6pVq+jbty+jRo1yJZGGhEfSsVsvIlrHuHqiHA4HGWnJJMefJjXpLMWFBZelvQ6HndzsTHKzMzl5zDnzxVPvTXhkNBFRbQkJa4WPfyC9/APp1X8o6alJnDx2iKSzp3A4REkNQRAE4SoJqOri2WefxWg08tBDD5Gfn0/fvn35/fff8fT0dG0zf/58lEol06dPx2g0MmLECJYvXy5KATRAdHQ0hw8f5uGHH+bTTz9l9+7dpKdn8J9XXqfPwKH4+AW4ts3KSONM7DGSzp7EZCxtxlafV1xYQOyRA8QeOYBaoyEyuj1R7ToSEh7p+iktMRB35ABxxw5iNhmbu8mCIAhCM7qqyia0BEVFRej1+n9E2YS6+vbbb/n1jz/510OPExbuTNi3WiyciTtK3NGDFOTVvF5US+Lu4Unbzt1p16k77h7OYNxmtXLy2CGOHvgbY2lJLUcQBOFSiLIJLYtMJhNlE8qIV6PQZCRJotTiYMCoifQdMRGAzIxzfPLBAk6fOMKgQQOrXD+qJSsxFHNo9w4O791FVJsOdO55Lf6BwXTu2Yf2XXoQe2Q/R/b9hcXScqr3CoIgCE1PBFRCkzBZHeSX2rDand9WFDJwV8t4++N3+fTjDwA4eTKOadOm4efn15xNbRDJ4SD+1AniT50gNKI1PfsOIjAknK69+tG2UzcO7t7ByWMHW/y3NUG4WhgMBkwm02U7n1arxcPD47KdT2j5REAlNCq7QyK/1EapxVm+QCYDvVaBh1aBXCbjg4ULGTliBHfeeScZGRksXryYCRMm0LVr12ZuecOdS0nkXEoi4ZHR9B44HB+/APoPG027Tt3YueVXcrOqLwwrCMKlMxgMrF69+rKuu6pQKJg+ffplCaq++eYb5s6dS2xsLHC+SvnGjRub/NyX0+zZsykqKmLZsmXN3ZQGEQGV0CgkSaLE4qCg1IajrFPGQyNHr1OikFcsjDp58mROnDjBhAkTOHToEN9//z2JiYlcf/31V9wQ4IVSk+JJS06gXece9Oo/BL/AYMZPu5PYw/vZ/9c27HZbczdREK5KJpPpsi9ib7fbMZlMdQ6oZs+ezbffflvp8R07dhAVFVXjvhMnTmTEiBENaueV5NVXX72ie/Xlzd0A4cpnd0hkG6zklTiDKZVCRrCXCl93VaVgqlx4eDh79+7lscceQyaTsX//fpYsWUJ2duU6UVcSSZI4eewgP3yxhLNxx5DL5XTu2YcJM2bi6x9U+wEEQbhqDR8+nIMHD1b4adWqVa376XQ6/P39G7UtFoulUY5jbcR1Ur28vJplLdjGIgIq4ZKUWuykF1owWSVkgLdOQbCXCrWy9peWUqnkvffe4+eff0av15OVlcUnn3zCoUOHmrzdTc1kLOXPjb/w+0+rKS0x4OMXwPjpd9KxW6/adxYE4aqkVqsJDAys8KNQKFi8eDEjRoygTZs29O7dmxdeeKHCDLRvvvmGjh07VnvcqVOn8tJLL1V47J577mH27Nmu3/v27cuCBQuYPXs2HTp04JlnngFg79693HTTTcTExNC7d2/+85//UFpaffma//3vf4waNYpVq1bRv39/WrdujSRJFBYW8swzz9CtWzfat2/PtGnTOH78eIV9FyxYQLdu3WjXrh1PP/008+bNY9SoUa7nZ8+ezT333OP63Ww285///Idu3boRHR3N5MmTK3w+7Nq1i7CwMLZv387YsWOJiYlh4sSJnDlzptr2NyURUAkNIkkSeSVWcgwX9ErpVXjplLWuj3ixcePGERsbS69evbBaraxdu5a1a9dW+Q1KpdHi7R9MaFR7ojr1pMM1g+jabwTdB47hmiE30HPIWHoMup6u/UfS4ZpBxHTuTWhUe3wCQlFr3Rrr8ussLSmetV8tJensKRQKBf2GjmLIqPEoxHRvQRDKyOVyXn31VTZv3syCBQvYuXMnr732WqOfZ9GiRXTo0IENGzYwe/ZsYmNjue222xg7diwbN27k448/Zs+ePcyZM6fG4yQmJvLzzz+zZMkSVx7XhPHjyMrKYuXKlWzYsIGuXbsyY8YM8vOdy3b98MMPLFy4kDlz5rBhwwbCwsJYsWJFjed5/fXXWb9+PQsWLODXX3+ldevW3Hbbba5jlnvrrbd46aWX2LBhA0qlstmWxBHv6kK92ewSOQYrlrIZfJ5aBd46Rb0DqQuFhISwe/dunnvuOd59910OHTqEocTIfQ89Sus2HfHyDcDLJwCN7tKCIrOxlOKCHPKzM8jPOkd+9jmsTVziwGwysnn9D3Tq3ps+g64jpkMXvP0C2PjztxhLDE16bkEQWo5NmzbRtm1b1+/Dhw/nk08+4b777nM91qpVK5555hleeOEF3njjjUY9/8CBA3nggQdcvz/22GNMnjzZdf7o6Gj++9//MmXKFN544w202qoXpLdarbz//vv4+fkhk8nYsmULR48e5fDhw6jVagBeeuklfvvtN9atW8ftt9/OsmXLuPnmm5kxYwYATzzxBNu2batUC6pcaWkpK1asYP78+Vx33XUA/N///R/9+vVj1apVPPjgg65tn3vuOfr37w/Aww8/zJ133onJZKq2/U1FBFRCvZisDnIMVhwSyGXg565Ep26cSvJyuZy5r73JpFvuJT23iJh2VXdxG0uKKS0uwFRagtlUitVixm6z4rDbkclkyORyFAolKo0WtUaHzt0DnYcXOncvNDo3NLpW+Ic48xYcDgf52efISk0kPekUpcVNt07ficP7yM3OZPjYyfgFBDF+6h38/tNqCvNzm+ycgiC0HAMGDKgQJLm5Ob8g7ty5k4ULF3L69GmKi4tdCe+lpaWubRpDt27dKvx+9OhREhMTWbNmjesxSZJwOBykpKRUCP4uFBYWVqHczYH9+zEYDHTu3LnCdiaTiaSkJADi4+OZOXNmhed79OjBzp07qzxHYmIiVquVPn36uB5TqVT06NGD06dPV9i2U6dOrn8HBTlzVXNzcwkLC6vy2E1FBFRCnRWb7OSXOmeqqRUy/D1UKBUN75UqV2q2k1tiJb/EitUu4eYXRoyf8z/C2VOxHNr7F0V5WUSGB2MqKcbRwNlyCqUSD70fXr4B+ASE4BsYiofeF7+gcPyCwunYaxD52emknj1B6tlY7LbGS7Ysl3kuhV++XcHoidPR+/gxburt/P7jN+SI0gqCcNVzc3OrNKMvNTWVO++8k9tvv51nnnkGb29v9u7dy1NPPVXnhO+qRgeq2vfi4MzhcHD77bdXyFsqV1MwUtVxQkJCWL16daVZehcmmV/czppm9JU/V9U+Fz9WVcV8h8NR7bGbigiohFpJkkRBqZ1is3Nasptajq+7EvklDPE5HBK5JVZyii2umlXg7PXSuynR61R4auR8/8mPvPXWWzgcDvz8/Jg2bRrBwcENOqfdZqMwN5PC3ExSTh8DQOfuSWB4FEERMQSEtMInIASfgBA6XDOI1DMniD9xAGNJUYOvsyqGokLWffcFI8dPJTAkjDGTb+a3H78hJzO9Uc8jCELLd/jwYWw2Gy+//DJyuTOt+eeff67XMfz8/MjMzHT9brfbOXnyJAMGDKhxv65du3Ly5MlayzbUpuc115CRkYFSqSQ8PLzKbaKjozl06BBTp051PXbkyJFqjxkVFYVarWbPnj3ceOONgDNIPHz4cIUh0pZEJKULNZIkiRyDzRVM6XUK/C4hmLLaHKTlmziSaiA510SpxYEM8HFTEhOoo3uEJ9EBbvh5qFCrFMybN4+NGzfi6+tLbm4uS5YsYd++fY1Wq8RYUkzSySPs2bSGTd8u4fjerRgK81CpNUR16snwm+6ia78RaN09az9YPZhNRn77cRUZaSmoNVrGTJqBr39go55DEISWLzIyEpvNxrJly0hKSuK7775j5cqV9TrGwIED+eOPP9i0aRNnzpzhhRdeoKio9i+CDz30EPv37+fFF1/k2LFjxMfH8/vvv/Pvf/+7XucfOXIk/fv35+6772br1q2kpKSwd+9e3nrrLQ4fPgw4Zx1+/fXXrF69mvj4eBYsWEBsbGy1ubdubm7ccccdvPbaa2zZsoVTp07xzDPPYDKZuPnmm+vVvstF9FAJ1XJIEtnFVsw2Z/Di567EXdOwfCmr3UFmoYWsYgvlsZBaKSPQU42fhwqlovrY/rrrriMuLo6bbrqJHTt28Msvv5CQkMCECRMaNenQbCol4cRBEk4cxD+0FTGdexMQGklk+26Et+nE2WP7OHtsL3Zb4xTotFmtbPxpNaMmTic4LIJRE6ez7ruVGIqaLo9LEK5GWq0WhUJx2SulN8b7T5cuXXj55Zf56KOPeOONN+jXrx8vvPACjz/+eJ2PcfPNN3PixAkef/xxlEol9913X629U+DMPfr+++956623uOmmm5AkicjISCZOnFiva5DJZPyybj1PPjGbp556itzcXAICAujXr5+rftZNN91EUlIS//3vfzGbzUyYMIHp06dz8ODBao/74osvIkkSjz32GCUlJXTr1o0vv/wSb2/verXvcpFJV3JZ0haoqKgIvV7f4NWqWwq7wxlMWewSMhkEeKjQqurfoWl3SGQWmskssrgqqLtrFAR5qfF2q1+JBYfDwSuvvMJrr72Gw+HAx8eHadOmERoaWu921ZVPYCgdeg7ALzgCgFJDIUd2bSInPbnRzqFSa7hhym34+gdSkJfDz6tXYLM2TtE9QbjauLu7M3DgQMLCwirkzoi1/JqHTCYjKDgEgMyM9HqNHtx8880EBASwcOHCpmpeJTabjbS0NHbu3FlphqHJZOLNN99s8Oe36KESKrE7JLKKnQnichkEetatUOeFyutUpeWbXQsku6nlhHpr8WpgiQW5XM4rr7zCyJEjmTJlCtnZ2SxdupTRo0dz7bXXXlLZhurkZ53jr9++I7hVGzr1GYqbh55+o6eQGHeIE/v+xNEI34itFjO//7SaCdNn4u3rz5BR49m8/odGaL0g/HN4eHiIAKcFMxqNrFixgmHDhqFQKFi7di3bt2/n66+/bu6mNRqRQyVUYHdIZBY5gymFDILqWPX8QkaLnVMZpSTmmLDaJdRKGdEBOjqEuKOvZ69UVQYPHkxcXBzDhg3D4XDw22+/sXr1aoxG4yUdtyYZyWfY9uPnJMQ6u6dbd+jBoBtuwc2jcZZJMJYY2LJ+DXa7jciYdnTu0af2nQRBEK4gmzdv5qabbuL6669n48aNLFmyhCFDhjR3sxqN6KESXMqDKZtDQiGHQE81qnqURXBIEhmFFtILnIUy5TII0WsI9FIjr2ZNv5pIkkSp1U5+qZVisx2D2UaJxY7ZZsdkc/DIe1/xcFnvst1mw2ox47CawWbBaizBXJyPuTif0vwsbMaqi8fVh91m4/ierWSmxNNj8PV4+QYwaNwt7Nv6M3mZaZd8/OzMc+z+8w8GDB9DrwHDyEhLJjc7s/YdBUEQWjidTsc333zT3M1oUiKgEoDzw3zlwVSQp7peNaZKLXYSs40Yrc4SCHqdkgg/LZp69m4Vm21kFpvJKjaTW2rFbKtbLRGFUlm2nIt7lc9bSospyT5HcXoihqxUJEfDh+py0pPZ8ctX9B4+AW//YPqOuomDf64nI/lsg49Z7uSxg4S1ak1kTHsGjriBn1d/jtQM9VQEQRCE+hEBlYDjgpwphax+wZQkSWQVW0jLMyMBCrmMVr5afNzrPrRXaLSSWmgirdBEkaniDDoZzuDMS6vCU6PAXa1Eq5KjVcpRyuU4JwfKKCgs5KGHH+FY3Cl8/APp3KMXvQcMxsM3CK3eD7WbJ+rI9vhEtsdus1KUdpa8+OOYChtWpdxUamDXr6vpOWgsIa3bcs3Q8Rz8cwPpSacadLwL7dz8K0GhrfALCKJz994cO7jnko8pCFcbMZ9KaIimfN2IgOofziFJZBkuSED3qnv1c5vdQUKOiSKjMwjS65RE+mtR1VACoZzV7iA530hinpF84/mKvjIZ+LupCfTUEOihxlunQlGH4cIgPx+++/oL/u///o85c+aw+4/1fLfEi6lTp9I6KhqdbxCewa3wColC5eaBT2QHfCI7UJKTTnbcfkpyztXpmi/ksNvZ/+c6uttGEdGmMz0HX4/VaiLn3KXNADSbjOzbuYVBI2+g+7UDORN3DJOx+tXfBeGfxGq14nA4mqUStnDls1qtrqV9Gpsom9DIrqSyCZIkkW2wYbI6kMkgqB6z+UrMduKzSp1lFYBwXy0Bnqpae6VKLDbO5JSSmFuKtayOggwI8dIQptcSoteirkNAVpM9e/YwefJk0tPTkclkjBgxggEDBriqELv5BuET1RmvsCjkcmddLUNWKulHdmExFDTonD2H3EBYVHtsVgs716+iuODS1+ebMH0m/kEhxB7Zz9/bNl7y8QThatG9e3dat26Nj49Pk8zuFerHP8BZlDgnO6uZW1I9SZKwWq3k5eVx+vRpzpw5U2mbSy2bIAKqRnalBFTOsgY2SsoqlQd6qtDUsc5UdrGFlFwTEqBRyokO1OFWywLJBrONuCwDSXlGyl9wHhoF0X5uRPro0CgbZ4HlcsXFxcyYMYMNGzYA0KZNG2688Ubc3c/nWCm1bvi364FPZEfkCgUOu53suP3knDkM9fxvIZcruHbkZPxDWmEozGfHuq8uuZZUUGgEN0y5DbvdxrefL8JYYrik4wnC1UKr1dKnTx90Ol1zN+UfTyaT4eXlnO1cVFTYoodi7XY7SUlJVQZTIAKqFudKCagKSm0UmZyJ2QEeSnS1BETgDMJS8sxkFzsDBW83Ja39dTUOyRmtdmIzDSTklroCqUAPNW0D3An21DTpt0tJkliwYAHPPfccVqsVT09Ppk6dSmRkJDKHg1ZJSXgaDBj9A7BNvAOPMOd6VqW5GaTs2YjNXL8yDCqNliETbkfn7knq2VgO7fj1kq9h7JTbCA6N4Oj+v9m3a+slH08QrhYymQydTid6qJqZSqXirnvvB2D50sV1XtC5OZhMphqr6YvCnkK9GUx2VzDl61a3YMrukIjPKnXtF+qtIVivrvbNzO6QOJll4GR2Cfayob0gTw2dgjzwc1c30pXUTCaT8cQTTzBs2DAmTpxIamoqy5cv5z+dO/NkcjL6C9a6Kvz6K/68/R5K73ocN79goobeSPLfv2Iuyqvz+axmE/u3rWPg9dMJj+nIuYSTZKUlXNI1HD+wh+DQCNp26saBv/8UeSOCUEaSJEpLRW5hc1OpVGjKluApKSlp0QFVUxMB1T+M0eIgr9SZRO6lVeChrT2YstgcnMksxWh1IJdBa38dPu6qarc/V2ji8LkiSizlQZuKriFeBHjUPZAqNtvIMpjJLbGSb7RSYrFTarVjsTtco3EapRydSoGnWoG/uxp/DzUhnppKSfE9e/YkNjaW2267DcVPP/HysWOVzudVVMT4jxbwg6EA033PovH0JmrwRJJ2rcOYn13ndhdkpxMfe4CYzr3p0nc4W9cm47iEEg0piWcoNRTj5uFJeOs2JMdf+ixCQRAEofGJgOofxGJzkGNwfntwV8vR62oPpowWO6czS7HaJZQKGW0D3XCrZoFkk9XOwbQi0gqdsyd0KjndQrwI99bW2i1fYLQSn1tKfF4paYVmiswNW4BYIYNwvZYYf3e6BHug1zoDPw8PD3784QeK/f2hoKDSEgEyQAJGrv2BhW3bENH/etz9Q2nVfyyJ23/GXJxf5zacOvQXYVEdcPPUE9G2C0knDzfoWsD5LTz+1Am6XNOX1m3ai4BKEAShhRIB1T+E3SGRbbCWJZLL8K1DnSiDycaZrFLsDtCq5LQJcquyUKckSSTnGzl0rghr2ay/dgHudAzyQFnDjL2cEgsnMg2cyDSQXVIxgVsG+Lmr8XNT4eumwlOjxE2lQK2QudptsjkwWu0UmWzklFjINJgpNttJKjCRVGBiy5lcYvzcGNDah0gfHWzfjmdBQbXtkQH6oiLCz5wmCWg9cBxuvkG06jeGs1t/wFHHJHO7zcbpI7vp2m8EbbtdS/Kpo0hSw4fqEs7E0eWavrSKaoNMLheFPgVBEFogEVD9A0iSRI7Bit0BSjn4e9Re3qCw1MrZbCOSBO4aBW0C3aqsT2WxOTiQWkhqWa+Ut05J7whvvHVVDwla7Q5iswwcSC0ipfB8HRCZDMK9tK5ZfyGemoYtyGy0kpBn5ESmgaR8I2dySzmTW0q0r45x8cl41+E4ngYDkt1G8l+/Ej3sRtTuXoT1HErKnrqXLkg+fYy23fuhdfMguFUM6Umn63UtF8rJTMdkLEWrc8M/IJjszPrXzBIEQRCalgiornKSJJFXasNsk5DJIMCz9kKZeSVWErKdM9y8dEpiAnRVrsWXZTCzJ6kAk81ZeqFTsAftAz2QVxGslVhs7E0pZF9qoWt5GpkMYnzd6BTkQbsAd3SqSyudIJPJ8HNT4+empne4ntxSC3uSCzmQVkh8npGf8xXcUYfjFJetWG+3mknZu4moIZPwCo3CMzSK4nN1SzKXHA5STh+jbbe+hLfpdEkBFUDmuRQiY9oTFBouAipBEIQWSARUVzmD2UGJ2RnA+Lsra61inmuwkJjj7DnycVcS5V95WrIkScRlGTie4ayL5KlR0KeVN75ulZPODWYbu5Ly2Z9ahK1stp+3VkmPUC96hHnhqWm6l6Cfm5qxHQLoF+nNxlM5nOrSm0L/YLxyM5FVUS3EAaQCy8+eZUirVigUCkwFOeScOkRgh14Ed+6LISO5zusApsXH0bZbX/xDWqFQqrDbGj77JTcrk8iY9vj4Bzb4GIIgCELTEQHVVcxkdZBfNqPPW6eotTxCTrGFpFxnMOXvoaKVX+VkcovNwe7kAjKLzQBE+ujoGeZVKVfKZLOzIyGfvSmFrkAq1EtD/0gfOgS6V9mL1VR8dCqmdQtmv58bmx75DzfNfQQJGTLOB1WSTIZMkpgNbNuxg4TkZKZMmYJeryfn9GF8ItujdvdCH9GGgqSTdTqvoTCPkqJ83L188AuOICs1vsHXkJ+XA4Dex7fBxxAEQRCazqWt8SG0WDaH5JrR56aW41lLeYQLg6kAz6qDqQKjlT9O55BZbEYhg94Revq08q4QTDkcEvtTC/lwZzJ/JRVgc0iEeWm4tWcI9/QJp1NQ1UOCF3M4JAxmG/mlVnIMFkostkuqwCuTyegdrqff7HtYO/dDivyDKj4fHo7s+++ZsGwZWq2W5ORkFi1axKlTp5DsNnLPOkst+EZ3rtd5czPTAPAJCG5w2wFKDc6aWW7uHpd0HEEQBKFpiB6qq5AkSeQUW3FIoFLUPqMv13BhMKUmwrdyBfPUAiN7kwuwS+CuVtC/tU+lxPNzhSbWxWWTUdZ75eemYmRbf9r6u1V7fkmSSC00cSa7lIQ8I8n5RnIMFvKNzvZfSC5z1rSK9NHR2s+N7qGexPi71au3K0yvpddjd/HxgBGEHtlLP5WRdt3awODBoFBwNzBw4EDGjx/P6dOn+eqrrxgwYACj5UoCO/ZBp/dH7eFd5zX/CnOzoC14+vjXuY1VMRmdOW0ardslHUcQBEFoGiKgugrlldiw2CXkMufQXU0BR16J1ZUzFeCpqhRMXZwvFeSh5tpInwrlEyw2B5vP5LI3tRAArVLO0GhfeoXrq0yAt9gcHEorYl9KIcfSDeQbq88tkslAIZNhc0g4JMgpsZJTYmV/ahHfH87Az03Fde38uKFjANo6JrW38tExumMQ62R9SZXB/de2wk9xft927dpx9OhRZs2axYoVK9i1axfJycm81Gs4PmFReAa3IvdMQZ3OVWpw3hM390tbhshudw7dKhSNu+ahIAiC0DhEQHWVMZjtlFicSeh+HipUVZQ6KFdQen42n7+HigjfisN8DofEvtRCkvOd27Txd6N7qFeFbRLySvnlRBYFJucHftdgT0a188NdXfGlJUkSJ7NK+ON0LnuTCzHbztdSUilktA1wJ9pXR6SvjiBPDX7uary0SpRlAZnF7sBgtpNZbCYxz8iprBIOpRWRW2rl20MZbDyZw83XhDI42qdOPVY9w7yIzTIQn2fkr8QCxneqmOyt0Wj4/PPPGT16NPfddx+pqan8+sMqbnn0BXQ+AbUev5zZ6FwaQ6XR1nmfmoilNwVBEFqmqyag+vjjj/n4449JTEwEoHPnzrz00kuMHTsWcH4QvfLKK3zyySfk5+fTt29fPvzwQzp3Pp8TYzabefrpp/n6668xGo2MGDGCjz76iPDw8Oa4pHqz2BzklTgDG71OgU5VfYpckdFGfJYzUPJ1r5wzZbU72JWYT7bBggzoGe5FtJ97hec3n8llT4qzB0avVTK+YyDRfhWHpMw2B3+ezePXuGzOFZpdj/u7q7g20pueYV60C3RHXcvsQ7VCjq+bHF83FR2DPBjbMQCL3cGepAK+PZRBlsHCop3J7E8p5LHBkTUWFAVnTtWQaF/i89I4kl7E8Da+lYJAgNtuu41+/foxbtw44mOPOq9dpsJms6FU1v7fp3zZGfkl9iypVM4ZlLY6FhcVBEEQLq+rJik9PDycN998k3379rFv3z6uu+46Jk2axPHjxwF4++23effdd/nggw/Yu3cvwcHBjBo1iuLiYtcxZs+ezZo1a1i1ahU7duzAYDAwfvz4GlenbinKK6GDs6q5Vw1J6AaTjbNZpUiAt5uS1v4Vgymj1c7WM7lkGywo5TIGRvlWCKYyi80s3ZPqCqZ6hXtxf79WFYKpUoudH45k8Mj3x1m2O5VzhWY0SjnD2/jy6ti2vH9TJ+7oHUaXEM9ag6nqqBVyBkX78s6kDtxyTQgquYy9yYXM35aI1V57NfEIbx3BnhrsEpzJqX6R1ZiYGI4cOcKQAf0A0Lh5sGzZMvLza1+ORi53/h0utbq5zt15/00m4yUdRxAEQWgaV00P1YQJEyr8/vrrr/Pxxx/z999/06lTJxYsWMCcOXO46aabAPj8888JCgriq6++4v7776ewsJClS5eycuVKRo4cCcAXX3xBREQEmzZtYsyYMZf9mupKkiRyS2znK6HXkIRearFzJqsUhwReOgVRARXrTBWbbWw/m0ep1Y5WKWdglC8+birXeQ6eK+K3kznYHBLuagUTOwXSxv98sGWy2vk1Lod1x7MwlC2OHOihZmzHAIbE+OJWS+mGhlAp5EzsEkRrXzfe2RLPgdQilvyVwkODImvdt62/GxnFZs7mltI9tPo8J7VazRuvv8b62Cx07h6cO3eORYsWMWnSJDp16lT9fmVDfVaLudpt6sLDyxuAkqKiSzqOIAiC0DSumh6qC9ntdlatWkVJSQn9+/cnISGBjIwMRo8e7dpGo9EwdOhQdu3aBcD+/fuxWq0VtgkNDaVLly6ubapiNpspKiqq8HO5FZnsmMqqj/t7qKqsag5gtjo4k+lcm89doyAmoOIMufxSK1vP5FJqteOhVjC8rZ8rmLLYHKw9nsm62GxsDok2fm7c36+VK5hySBJ/ns3jybVxfHMwHYPFTqiXhkcHRzJ/ckeu7xjQJMHUhbqFevLM8GhkMtgen8+x9OJa9wn1cgY8OSW1D6U5yvKX1CoVnTt3xmw2s3r1atatW4fVWnVivZunHgCj4dJeF75lBT0L8nMu6TiCIAhC07hqeqgAjh49Sv/+/TGZTHh4eLBmzRo6derkCoiCgirWHgoKCiIpKQmAjIwM1Go1Pj4+lbbJyMio9pxvvPEGr7zySiNfSd2ZrA4Kjc6eIF83ZbXr31ntDk5nlmK1S+hUctoEulUIvLINFnYm5GFzSHjrlAyK8nXNmssttfDt4QyySyzIZHBdjB/9I71dPVtnc0pZtjuF+FzncFSAh5rpPYIZ0Nqn2uAOILfEQnqhiawiM8VmZ+6XHAj00hDhoyPIS1vrMjkX6xrqyej2/vwWl8PqQ+l0CfGscXtvnfO/QFHZ+WtiKRtG1KgUHDx4kEcffZTFixezd+9eUlJSmDZtGn5+fhX28fR2/l5cmFev67iYf1AIADlZ1b8WBUEQhOZzVQVU7du359ChQxQUFPD9998zc+ZMtm3b5nq+qiVUalskuLZtXnjhBZ588knX70VFRURERDTwCurHfkHxTne1HI9q8qbsDokzmaWYbQ7UChltgioudJxRbOavhDzsEvi7qxkY5eNaouZUdglrj2VitjvwUCuY2i2YCG8d4Bw+XHUwnU0nc5AAnUrO5K5BXN8xoFJelCRJJOcZ2Xk2l0MphcSmF5NtqLlXyEurZEhbf8Z1DaJHhL7Wv1W5SV2C+D0uh9PZpWQbzAR4aKrdVlF2zItrXlWluGwmo7taiUqlYtGiRYwZM4aZM2eSkZHB4sWLmTBhAl27dnXt4xfknNBQkN3wQEilUhMYFApARlpyg48jCIIgNJ2rKqBSq9W0adMGgN69e7N3717ee+89nnvuOcDZCxUSEuLaPisry9VrFRwcjMViIT8/v0IvVVZWFgMGDKj2nBqNBo2m+g/spiJJzmCqvHinj3vVf0qHJBGfVUqpxYFCLqNtsFuFXqxzhSb+SspHkiDYU0O/1j4o5TIkSWJXUgGbz+QCEKHXMqVbsGvtvQOphSz9O5W8UmdANyjah9t6hVYq9pmcV8qGY5lsjM0mNb9iQrUMCPDUEOSlQa9TIcNZ4T290ERagZEik41fjmbwy9EMhrf358Wx7fHU1v6S9XFT0SHIndjMEg6lFTOqffV/H2tZJKWoQ7BWXi9Lf0EbbrzxRvr06cP48eM5fPgw33//PYmJiVx//fV46r3x8nWWWMjNTKn1+NUJbx2NXKGgMD8PQ1Fhg48jCIIgNJ2rKqC6mCRJmM1moqKiCA4OZuPGjfTs2RMAi8XCtm3beOuttwDo1asXKpWKjRs3Mn36dADS09M5duwYb7/9drNdQ3UKjXbMNgkZ4O+hrLL2kiRJJOWYKDLZkcugbZBbheKXqQVGdicVIOGsIN63lTdyuQyb3cEvsdkczXDmIPUK82JM+wAUchmlFjuf703lz7POGW5Bnmr+1S+iwtCaze5g66kcvt2fxuHU87lDKoWMnhHe9I3yoXOoF+2DPKpdX9DmkDiSWshvx7NYdzSDLSdzOJlh4J2pXYgOcK9ynwtF+boRm1niqtpenYLyIElX+3+FrGJnj1qAR8VFoMPDw9m3bx9PPfUUCxcuZP/+/aSmpvLSvHcByMs6h+USZudFt3OW9kg8E9fgYwiCIAhN66oJqF588UXGjh1LREQExcXFrFq1iq1bt/Lrr78ik8mYPXs28+bNo23btrRt25Z58+bh5ubGrbfeCoBer+fee+/lqaeews/PD19fX55++mm6du3qmvXXUhitDopMZXlT7krX8NzFzhWYyStxBgzRATrcNeeDl+R8I3uSCwBn5fDeEXrkMmfA9M3hdFILTchkcH27AHpHOBOrT2QY+HhnEjklVmQyuKFjANN6hLiqppusdtYcTOervSlklwUfChn0jfZlbOcgBrbxq3NiulIu45pW3lzTyptJPYKZszaWc4UmnvruGF/e27vW45Qn0xcaa86NunCZnJoUm22uPKvAKoYQlUol7733HiNHjuT2228nMzMTn+BWAKQnnqrx2DXRuXsQHhkNwNmTxxt8HEEQBKFpXTUBVWZmJnfccQfp6eno9Xq6devGr7/+yqhRowB49tlnMRqNPPTQQ67Cnr///juenud7VubPn49SqWT69Omuwp7Lly9vUct92B0SuWV5Ux4aeYUg6ULZxRYyCp1BTaSfFv0FAUPKBcFUZFkwJZPJyCmxsOpQOvlGKxqlnGndgonydcPukPjucAY/Hs1EwlkG4aFBrWgf6Fyo12S18/2Bc3yxO4X8siFAX3cVN/YI5caeIfjXkMNUF51CvFh+1zXctfwA6YUmPv8rmQeHRtW4jyuBvJok/XIJec6eo9Y+uhq3S8xz1qkK9tRUm/gPzvIdsbGxPPncHNp16obJWMonC99h6JDBqNXqaverTocuPZErFGSkpVCYn1vv/QVBEITL46oJqJYuXVrj8zKZjLlz5zJ37txqt9FqtSxcuJCFCxc2cusax8V5U95uVf/5CkutJJctdhyiV+Pvef6DPCXfyO6yYKq1r45e4c5gKqXAyDeH0zFaHXhrldzcM5QAdzU5BgsfbE/iZHYJAMPb+HJHnzB0KgUOSWL90Uw+2Z5IVllPT6hey539W3FDl6AaA4/60utUPDo8mhfXnmDd0QweGNK6xiT18p45rxpyrgqMVlILnffp4grvF7LaHSTkOgOqKN+aAy+AkJAQXnl7IQazg/VrvmHnju2cOhnHtGnTCAwMrHX/cmqNlo7dewFw4vC+Ou8nCIIgXH5XTUD1T1CXvKlSs534svX5/NxVhHif7x1KLTjfM9Xa53wwFZdlYM2xTGwOiTAvDTN6hOCuVnI4rYgPdiRhMNvRqeTc1y+C/lHOhP3j54r438YznCir9RTkpeG+Qa25vnNgrcu+NNTANn6oFTJyDBaS8oy0riEIKq983rqGAOjQOWd+V2sfHXpt9UN+Z3NKsdglPDQKQvW1r8lXZLRhMDuQAcP7decjb2+ys7P55JNPGDduHD169KjTjMVuvfqh0WjJy8ki6ezJWrcXBEEQmo8IqK4QF+ZN+XlUnTdlsTlcVdA9tQpaXbCkzLlCkysBPdJHR6+yYb4DqYWsi8sGnFXDp3QNRiGX8d3hDH44nIEERPnpeHxIa4I8NRSZrCzcHM/PR5xlANzUCu4ZGMm0XmHVDq9JkkR2kRmT1Y7dIeGpU+HvWf9hQI1STqSfG6ezSkgvNFUbUOUYLCTlG5EBbatJYDfZ7OwtWzrnmrDqK6SbrHbisgwAdAz0qDUQcjgkUvKcvXWBXmquuW4YcXFxTJo0id27d/Pjjz+SkJDAuHHjapwd6uXtS6cefQDY/9e2arcTBEEQWgYRUF0BbBflTVWVkG13SK7CnVqVnJjA81XQ04vKSiMAEd5aV5L59oQ8tp51FpzsGebFDe0DMNkcLNiWyIGy2Xkj2vlxZ58wVHIZm2KzmL/pLLllVcVv6BLEQ8OiKuVIlZpt/HU6hz9jsziYmM/p9GJXDady0YEeDOkYwL3DY4gqy8Wqj5rCmh0JzhmI7YPc8a0m2Xx3UgEmmwO/ssWWq3MkvRibQ8LHTUWrWvKsANILzZhtDlQKmat3MCgoiF27dvHiiy/y9ttvc+TIEdLS0pg2bRrBwcFVHqf/sNEoFApSEs6Qmni21vMKgiAIzUsEVC2cJDmDqZrypqSyWlMmq/ODvG2Qm6vCeGaxmb8SnXWmwvVa+rTyBuD3UzmuxY0HtfZhWIwv6UVm/rclgXNFZlRyGff2j2BojC/5pRbe+vU0W085lz2J9NXxwtj29CgLzMDZk7P5WCZr9qaw+VgmZlvFxYDlMlArFWWlF2zEZxmIzzLw7d8pvHVrDyb3Ca/1XjgkiXNlOU9+7lUneFvsDn4r63EbFuNb5Tb5pVZ2JRUAMDTGt8qhU4C0QhPJZbWzeoR61do7VWy0uSYCRPhWrPIul8t58803GTlyJDNmzCA3N5clS5YwduxYevXqVeHYHbpeQ2hEa2w2K7u3b6rxnIIgCELLIAKqFq62vClnBfLztaZiAs8X7sw2WNiVkIdDglAvDddGegPw84ksDpflPo1u50/fVt4cOVfEe9sSKbU68HVT8eSwKGL83dhyMpu3fztNfqkVhVzGXf1bMbN/K9c5MgtNrPgzgZXbE8i7oPJ5uK+OoZ2C6N/Wnw5hXkQHerj2KTJa2XUymyWbz7L7TC6PfLYPd42CUd1CqElCTiklZjsapZyoaoby/jiVS4HRhr+7ioHRlQMqSZJYF5eFzSHR2kdHp2p6x0otdvaXBZztA92rDeDKWW0OEnLKctc8VPi4V90zNnLkSOLi4rjxxhvZuXMnv/zyC4mJiYwfPx6tVouPXwB9Bg4HYN/OLRQXFtR4XkEQBKFlEAFVC2a01J43lVlkIafYORwY5X++1lReqXNtPrsEQZ4a+kb6IEmw5lgmsVkGZMCEToF0D/Xit7hsVuxNwyFB+wB3Zg9rjVYp581fT7H2UDoAMQHuvDSuPe2DnWUmzuWV8sFvp1n1VxKWst6oYG8tN/aJYHLvMDqFV79UjJdOxfU9QhnZNZgXVh3m651J/G9dHCO7BtfYC/T7iUwAekd6o6xijb8Co5Vvy9o7qWtQldv8lVRAQp4RpVzG2A4BVZ7P7pD4KzEfi92Bt05Jp6Ca1wN0SBJns42u4dYI35oT1wMCAvjzzz+ZO3cur7/+OseOHePcuXPcfsedTLnjfpQqFamJZ4k9cqDG4wiCIAgthwioWiibQyK3pOa8qfwSK2n5zgTocB8N3mW9IoUmKzvinQsdB7irGdDaB0mS+O5oBqdzSpHL4KauwbT3d2f5nlR+i3MO5Q2O9uG+/hEk5JTy7x9PkJznTOy+o18E/xrUGrVSTlahiQXrT/L1rkSsdueyLb2jffnXdTFc3z2kXjP8lAo5L07qzA+7UziWUsip9GLah1adIG602F2J8OO6Vs47kiSJz3anYrQ6iPLVcV0bv0rbJOcb2XLWWctpTHt//KvodZIkiX0pBeQbragVMvq39qlxgWZJkkjMMVJitqOQQUygrk4LOsvlcl599VVGjBjB1KlTKSgooM/gkXh5+1BcVMC233+u9RiCIAhCyyECqhbo4rwpnyrypkrMdtcQU4CnikAvZ3BgMNvYfjYPi92ZSD0gyge7JLH6cLqrZ2Z692DCvLT8b2uCK/n8lmtCGN8pgJ+OZPLuxtNY7BIBnmpeHteB3q19MFpszF9/io83nqbU7Ow169/WnyfHdaB/O/8GX6uPhxofDzUZBSZXT1dVVu9PI6/ESqhey+C2lYOlrWfy2JNciEIG/+ofgfyioKbAaOXbI+k4JOgU5EHPKgI3SZI4kl5MSoEJGdA30gd3dfX/RSTJOaMvv8SZcB8dWHFpn7oYOnQosXFx/LZlF4OHj6S0pIQXnniITu3botPVngQvCIIgtAwioGqBXHlTMvD3UFUalrLYHJzJLEWSwEunJMLXWR7BaLXzZ3weJpsDL62SwVG+OCT4+uA5UgpNqBQybukRil6r5NXfzpCQZ0SlkPHwoEi6hXgy95eT/H4iC4CBMb68NL4DXlolvx1O5+Vvj5BaVlW8R2sf/n1jZ/q1bXggVc5qd1BYVl29umAko6w6OsCsIa0rDX0m5JayfE8qANN7hlQq0llisfPlwXOUWh0Ee2qY2CmwyqG+2EwDp8sKmPaO0BNUQ2kHSZJIzTe7ltiJ8tfhVYf1AKs6jkKrZ/B1o3E4HDzyrzv44/f1bPf2Ztq0aYSFhdX7mIIgCMLlJwKqFsZosZ9fp89NiUpR8YPf7pA4k1WKzSGhU8mJDtAhk8kw2+z8eTaXUosdd7WCwdG+OCSJrw6eI63IjFYp55aeociBlzecJstgwUur5OnhUWgUMv618iBns0tQyGU8ODSKW68NJ7PQxBOf7+f3sqG2UB8d/76xMxN6hdWpMGVd7DmTi9Fix89DTXQV5QskSeLNX09RarHTLdyL0Z0qVhovMFp5Z0sCFrtEjzBPxl/0vNnmYNWhc+SVWtFrlczoHlIpIJMkibgsAycynfWmuoV6EulbfdHQ8p6p8mCqla8WX4+a1wKs7jiFRjvFZT1+/p5qXn15DscO7yczM5OlS5cyatQo+vXr12j3WxAEQWgaIqBqQWx2idyy4SMPjaLSOn2SJJGQbcRocaCUy4gpK49gtTvYEZ9PcVlF8yFl5QK+OHCO9GIzOpWc23qGUmyy83+b4zFY7AR7qnl+ZAynMoqZ+0scJWY7fu5qXp/cie7hXny5I5HX1xyn2GRDpZBx/8i2PHZ9O9w0jfuS+XJHIgAjywqKXmzl7hT+TshHrZAxZ2z7CrMcSyw23th0lrxSK6FeGh4d3LrCUJ/Jauerg+c4V+S8B7f2DK20FI0kSRxNL+ZUWc9UlxBP2gVUX5fKIUkk5ZhcS9u08tMS4Fn/NfokSaKg9Hww5eOmxEOjYMCAAcTFOZep2bRpE7/99huJiYlMmjQJN7fqgzxBEASheTXNGiFCvUmSMwndIYFaIcPHrfLwV0qeiUKjDVlZ8rNGKcfukNiVkF+WRC1nSLQfcpnMFUy5qRTcfk0YGUUWXt94BoPFTht/N14e04YNRzN49vvjlJjtdA93LkAc5Knm9g//4vmvD1NsstGztQ8bXhjO85M6VQqm7HYHZ84VcDqtgJRsA2arvV7XfCq9iJ8PpAFw7/CYSs/vS8xn0bYEAJ4Y2YbIC4byTFY772xOIDnfhF6r5NkR0RUS90vLhvnSis4HlBcnoTskif2pha5gqmuIJx1qKDJqd0iczSx1BVOt/RseTOWV2CoEU57a82339vbm999/580330SpVHLy5EkWL15MSkpKvc8lCIIgXB6ih6qFKLig3pRfFXlTWUUWsi8oj+ChVeKQJHYn5ZNdYkEplzE42helwhlMZZQFU3f0CiU2s4RPdiXjkKBHmCcPDGjF27+d5o+yAphTrgnliREx/HLgHHNWHabQaEWjkvPCpE7cPSymQs9RUlYx320/w+ZDqew9lUmx0ep6zsdDw4ePDOXGAZWDo4s5HBIvfH0YSYKxPULoFK6v8Hx8dgnPrzmOQ3JWZJ/c43yNKqPVztub44nLKkGnkvPCyJgK+U4FRitfHTxHbqkVnUrO7deEEXxRPpTF7uDvxHyyympn9QrXE1XD2oAmq4OzZcVT5TKIDtChr6YKe23XnW2wYrY5Z0j6ujt7pi4mk8l47rnnGD58OJMnTyY9PZ3PPvuMESNG0L9/f+Ry8V1IEAShJREBVQtQarFTXKHeVMVgqrDUSkqes0J4mLcGH3cVkiRxILWQc0Vm5DIYEOWDViV3BVPuagW3XxPKvuRCVu47BzjLItzYNYjZ3xwlNqMYpVzG06PbMLJDAM9+eYjVfzsTv7u38mbBzF60DXHWX7LZHaz9K56Pfj7KX7EZFdqmUytRq+SUmm3kG8zc+ubvfPTIUO4e3anGa165PYHdZ3LRqRW8NKVLhecyCk088e1RDGU9Z89d384VYJZYbPzfHwmczD4fTEVesAByepGJVYfSMVjseGmU3NozlACPir1IxSYbuxLzKDbbUchl9I30JtSr+tpRhUYbCdlG7A4JlUJGTKBbpeHYurDaHWQX27A5zhdq1VVRDuNC1157LXFxccyYMYNff/2VjRs3kpiYyOTJk3F3r7q4qSAIgnD5iYCqmV2YN+WpVVSqN2W02InPPl+BO0ivduX9JJbNuusb6YOnRlmhZ+q2niFsOZ3H2qPOYpg3dAqgd5gn9608SI7Bgl6n5K2bOqMErn9jK4nZJchk8PjY9swe2x6lQo7N7mDFpjje+f4gCRnO8goyGQzpEsrkATEM6BRM51a+KBRyrDY7sxdtZ9nvsazadrrGgOpgYj6vfH8MgOcmdiTC73xgkFVs5uGvD5NZZCbSV8fbU7q4Fl3OK7Xy5qazpBSYcFPJeXFUG2L8z/cqncg08OPxTFf9rapyptIKTexNLnAl9Q+M8sVbV3VPkyRJpBeYSS9bTsZNLadNoBuqahaBrkmpxU6uwYYEKGTOUhfqOh7Hy8uL9evXM3/+fJ5//nlOnz7NokWLmDp1KpGRkfVuiyAIgtD4REDVjCRJIsdgRZJArZThrasYTFntDs5kleKQnEnqrfyc5RHiMg2uvJ9e4Xp83VR8eWEwdU0I60/k8PtJZ8HOGT1D8NUqeOirwxitDqL93Xh7Sme2Hs/i5dVHMNschProeP+uXvRr648kSXy/4yyvfrmHU2kFAPh5anlwfBfuHt2JUL/KPSMqpYLxfaNY9nssRSWWSs+XO5dXyn2f7MZic3B995AKuVPphSYeW3WEtAIToXot79/cDX1ZsJOSb+TtzfHklFjx1il5fsT5nimHJPFnfB7byxZFjvFz46auQWiV5++nQ5I4dkHyub+7mn6R3tWWarDYHCTmGF09h/4eKiJ8tZXqW9VGkiQKjOd7IDVKGf4eqjoV/7yQTCbjySefZNiwYUyaNInU1FSWL1/O8OHDGTRokBgCFARBaGYioGpGeaU2LHYJuQz83SvmTTkcEmczjVhsEhqljJhAHXKZjPjcUo5lONfh6xbqSYiXhi8Oliegy7m1ZwhrjmTy59l8ZMDdfcPJKzbx3Lo4JKBPa29euqEDr35/lDV7nbWbRnQJYsHMXvi4qzl0NpsnP9nhGtrz89Ty7PRruHdMJ9y1NecMbTvqTDCPCKx6qZaCUgu3f/gXGQUm2gR5MP/Oa1zXnJRbyqOrjpBVbCbYS8OHt3YnqGwY7lBaEe//mYixrI7UCyOjCSzLiTJa7aw9lsmZ3FIAro3QM6qtf4XAp8RiY3dSAXll9a7a+LvRLdSr2kWR80usJOUasTucizq38tPi51H/5HOr3UGuwfk3BvDUKPB2U1xSCYRrrrmG2NhYbrvtNn766Sc2b95MYmIiN910Ex4e1SfUC4IgCE1LBFTNxGC2U2J2Vgb381ChvCBvyrWcicWZ49MmyA2lQk5agZEDqecX7I30cePLA2mkFzmDqZt7hrLqQDp7kguRy+D+AREcSirgq7Kil5O6hzC9Zwi3fbCTE6lFKOUynp/UiVkj2lBUauHRj7ax9LcTSBK4aZQ8eVMPHp3UHS+32oOJvGITK/+IA2DmyA6Vr9dk5a6P/uZUejFBei1fPjoAz7LepyOphTz7/XEKjFZa+7nx/s3dCPTUIEkSPx/PYtXBdCQJOga58+SwKDzKZhumFpr44WgGhSYbSrmMGzoE0P2CCuiSJJFcYORgahG2svyn3uF6wryrrkBus0uk5J0vieCmlhMVoKt39XNJkjCYHRSUOof45DJn8nlVywc1hIeHB2vXruXDDz/kySefJD4+nkWLFjFlyhSioqIa5RyCIAhC/YiAqhlYbA7XciV6nQKdquJwTXqBmfxSGzKc5RG0KgXZBjO7kwsAiPLV0c7f3VW0U6eSM617CF/sTeNQmjPZ/MGBEaw7nOGayffg0CgiPNVM+L9tFBlt+HtqWPSvPvRt48eaXfE89ckOMvKdvTzTBrdh3t39Cfeve4/HnOV/kVdspmOED2N6tarwXInJxh0f/sW++Dz0OhUrH+5PWFnhzC0ns3n5p1gsdokOwR7Mn94VHzc1JqudxbtS+DvJec3D2/hyT99wlAo5kiTxV1IBW87m4pDAR6dkStcQQrzOz+Sz2BwcSC0ktdCZzO/rpqJvpHe1S8kUlFpJyjVhK+tNCtarCfHWVNuLVR2bXSKvxIqpbBafRilzBsz1HOKrjUwm45FHHmHIkCFMmDCB5ORkVqxYwdChQxkyZIgYAhQEQbjMREB1mTkcEjllyclapQwvbcVei1yDxZUE3cpPi6dWSYHRys6EfBwShHpp6BriyarDGaQWmtAq5UzpEsznu9M4kWlArZDx4MBIPt+ZyMGUQpRyGXNuaEdiejF3fXEAh+RczPjjf/VBJYfb397IDzvPAtA2TM+HDw9jcJfQel3TDzvPsnyjs3dq4cNDKyyQnG+wcOdHf3EwMR+9TsXXjw+kU7gehySxfFcyS7YnIgGD2/jx6sSO6NQKUvKNLPgzkXOFZhQymHltOCPb+SGTySgy2fjxeCaJ+c6E/M5BHozrGOhKXAdn4vmB1ELMNgcyoFOwB+0DPaoMjiw2Byl5JgpKnQGuViUn0k+Lh7Z+/zUkSaLYbKew1I4EyAC9mwJPzaUN8dWmW7duxMbGcscdd/DDDz+wdetWEhMTmTJlCp6eVQ+9CoIgCI1PBFSXkbN4p3PavEJeud5UsclGUo6zRyXIS42/p9q52HF8HjaHhL+7ml4R3nx7JJ2kfCNqhYybugSxfE8ap8rKCMzqF8GHm89wOqsEN7WC1yZ2ZNWOBH4oG/ab0b8V827uzpbDqTzw/hYyC4woFXKentKT56Zfg7aGxYCrcvBsNv+avxmARyd1Y2Cn8/WizuUbuf2DXZxKL8bbXcUXDw+gWytvjBY7r60/6eo9m3pNKLNHtkEhg21nclm2O9W5uLNOxWNDIulQtiTN8Yxi1sdlY7I5UMlljG7vT89QL9c9NNvsHEorIqXAeQ89NUr6tNLjW8WQpSRJZBdbScs34XB2JhHkpSbUW1PvxHOzzUFeiQ2r/XyvlK+7stISN03Fzc2N77//nsWLF/P444+TmJjIokWLuOmmm4iJqb0mmCAIgnDpREB1GRWb7Bitzrypi2d6ma0OzmYZkQBvNyVhPhqMVjvb4/Mw2xzotUr6RXqz5lgG8XlGVHIZkzoH8dmeNM7mlOKuVnBXn1De+vUU6YUmfN1V/GdsO95cc5z9CXko5DJemdaVm/u34j8r/mbhj0cA6BDhw9InRnBNm4B6X09cSj6T5v6C0WJjVM8I5t3V3/Xc0eQC7vr4bzILTQR7a/nq0QG0C/EiKbeUF9ee4Gx2CUq5jGfHtGVi9xBKLDaW/p3KX4kFAHQL8eThwZF4aZWUWOxsiMsmNsu51l6ol4bJnYPwK6t8LkkSSflGjpwrwmJ31nhqF+hOpyDPKmfTlZjtJOcaKbU4/xZuajmRfjrc6llbyu6QKDDaXLlwMplz+NFdI2+Wtffuv/9+Bg0axIQJE0hISGDlypUMHjyYYcOGoVA0Tv6WIAiCUDURUF0mJquDAuP5pUYuHKKy2R2czizF7pCcidD+OqwOiR3xeZSULXY8oLUPP5/I4nROKUq5jAmdAlmxJ42EPCMeGgW39Ajm9XUnyS+1Eu6j47GhrXli+X5S84zodSoW3deHML2G655bw8GzznIKD47vyusz+6FrwPp88emF3PCfn8kuNNEzxp+Vz45yDfX9djidRz7bh9Fip32IJ58/1J9wPze2nMzmv+tOUmopXzewIz0ivInLNPDhjiRySqwoZDC1RwgTuwQiw1lbakNcNqVWO3IZDGrtw6AoX1egVGSycjC1iOyyUg16rZJeEVX3SlntDs7lm8kxOJPOFTII9dES4Fm5Mn1NJEmi2GSn0GRHKuvdclPL8XFT1rscQmPr3Lkzx48f5+677+abb75h+/btJCUlMWXKFPR6fe0HEARBEBpEBFSXgc0huT7E3dVyPDTngymHJHE2y4jZ5kCtkNEm0A0J2JWQT6HJhlYpZ2CUD7+dyiEuuwSFDMZ1DGDl3jSS8k14aZXc1DmA18oClXaBHszoGcL9n+yh2GQjKtCd5Q/243hCDtNe+ZnCEgt+nloWPz6ccde2btD1nEjOY9xLP5ORV0qnVj78/MoE9O4aHA6JBRtO8u46Zz7VkA4BLLrvWjQqBf/3+2m+P+Cs2N4zQs9rkzrhqVPy5b401p3IRgICPdQ8OiSSNv7uFJttbIjL5mRZ3ahADzUTOwW5Es9tdgcnMg2czi5xFsuUy+gU5EHbAPdKuVIOSSK7yMK5ArNreM/XXUW4r6Zew3KSJGG0Omfv2ZydUmXrLirRqFpOErhOp2PVqlWMHj2ahx9+mOTkZNcQYNu2bZu7eYIgCFclEVA1MUmSyDU4Fz1WKZy5NeW9IZIkkZJrwmB29r44yyPI+DupgJyy9fkGRvmw9WwexzMNyGUwtn0AX+w9R0qBc1HgGzr4M2/DKcw2Bz0j9PSL0PPw0r3YHBJ92/ix+F99mP/DQd794RAA/ToEs/LZUfWawXehfaezmDx3HbnFJjpH+vLLqxPw89JSZLTy1MoDbDiUDsBdQ6N4eWpXUvONvPxTHKfKhutu6xvOg0OiSCkw8dbmeFe+07A2vtzROwydSs6BtEI2nc7FbHOumzewrFdKKZchSRKphSaOnCtyDZ+GeGnoEeqF+0U9bZIkUVBqIy3f5Fo7z00tJ8K3/knnzh5GG5ay48hlzqFZd3XzDO/VxT333MOgQYMYN24cZ86c4csvv2TgwIFcd911YghQEAShkYmAqonll9qcix7LnHlTF374ZhRaXD1X0QE6tCo5B9OKSCs0IZdB/9be7E4u5HB6MTJgTFt/vj6QTkqBCW+dkmFRPrz16ynsDokB0T6EuamYs+owAJP7hPPvSR25+3+b2HQwBYDHJnXntZl9USkb9mH6y+4EZr6ziVKzjV5tA/lp7jh8PbWcSC3kviV7SMouQa2U88Yt3ZnerxXfHzzHws3xmG0OvHUq5k7oQK9Ib74/kslPxzJxSOClVXJf/wh6R+jJMphZfTiblLJSB6FeGsZ3CiTIw9krVWi0cijt/PCeu1pB91AvQvWV1+EzmGyk5pspMTuHWZUKGWHemioXnq6JxeYcqjWVBW8ynEsEeekU9S6p0BzatWvH0aNHmTVrFitXrmTnzp0kJSUxdepUvL29m7t5giAIVw0RUDUhg8mOobx4p3vFRY/zDFbOFZgBiPDVondTcTyjmPiyit99IvQcyzCwt6yQ54g2fnxzKIPUAhM+OhX9IzxZsOkMEjCyQwDWUjPz18cD8MiYdkzsEcSI59cSn1GEm0bJ4seHM3VQmwZdhyRJfPDTEZ7/7C8cDolRPSP44rnReOpUfLkjkZe+PYLZ6iDcV8fH/7qWVv7uPP3dMXaezQOgX5QPc25oT6HZxpx1p1y9Uv0ivbm7bzhalZw/Tufwd3IBDsk5jDYsxo8+4Xrkchlmm4MTGcWcLbs3chl0CHSWQrg4Z8losZOWb6bQaHNtG+SlJkivqVd+k8XmoNB4fhIBgIdGjpdO2eg1pZqaVqtlxYoVjB49mlmzZpGamsqiRYuYPHkyHTpULsIqCIIg1J8IqJqIxeag1Ha+eOeFVbINJhuJOc46SoFeagK91JzJKSE20zks1jPMi8QCE7vKiloOjfbl+8OZpBU6g6kewe58uDUBgAldg0hILeTXw+nIZPDf6d2I8FIx/Lm1FJVaaBXoybdzrqdblH+DrsNksfHoR3/yxeaTANw9uiPvPTAYo9XBQ0v38fMB53IzwzoFsvDu3hxIKeS5T/dSZLKhUsh4ZFg0E7oH893hTH6NdeZKeWmV3NM3nGtb6YnLKuH3UzkUmZ33ql2AO9e390evVeFwSJzKNhCbYcBalvwUptfSLdSzUoFOs9XBuQKzq8o5OHsEQ7019VrMuKpAyk0tR69TXLYyCE3l9ttvp3///owbN46TJ0+yatUq+vXrx8iRI1EqxVuBIAjCpRDvok0kx2DFzUOHTiWvULzTbHVwpqw8gl6nJNxHQ0q+kUNpRQB0CvIgp9TK1rLenQGR3vx8LIu0QhO+bio6++tYtjMJgCk9Q9hzIou/TuegUcpZeHdv0jLymTT/d+cwYKdgvnnxevy9ql5qpTZJmUXc9vZG9p/OQi6X8ebd/XlkYjf2ns1j9uf7Sc51zjh8dmInZgxoxbubzrAx1llbql2QBy+P70Cxxc7zv5wi2+Acphsc7cPtvcOw2B18fSjd1evkrVUyun0A7QPcnXlSBUaOpRdjsDiH7PRaJd3DvAj00FRoo9XmIL3QTE6xlbJ8c1fZifosGVNdIOWlVaCuR0DW0sXExHDkyBEefPBBli1bxt9//01ycjLTpk3Dx8enuZsnCIJwxRIBVROxO0Apdw71lefs2B0SZ7IuKI8QoCPbYGFPSgEAMX5uGG0Ofj/lLGvQJ9yLX2NzSC0w4a1V0sZbw4q/nflQN/cKZcPeVI6nFuKhVfLprGv5bXc873x/EIBbhrXj40eHoannOnTl1u9N5F/zN5NvMOPjoWHlM6MY0i2Md36JZeGvp3BIEOHnxof39KbAbOf2ZfvJL7Uil8Gd/Vsx5ZpQvtqf7lo6xt9dxb39IugY5MGf8XnsSXEO7ylk0L+1D4Na+6BSyMkpsXDkXJFrIWONUk6XYE9a++oq5D5Z7Q4yCy1kFVtcpQs8tQrCfLS417GelCRJmG0SRSYbJqvkevxqDKQupFarWbp0KaNHj+bee+/l3LlzLFq0iEmTJtGpU6fmbp4gCMIVSQRUTUSGc8ipvOq2szxCKSarA1VZeYQik41diflIknMoS6mQsfZ4FgA9Qz3ZfCrPFUy11mv4Zp9zeO3W3mF8tyOR+CwDAV4als26lvfXHGTVttMAvHRrH56f0atBs8/MVnuFwp+92wXyxbOjMdkkJv3fnxwpW09wat8IZo9rz+LtSWw56QwAYwLcefH6dqQVm3n+55OUWp2z9MZ2DGBKtyBO5pTy4a4kSsp6ndr6uzG6nT++bmqKTDb2JhdwrsiZV6aQy2gX4E77APcKS9mUB1LZxRZXCQR3jYIwbw2eurq9nMvLHxQZ7VjsFQOpq2For65mzJjBtddey4QJEzh+/DirV6/m2muvZfTo0WIIUBAEoZ7Eu2YT8fVQuno4JEkiKcdEsamsPEKgG2a7gx0J55eU8dap+P5YBgBdgz3ZcTa/rDSCgghPFWsOOms43do7jJWbz5JeYCTMV8ens67lhU938MehVJQKOR8+PJQ7RzYs0fhUaj4z39nEoXhngPTQhK68dmc/Vu5I5K0fTzgrtutUvH5zN5QaFfetPEyx2YZCBnf0b8Xw9gF8vi+NhFxnfliUn477+kWgVMj48lA66WXBkq+bijHt/Gnj747RaudAaiEJuaWuIbsoXx2dgj3RXdC7VlUg5aaWE+qtxUtXt/XyJEmixOygyGTH5jgfSHlo5HhplSgVV1ayeWOIiori4MGDPProoyxevJg9e/aQkpLC1KlT8fPza+7mCYIgXDFEQNVELkxCT78gWTo6wA25HLadOb+kTJhey7dH0pEk6BDgzt6kApLyTXhqFIS6q/jpsDPQurVXGEt/P0WuwULbYE/em9mTBxb8wYEz2bhrlXzzwvWM6BlR77Y6HBKL1x9jzvK/MVpsrsKfHSL9uPn9XexPcOZzDe8cxOxx7Vm2K4X9ZT1VHYI9eHxEG/anFvHKb85Zh24qOTN6htK7lZerhhaARiFncLQP10Z4Y5ckjqUXcTrHOQQKznpSXUM88dKqXG2rPpDS4KVT1imQsjskDGY7xSa76xgyGXhqFHhqFc1e3by5qVQqFi1axOjRo5k5cybp6eksXryYiRMn0qVLl+ZuniAIwhVBBFRNLNdgIb3QmZAd6afFTSNn65lc15IyMf5urD6SgV2CaF8dh9OKic814qGWE+KmZP3RTABm9Axh8a8nKTRa6RKh551bu3Prm79yOq0QP08tP7x0A9e2D6p3+5Kzi3nw/a1sPuxcPPm67uEsemwY6w5l8NjrWzDbHHholbw4uTNWuYwnvj2GxS6hUcq5d2AkQT46PtqZ7EoeHxjlw7QewZzIMrD47xRXT1CPUE+Gx/ihVSk4k1NCXJbBtZiwr5uKriGeBFyQcG6xOcgscgZSFy7vEuKtQV/HQMpic1BsslNiOZ9orpA7c608NFdGHanL6aabbqJPnz6MHz+eI0eO8N1335GQkMD111+PSqWq/QCCIAj/YCKgakLFRhuJOc6aS0FeanzcVWyPz6PQZEOjlNMhyIPvjmRgtUtE6LWczCxxLnSskhPspuK341nIcAZTH/96ihKzjT4xvrx8Yyem/Hc9yVnFRAR48Msr42kXXr8ZWg6HxKe/HmfO539jMFrRqZXMu7s/A7uEcf/S/a5cqaGdArljaBSf/ZVCUp5zKK9flA9Te4exLjaHDaedvVcR3lruujYMk83BlwfPufKkIr21jGoXQJCHmoS8UmIzDZjK1m3x1CjpEuJJqJfGFSCZbQ4yL5q1V59ASpIkTFaJYpMNk+38sJ5aIcNTq8CtBVc2bwkiIiLYv38/TzzxBB9++CH79+8nNTWVadOm4e/fsNIbgiAI/wRXRfbtG2+8QZ8+ffD09CQwMJDJkydz8uTJCttIksTcuXMJDQ1Fp9MxbNgwjh8/XmEbs9nMo48+ir+/P+7u7kycOJHU1NQGtclktXM221kSwMdNSai3mr3J55eU6RLiyZpjmZhsDkI8NSTlGjmdXYqbSk6wm5KNJ5zB1PSeIXz060lKzDYGtPPnP5M6MHnuLyRnFdM2TM+mNyfXO5g6e66Qsf/5iccXbcdgtNK3QxDb3rmRfKuM8WWJ53qdirnTutKmlTdz150iKc+Ir7uKZ8a0pW2oFx/uTCExz4ibSs4dvUO5p184fybksy4umxKLHV+dimndgrn9mlAsNju/nczmYFoRJpsDN5WC3hF6Rrf3J0yvRSaTYbLaScwxcizVQHZZMOWhUdA2yI0OIe54u9Vc4dxRtmBxeqGVbIPVFUzpVHKCPFUEealw19Qt1+qfTqlUsnDhQn788Ue8vLzIzMxk8eLFHD58uLmbJgiC0GJdFT1U27Zt4+GHH6ZPnz7YbDbmzJnD6NGjOXHiBO7u7gC8/fbbvPvuuyxfvpx27drx2muvMWrUKE6ePImnpycAs2fP5ueff2bVqlX4+fnx1FNPMX78ePbv31/vtc/OZpWi1nnirlEQ6afl8LliUgtNyGTQNcSTn45nUWKx4++mIqPQTFxWCVqljDB3Fb9fEEx9/OtJSs12BrUP4NnxbZk8dx3ZhSa6R/nz0yvjCPR2q3ObLFY7C9Yc4o3V+zFZ7LhplLx6Z1/atQ7k/qUHSC6rCTWuZyi92wfw9f40Ssx2ZMCkHiG0DvTg59gczDYHMpzr7w1r68eelAL2H3HmeelUcoZE+XJNmBeZBgubTudSZHIW7dQo5XQM8iDK182Vt1RqsZNRaCa/xOZqp6dWQYi3Bs86rLdntUvOivQWu2toUCYDD7UzP+qfmGjeWCZMmEBsbCwTJkzgwIEDrFmzhsTERMaOHYtarW7u5gmCILQoMkmSpNo3u7JkZ2cTGBjItm3bGDJkCJIkERoayuzZs3nuuecAZ29UUFAQb731Fvfffz+FhYUEBASwcuVKZsyYAcC5c+eIiIhg/fr1jBkzpk7nLioqQq/Xs/VICn4+etqHuHM6p4QTGc7E7G6hnmw8nUteqRUfnZISk51DacWoFTJae6ldw3wXBlNDOwbyzLh2THr5F7IKjfSM8Wfdfyfic1GRy5rsOpHO4x//ybEk5xDdiB7h/Pu2a/l8e7Kr2nmoj457RsSwK7HQtZhxh2APxnULYWdSAZnFzlywtv5uTOkRTGK+kSPpxYCzntS1rbwZEOlNkcnG8QwD+UZnIr5KIaN9gAdt/N1cJRAMJhvphRaKjOcDKb1OSbBeXevCxZIkYbI5e6RMFxTiVMqdw3ruGrnIj2pEdrudZ599lvnz5yNJEgEBAUybNo3AwMDmbpogCM1MpVLx5LMvAvDu2/OwWq217NFymUwm3nzzTQoLC/Hy8qr3/ldFD9XFCgud69/5+voCkJCQQEZGBqNHj3Zto9FoGDp0KLt27eL+/2/vzuOqLPP/j7/us3DYFwFBFNfMNE1zmbJyLW1zq7RtpnRavlNmM402zdeaaZuZrMaxmV9+J3DXNrNc0zSXDDXNFEVBQHMFFcQF2YQDHO7fH+ApUstSOHB4Px+P83jEfS44n6v7oby9ruu+rt/9jsTERMrKyqq1iYmJoWPHjmzcuPGCgcrpdOJ0Ot1f5+dX7nhusxhcERVARm6xO0x1iArky32nOHWmjGCHFWepSdKRAmwWaBXiw4qUyj2ohneJdoep3ldF8tLdHbjthSXk5BXTuVUES18dfNFh6kR+MS/M/Jo5a9IBiAj2ZcJve1JkWhkZt4UiZzkWA359U0usvj7M+qYyXAU5bNzboylZhWUsqKorzM/O8M5RuDBZln7c/XTe1VGB9GvTiFKXydeHTrs35bRaDNpGBHBl4wB8rBZM0yS/uJysPCeFJS53jWH+NqJDHPj/xIacFRUmhaUuCksqqm174Gs3CHLY8LUbmtKrAVarlX/9618MGDCABx54gOPHjzNlyhTuvPNOunTpov/nIiJ4YaAyTZOxY8dy0003uR/5zs6unI6Kiqr+FFxUVBSHDh1yt/Hx8Tnn+I2oqCj395/PhAkTeOWVV8653irSjxNFTrZXHSlzRUQA3xzO41hhKf52C5gGWzNPV25g2ciXZVVTZiO6RDPl82/dYer1Bzpz51+XkHWqiPaxYSz722AaBfn+5P8Hl6uCGSvTePm9zZwqqAx8vx3YnqE3tWXist2kVdV1bcswenWMZkX6cc6UVk7v3Xp1YxoF+7F2/2lMwG4xuL19JE3DHHyTmec+nqVFmB+3XBGO3Wphx9ECThRVjmBZDGgTUbkpp6/dimma5BaVkZ3n5EzVE3cGEB5oJyrE5yePiCktr6DQ6aLIWeFeqG5QucYq0Nda7dBpqTm33XYbaWlpDB06lG+++YbFixdz4MAB7rzzThyOix8tFRHxRl4XqMaMGcPOnTvZsGHDOe/98F/Spmle1FNjP9Zm/PjxjB071v11fn4+sbGxlJS7SMo+DUDLRn6k5hSQeboEH6uBw2LlqwO5WAy4qpEvS6vC1D3XRDNt5bcUOcu5qV0kbz3UlaEvL2Xv0TyaNw7i01cHER7802FqU1o2f4xbz44DlRt0dmoZzssPX8/y5BwenbIFgNAAO/ff2JIdxwpZUPX5V0UH8qvWjdhyuIDduZUh7PoWoVzbLIjtRwvYm1u5xioiwIdb2obTyM9G6rEijlUFNosBrcP9adc4ED+7lQrT5ERBKdl5pTirnuwzDIgI9CE6xOdHj3YxTZMzpZVByvm9p/XsVoNAh6b1PCU6OppNmzbx/PPP8+abb7Jz506OHj3K8OHDiY6O9nR5IiIe41WB6umnn2bJkiWsW7eOZs2aua+f/Ys+OzubJk2auK/n5OS4R62io6MpLS0lNze32ihVTk4ON9xwwwU/0+FwnPdf518fOo2PfyBNgn04lFvMvpPFWA0Iddj5cu8pDODqSH+WJGUBcE/naGat3ktBSTnXXRFO/GM9ePD1z9lx4ASNQ/xY+sogmoYH/mj/D2bn8+K7m/l4/V4AQgN8eOGBHhgOB2M/2ElhSTmGAUO6NcNw2FiaXhm4wvztDOjQmH25Jaw/WDld2ibcn75tG7H35BkSDuQClRth9mkdTvNQX9JzCtlRNcplAK3C/bmqcSD+PlZcFSbH8pwcyy917zVlNSAy2IfGwT4/erRLeUXVInPnd5twQuVi9yBfKw6bpvU8zWKx8Prrr3PLLbdw3333ceLECaZNm8Ztt91Gt26/7MgjEZH6zisClWmaPP300yxcuJAvv/ySVq1aVXu/VatWREdHs2rVKq699loASktLSUhI4I033gCgW7du2O12Vq1axb333gtAVlYWKSkpvPnmmz+7pvIKkyb+dk4Vl5OaU4TFgKhAB6t3nwSgU5Q/i7dXhqnhXaL5MOEAecVldGvViNmjr+cvszbxxY7DBPjaWPjSnbRtGnrBzzqZX8IbHycStyyFsvIKDANG3nIVt/6qDZOW72F/1QLzTrEhdL4igvUHcnFVmFgtBgPaN6bYNNlytLJNuL+dW9tHcvKMk01Ve1H52izc2DKMKyP82XO8iLV7T7o/u0WYH+2jAgl02Ch3mWSddpKTX+pe42S3GkQF+xAR5HPBHcnPHlJc6HS5pwShMoQF+loJcFixNfDdzOuiW265hfT0dIYNG8bGjRtZunQpBw8eZNCgQfj6/vRIqoiIN/GKQPXUU0/xwQcfsHjxYoKCgtxrnkJCQvDz88MwDJ555hlee+012rZtS9u2bXnttdfw9/fnwQcfdLd99NFHGTduHOHh4TRq1Ihnn32WTp06ccstt/zsmoJ9bZSZJklHCzCAZsG+rEirHBHqHBXA4qqz+e7qHM2iTRkcyyuhXUwws5+6nkVf7SP+s8o9smaMvYWuV0Se9zPyipz8v8U7eHvxTgqqnqjr37kZ/3NnJz7eepQxs7cBEBHkYECXJuw4VsiX+yqf8uveIpSIED92n6icxvOzW7j5yggsFkjK+m5h/a9iQ+jUJIh9J864vxcqN/LsEB1EkMNGaXkFh0+VVDsexsdmEB3iIDzQfsGpuYqqs/UKfnC2nsNW+bSen12bcNZ1kZGRrF+/npdffpl//OMfpKSkcPToUUaMGFFtNFhExNt5RaB65513AOjbt2+16zNnzmTUqFEAPPfccxQXFzN69Ghyc3O57rrrWLlypXsPKoC33noLm83GvffeS3FxMTfffDOzZs362XtQQeWeS5szKqfPWob6sSz1OABdmgSwZHsWJjCoUxRrk45y8HgRseH+vD+mJwVFpYyb+hUAf32wB0Oub3XOzy4sLuOdZcm8tSCJ3MLK9UvXtArn2RHdSMzI5+l3k6gwK0eHbu0Sw4myCtYfqqyleSM/OsaGsvvEGU6eOINhwE2twggPtPPticoDig2gc0wQXZuGcPh0Met+EKTaRwUS7Gt3b8Z5qvC7Xc397BaiQxyEBVx4V/MLLTIPcFgIdFh/dG2V1D0Wi4VXX32Vm2++meHDh7unAG+99VZ69OihUCwiDYJX7kPlSWf3oXp+0TZ8A4JoFebH8tTjVJhwTXQAy3dmU1pewc1XRbD3UC5f7T5BRJCDheN60apxICMnrmLeur30uLIxa9+4C+v31hsdzysmflkKcctSOFlQeaRN+9gwnru3K8fOVPDOqr0UVm2i2at9JL6BDtKOFQGVezz9qnUjDheUuncRvyYmiNbhfuw7dYaqpU60iwzguuYhHCsoJSO32P3ZTUN86RAdSIivvXIzztNOcs98t4dUoMNKdIjPBQ8sNk2T4rLK0ajvLzLX3lHe5eTJk9xzzz0kJCQA0KFDBwYPHoyfn5+HKxORmqB9qL7jFSNUdVXLUD9Wpp2gwoSOUQGs2XWM0vIKerYO49SJM3y1+wT+DiuzR19Pq8aBHMzOZ/6GfQD8vyd7Y63au2nz7mO8uzqdD7/8luLSyhDTpkkI4+/rhs3Xl4lL08k6XRl+2jcN5srmYWw7ko9ZVI7danB963BOl7nYW/XkXoswPzrFBHI4v4Q9Vbujtwzz47rmoZwuLmNL1cgaQJNgB1dHBxHia6OwxMW32UXkf28PqZ/ajPPsIvMip8sd2kCLzL1VeHg4a9eu5e9//zuvvPIKqamp7inApk2bero8EZEao0BVQ2JDfFn77UnKKkyuivRn454TFDpddG4WTIyfnf98uR+71WDa/1xH5xaVTxWu3JaBq8LEbrOwducRZnyeypqkw+zPznf/3K5XRPLHuzoTHBzAm5+mk3608r2mYX70aBfJzmOFJFY9fde1RSgWm5XDRZX/YogM9KFbbDA5RU72V40+NQl20LN5KEXOcnYe/e5zmgQ7aB8VSJifnbzicnZnn6HI+b3NOAOqNuP0OXc69EKLzC1G1d5RDh0J480Mw+Cvf/0rN998M3fddRc5OTlMnz6dAQMGcP311ytAi4hXUqCqIZsP5lFi8aV1I192HsrlZFEpbSIDGNQhktHTtwLw+oNd6N3+u+M77r6pDe99sZste3J4fuYm93V/h41hN7TmtwPa4/D14c1P09n0beUC9yA/G306RnMgz8nWo5XHwLRtHEB4iB/HisqgrJxAHys9WoRQVOYiI69yqjDc307PFqGUuypIP1boXsvUJNhBh6ggQv1snCoqJ/Vokft4FwOICLITFezAYT93ndPZReaFTpd7uwSoXGQe6LDi76NF5g3JDTfcwO7du7nnnnv44osv+Pzzzzl48CBDhw7F3//iz6AUEakPFKhqSIGznNZNfDl64gxHTpfQJMSXsf1b89DkjZgmjOzdivt6tqj2PRHBfqx5fRhvfryNtTuO0KVNBH06NaXvNU3Zm1PExKVpJKRWHgPjsFno3ymaHKeLpKp1UjEhvrRsHMjRwlKOFZVhtxp0bx6Cicmxql3Mgx02rmsegtUw2F+1CB0gKsjB1dGBhPraOVlUxq4jhe61ThYDIoN8iAr2wX6eBeNlrgoKq4KU+4BiwN9hIUiLzBu00NBQVq9ezRtvvMFf//pXdu/eTXx8PMOHDyc2NtbT5YmIXDYKVDUkIsBORWkZadkFBPvaeOOuDjw1fQv5xeV0b92Il4Z3Ou/32W1WXnigBy880AOAnRmneXpWIqtTjgGVi7j7doyixDBIPlk5bRfqb6d9TDDZZ8rIKirDYjG4tmkwPnYLec7KNVf+dgs9YkPwtVrJPF3sDlKNA324OjqIUD87OfmlJJ8odG9hYLVU7iEVGeRzzhSdaZqUVC0yL6m2yJzKReY+VizaO0qonAL83//9X/r378/QoUPJzs5m5syZ3HzzzfTs2ROLRYFbROo/BaoaEuNv57M9p7BbDd64+2oWbM4k7Ug+EUEO4h7r8ZOjNjszTvPWsnRWJVfuqWUx4OZO0eBjIy2nckTK38dKx2YhnCpxkX2mHDC4OjqQYH8reSUuSpwVOGwWujcNJtDHSmZeiXsEqXGgD+2jggjzs1UGqZMFuKqWO/lYDaJCfAgPPHczzooKk6LSc/eO8rVbCHRYtHeUXNCvfvUrdu/ezX333ceKFStYtWoVBw8eZNiwYQQEBHi6PBGRS6JAVUOW7MzG5hvA87e3w9dq8M6qbwGY8EBnokPP/wi5aZokpOUw9Yt97qm9s0HKN8BRddCyE7vV4JrYUArKKzhe9cRdm3A/okMc5JaUk1fiwmYx6No0mFBfG0fySjh15ruF6VdHBRHsa+NYfinJJwvdm3H62i1Eh/jQKMB+Tigqc1WGqGp7R1UtMg/SInO5SMHBwXz22We89dZb/PnPf+bbb78lLi6O4cOH06JFi5/+ASIidZQCVQ169MYW3N4xil9P3oirwuS2zk24vUvMOe2KS10s+CaT6Wv3sSercmG5xYCBnZsQEOTLN4dOY552YgDXxIZQisGpqqfnmoY4aN7Ij9MlZeSWlGMxoFOTIBr72zma76Sgal+qiAAfro4OJMhh41heKRknStzByN+ncjPOUP/qe0i5p/WcLkrKdECxXB6GYTB27Fj69u3LkCFDOHLkCLNmzaJ///7ceOONmgIUkXpJgaqG9GsXwWM3tSBx/ykSUnOwWQz+cndH9/umaZKcmcfCbzL5ZHMmuVWLxgMcNgZ1i8HisPHV/lwqTlU+ldepaTAVVgv55SZgEhnoQ+sIP/Kd5eQ5y7EYBu2jAmkS6EN2gZPDeZV7ToX727m66oiYrNNOMk443TUEOKw0CXEQ7GetFqQudCSM9o6Sy6lr166kp6fzwAMPsHTpUtasWcPBgwe56667CAz88YPARUTqGgWqGvKngW0xDIMjpyo3zgzwtVFRYfLN3pOsSs7m8x1Z7kOLAZo18mP49c0pqDBZnX4CV1WQ6RAThM1uo6CsAspNQv1stI0MoKisnIJSF4Zh0C4ygCZBDo4XOjmaXxWkAux0iAoiwG7lWH4pmSe/C1IX2oyzclqvgqLS7z2tZ0Cgj5VAXyt2TevJZRYYGMiSJUuYPHky48aNY9++fcTFxXHPPfecc8i5iEhdpkBVQ3ztlRtehgc5AMg7U0bvV1ZXa+OwWxjYqQm9OkSy92QJC1Nz3EGqfZMgfH3tnHa6oKyCQIeVqxoHcMbloqjcBYZBm3B/YkMcnCgs5VjBdyNS7aMC8bdbOZZXyuGS74JUmL+N6NDqm3Ge3YSzoMRFcdl3m3DqSBipLYZh8PTTT9O7d2+GDBlCRkYGc+bMoU+fPvTu3VtTgCJSLyhQ1bAebcLpdVUke7IKKC4tx2qx0Lt9JLde04TYxoHM336UyesPuReGt4sOJNDfh1MlLkqcLvzsFtpHB+J0VXDGVQEYtAjzpXmIH7nFZRwrqJwqbFQVpPysFrLzyzjiLHXX0CjATnSID34/CFJnn9b7/iacvlXTer6a1pNa1rlzZ1JTU3n44YdZsGABX375JYcOHeLuu++udoi5iEhdpEBVw3xsFj78/Y3ur03TZHtmHu9+ncmm1fvc169pFoyvw87x4nJOlbhw2Cy0jw6gzDQpqdrPoGmwg5ZhfuSVlHOias1VmF9VkLJZyM4r5Wjpd7uahwfZif7BruauisojYQpKXO4Qd3YTzmBfK3arRgPEcwICApg/fz5xcXE888wzHDhwgLi4OO6++27atGnj6fJERC5IgaqWlLkq+HL3CT7ccpjU7z3J161FGDYfG9mFpRQUl+NjNWgfHYjLrKC0KvFEBzlo1ciX/OJy9/YHlUEqAIfFSnZ+KVlV03UX2tW8zFVBfomLM9/b9sBqgSCHlQCH9Zz9pkQ86YknnqBXr14MGjSIgwcP8u6779KrVy/69u2L1Xru+ZEiIp6mQFXDjp4uYfGOoyzZkU1uVRjysVno2boRLovBkfxSKC3FbjXoEBVIhWFSZpqAQeNAH9o08qegpIzTZyq3Pwj1s9EhKhC7YeFYfhnO8sqfeTZIRYf4YKsaZTq7Piq/xOU+jw8qtz0I9tXZelK3XX311aSmpjJq1CjmzZvH+vXrycjI4J577iE4ONjT5YmIVKNAVUNWpebwVeYhNu075R4Rigj04VetwigsN8mo2tbAbjVoHxUABpVByoQIfzutw/054yzndHFlYAr1s3FV48oglZNfSqnrwsfDXGh9lLY9kPrGz8+Pjz76iFtvvZXRo0dz6NAh4uLiuOuuu2jbtq2nyxMRcVOgqiETVuzB5lt5nEaPlqF0bBrCvtwS0k5W7it1dmrPxKRqayka+dlpE+5HcanLvSFniG9lkPKxWDiWX+oOSDZL5fEwkUHfHQ9TcXZ9lNPlPkbGAAIclUFK66OkvnrkkUe44YYbGDx4MHv37uX999/nxhtvpH///poCFJE6QYGqhrSJ9Kf31bE0DvHl60N5fHngNAC+NgsdogNxUUFZ1RqpsKogVVLqotBZeZRMiK+Ndo0DsRsGOfll7g027VaD6BAHEYF29+HD5S6T/JLyasfCWAwI9rUS6NAhxeIdrrrqKpKTk3n88cd57733+Oqrr9xTgKGhoZ4uT0QaOAWqGjK0azPWZZ4hLyMfAH+7laubBFJWUUFJReXwUZifjTbh/jjLXBT9IEjZMMgpKHPvS+VjM4gKrh6kSsurFpqXVl8fFVR1LIym9cTb+Pr68u677zJgwACeeOIJMjMziY+PZ9iwYbRr187T5YlIA6ZAVUMW7MzG7hdYtT9UAEXlVRtyUhWkGlUPUsG+NtpFBmIzDI7nl3J26ZPDVnlgcXhg5YHFZ8/Xyysux1n+vf2jbAbBfjatj5IG4eGHH+aGG25g0KBB7N69mw8//JCePXty8803Y7PprzURqX36m6eGNA3xpWPLcE4Vl5LrrFwPFeZnp3UjP0rLXBSVfhekrowIwGYYnCgocwcpX7uFJiEOwgJs7iBV5HSR/4OF5v4+lftH+di0PkoaliuuuIKdO3fyxBNPMHPmTDZt2kRGRgbDhw8nLCzM0+WJSAOj38I1JCzASnahk1KXSSN/O92bBdM0yIczpS7Kzcog1T02hPYRgeQWlnMsvzJM+dottI70o0NMAI0C7ZhAQUk5R0+XcrKonDKXiQEEOizEhPgQEWhXmJIGy8fHhxkzZvDhhx/i7+/PkSNHiIuLIzU11dOliUgDoxGqGlJWAdEBPrRq5Eexs7za1N6VEQFYqByROnsIsb+PhegQB6H+lSNSrgqTwpLyajuaWw0IrFporo04Rb5z//33c9111zFo0CBSU1OZN28ev/rVrxg4cKCmAEWkVuhvmhrSIzYU02Z3b38Q7LDRLjIAA4MThdWDVEyog2C/yiD13RN7rmo7mgf72gjUQnORC2rVqhVJSUmMGTOGKVOm8M0335CZmcnw4cMJDw/3dHki4uU0V1RD8osrp/BCfG10axZCu4gAThaUc7xqVCrAYeWKxv5c1SSAEH87ZS6Tk4VlHM0rpbAqTPlYDcIDbMSE+BDka1WYEvkJdrud+Ph4PvnkEwIDA8nKyiI+Pp6UlBRPlyYiXk6BqoaE+Nro3iyEto0CyC0o50RhOSaVQaptlD/tov0J8bdR5jI5XlBGdn4ZRVXbHzhsBpFBdqKC7QQ4FKREfq577rmH1NRUrrnmGkpLS/nkk09YunQpZWVlni5NRLyUAlUNaRXmz8mCck4WVQapIF8rV1YFqSBfKyVlFRzLLyU7v4ziqnP2/OwWooLtRAX74GfX9J7IpYiNjSUxMZGnnnoKwzDYunUr06ZN48SJE54uTUS8kAJVDcktqlw7FeRrpV20P1dGBxDoa6W4rILs/DKOF363j5S/j4UmIXYig+w49MSeyGVjs9mYPHkyixYtIjg4mGPHjhEfH8/OnTs9XZqIeBn99q4hwX7fBakAh5VCp4usvDJOFH639UGQr5WY0MqtD3TOnkjNGTJkCKmpqVx77bWUlZWxYMECFi9eTGlpqadLExEvUSu/xXNzc5kzZ05tfFSd0aZxAP4OKwUlLrLySjlVVE55hYlRdcZeTKgPYf42bNr+QKRWNG3alC1btvDHP/4RwzDYvn07U6dOJScnx9OliYgXqJVAlZGRwW9/+9va+Kg6I6+4cjPO3DPllFdUHlYc6melaYgPof427SMl4gFWq5VJkyaxbNkyQkNDOX78OFOnTmX79u2eLk1E6rnLsg9VRkbGj75/9OjRy/Ex9Up+sYsg+3d7SAU4LFi0yFykTrj99ttJS0tjyJAhbNmyhcWLF3Pw4EHuuOMOHA6Hp8sTkXrosgSqli1b/ugTaaZpNrgn1myWyj2k/H30tJ5IXRQdHc3XX3/N+PHj+ec//8mOHTs4cuQII0aMICoqytPliUg9c1mm/MLCwvjvf/9LamrqeV8LFiy4HB9Tr0SHaA8pkbrOYrHwxhtvsHLlSsLCwjhx4gRTp04lMTER0zR/+geIiFS5LCNU3bp14/jx47Rr1+6875eUlDS4v5wUpETqj1tuuYX09HSGDRvGpk2b+PTTTzlw4ACDBw/WFKCIXJTLMkL15JNP0rJlywu+37x5c2bOnHk5PkpEpEY0btyYDRs28Je//AWLxUJKSgrx8fFkZWV5ujQRqQcuOlDt3bv3gu/ddddd/OY3v7ng+2FhYYwcOfLnVfYzrVu3jsGDBxMTE4NhGCxatKja+6Zp8vLLLxMTE4Ofnx99+/Zl165d1do4nU6efvppIiIiCAgIYMiQIRw+fLhG6xaRusNisfC3v/2NNWvWEB4ezqlTp5g2bRrffPNNgxtlF5Gf56ID1ZVXXkloaCh9+/Zl3LhxvP/++6SlpdWZv2SKioro3LkzkydPPu/7b775JpMmTWLy5Mls2bKF6OhoBgwYQEFBgbvNM888w8KFC5k7dy4bNmygsLCQQYMG4XK5aqsbIlIH9O3bl/T0dHr37o3L5eKzzz7j448/pqSkxNOliUgdZZgXmYgslsqn1c42P7tGyN/fn86dO9O1a1e6du1Kt27d6NChA1arteaq/gmGYbBw4UKGDRsGVI5OxcTE8Mwzz/DnP/8ZqByNioqK4o033uB3v/sdeXl5REZG8u6773LfffcBlds9xMbG8tlnn3Hrrbde1Gfn5+cTEhJCXl4ewcHBNdI/Eakdpmnyt7/9jVdffRWXy0VoaCgjRoygadOmni5NpE6w2+2Mfe55ACa9+Vq9PoC8pKSE119//Rf//r7oEapGjRphsVgYPHgwM2bM4K9//St33HEHwcHBbNy4kcmTJ/Poo4/SpUsXgoKCuO666xg9evTPLqgmHDhwgOzsbAYOHOi+5nA46NOnDxs3bgQgMTGRsrKyam1iYmLo2LGju835OJ1O8vPzq71ExDsYhsGLL75IQkICjRs35vTp00yfPp2vv/66zozOi0jd8LPWUD3xxBN89tlnjBs3jsjISBYvXsyRI0fIyspi6dKlvPLKKwwZMoTIyEi2bNlCfHx8TdZ+0bKzswHO2VsmKirK/V52djY+Pj6EhYVdsM35TJgwgZCQEPcrNjb2MlcvIp524403snv3bvr3709FRQUrVqzgo48+ori42NOliUgdcdGBKjQ0lLfffpvt27dz7bXX8vTTT9O5c2fWrFlDVFQUd9xxB3/5y19YuHAhhw4d4vjx4yxfvrwma//ZfriVwcVsOPpTbcaPH09eXp77lZmZeVlqFZG6JTQ0lNWrVzNhwgRsNhvp6enExcXpz7yIAL9g24SOHTuyevVqPvnkE4qKihg4cCB33303Bw4cqNYuPDy82vSZJ0VHRwOcM9KUk5PjHrWKjo6mtLSU3NzcC7Y5H4fDQXBwcLWXiHgnwzD43//9XzZs2EB0dDR5eXnMnDmTr776ioqKCk+XJyIe9Iv3obr77rtJT0/n1VdfZdWqVXTo0IEXXniBoqKiy1nfZdGqVSuio6NZtWqV+1ppaSkJCQnccMMNQOXmpHa7vVqbrKwsUlJS3G1ERACuu+46du/ezcCBA6moqGDVqlV8+OGHnDlzxtOliYiHXNLGnj4+Przwwgvs3r2be+65hwkTJtCuXbtz9neqDYWFhSQlJZGUlARULkRPSkoiIyMDwzB45plneO2111i4cCEpKSmMGjUKf39/HnzwQQBCQkJ49NFHGTduHGvWrGH79u385je/oVOnTtxyyy213h8RqduCg4NZsWIFEydOxGaz8e233xIXF8ehQ4c8XZqIeMAlHT1z+PBhkpOTSU5OxjAMwsLCyMrKYt++fVx99dWXq8aLsnXrVvr16+f+euzYsQCMHDmSWbNm8dxzz1FcXMzo0aPJzc3luuuuY+XKlQQFBbm/56233sJms3HvvfdSXFzMzTffzKxZszy6BYSI1F2GYTBu3Dj69OnDsGHDOHLkCLNmzaJ///7ceOONWCyX5TAKEakHLnofqq+++sodns6+8vPz3Y8OR0ZG0rlzZ7p06cJTTz1FixYtarTwukr7UIk0TAUFBTzwwAMsW7YMgDZt2nDXXXcRGBjo4cpEao72ofrORY9Q9erVC8MwsFgstG7dmoEDB9KlSxe6dOlC586diYmJ+dkfLiLiLYKCgvj000+ZPHky48aNY9++fcTFxTF8+PAfPetURLzDz5rys9ls3H777fTu3du9M7pGYUREKhmGwdNPP02vXr0YMmQImZmZzJ49mz59+tC7d29NAYp4sYsOVB07diQ9PZ0lS5bw6aefuq+3bt3afeTM2ZDVqFGjGilWRKQ+6NKlC2lpaTz00EMsXLiQL7/8kkOHDnH33XdXW7cpIt7jogPVzp07cTqd7Nixg23btpGYmMi2bdtISUlh3759fPzxx+4NMJs3b+4OWc8//3yNFS8iUlcFBASwYMEC4uLi+MMf/sCBAweIi4vj7rvvpk2bNp4uT0Qus4telH4hZWVl7Ny5s1rISk5Oxul0YhgGLpfrctVaL2hRuoj80K5duxg0aBAHDx4EoHfv3vTp00dPEEu9p0Xp37mkbROg8n9mt27d6NatG48//jgA5eXl7Nq1i8TExEv98SIi9d7VV19NamoqI0eO5OOPP2bdunUcOnSIe+65R//wEvESNbJC0maz0blzZx555JGa+PEiIvWOn58f8+bNY9q0aTgcDg4dOkRcXBzffvutp0sTkctAj5yIiNSiRx99lKSkJNq0acOZM2d4//33Wb16dYNbHiHibRSoRERq2VVXXUVKSgq//vWvAdiwYQOzZs0iLy/Pw5WJyC+lQCUi4gG+vr689957zJ49Gz8/PzIzM4mLi2P37t2eLk1EfgEFKhERD3r44YfZuXMn7dq1o7i4mA8//JDPP/+c8vJyT5cmIj+DApWIiIddccUV7Nixg1GjRgGwadMmZs6cSW5urmcLE5GLpkAlIlIHOBwOZs6cyYcffoi/vz9HjhwhPj6etLQ0T5cmIhdBgUpEpA65//77SUlJoUOHDpSUlPDRRx/x2WefaQpQpI5ToBIRqWNatWpFUlKSe7Pkb775hunTp3Pq1CkPVyYiF6JAJSJSB9ntdqZMmcInn3xCYGAgWVlZxMfHs2vXLk+XJiLnoUAlIlKH3XPPPaSmptKpUyecTicff/wxS5curddnpol4IwUqEZE6LjY2lm3btvHUU08BsHXrVqZNm8aJEyc8XJmInKVAJSJSD9hsNiZPnsyiRYsICgri2LFjTJkyhZ07d3q6NBFBgUpEpF4ZOnQoaWlpXHvttZSWlrJgwQIWL15MaWmpp0sTadAUqERE6pmmTZuyZcsWnnnmGQzDYPv27UybNo3jx497ujSRBkuBSkSkHrJarbz11lssXbqUkJAQcnJymDJlCklJSZ4uTaRBUqASEanH7rjjDtLT0+nRowdlZWUsWrSIhQsXagpQpJYpUImI1HPR0dFs2rSJP/3pTxiGwY4dO5gyZQrHjh3zdGkiDYYClYiIF7Barbz55pt8/vnnhIWFceLECaZOnUpiYiKmaXq6PBGvp0AlIuJFBgwYQHp6Oj179qS8vJxPP/2UBQsW4HQ6PV2aiFdToBIR8TKNGzdmw4YNvPDCC1gsFpKTk4mPjycrK8vTpYl4LQUqEREvZLFY+Pvf/87q1asJDw/n1KlTTJs2jS1btmgKUKQGKFCJiHixfv36kZ6eTq9evXC5XCxbtoyPP/6YkpIST5cm4lUUqEREvFxERAQJCQm8/PLLWCwWUlNTiY+P58iRI54uTcRrKFCJiDQAhmHw0ksvkZCQQGRkJLm5uUyfPp2vv/5aU4Ail4EClYhIA3LTTTexe/du+vfvT0VFBStWrOCjjz6iuLjY06WJ1GsKVCIiDUxYWBirV6/mtddew2azkZ6eTlxcHIcPH/Z0aSL1lgKViEgDZBgG48ePZ8OGDURFRZGXl8eMGTPYuHGjpgBFfgEFKhGRBuy6665j9+7dDBw4kIqKClauXMmHH37ImTNnPF2aSL2iQHUe//3vf2nVqhW+vr5069aN9evXe7okEZEaExISwooVK/jnP/+JzWZjz549xMXFkZGR4enSROoNBaof+Oijj3jmmWd44YUX2L59O7169eL222/XXywi4tUMw+DZZ59l48aNxMTEkJ+fz8yZM1m/fj0VFRWeLk+kzlOg+oFJkybx6KOP8thjj9G+fXv+/e9/ExsbyzvvvOPp0kREalyPHj1IT0/njjvuwDRN1qxZwwcffEBRUZGnSxOp0xSovqe0tJTExEQGDhxY7frAgQPZuHHjeb/H6XSSn59f7SUiUp8FBQWxdOlS/vOf/2C329m7dy9xcXEcPHjQ06WJ1FkKVN9z4sQJXC4XUVFR1a5HRUWRnZ193u+ZMGECISEh7ldsbGxtlCoiUqMMw+D3v/8933zzDbGxsRQUFDB79mwSEhI0BShyHgpU52EYRrWvTdM859pZ48ePJy8vz/3KzMysjRJFRGpFly5dSEtLY9iwYZimydq1a3n33XcpKCjwdGkidYoC1fdERERgtVrPGY3Kyck5Z9TqLIfDQXBwcLWXiIg3CQgIYOHChfz3v//Fx8eHAwcOEBcXx/79+z1dmkidoUD1PT4+PnTr1o1Vq1ZVu75q1SpuuOEGD1UlIlI3PPnkkyQmJtKyZUuKioqYM2cOX3zxhaYARVCgOsfYsWOZNm0aM2bMIC0tjT/+8Y9kZGTwxBNPeLo0ERGP69ixI6mpqYwYMQKAdevWMXv2bD2QIw2eAtUP3Hffffz73//m1VdfpUuXLqxbt47PPvuMFi1aeLo0EZE6wc/Pj3nz5jF16lQcDgeHDh0iLi6OvXv3ero0EY9RoDqP0aNHc/DgQZxOJ4mJifTu3dvTJYmI1DmPPfYY27dvp3Xr1pw5c4b33nuP1atX43K5PF2aSK1ToBIRkV+sffv27Nq1iwcffBCADRs2MGvWLPLy8jxcmUjtUqASEZFL4uvry/vvv8+sWbPw8/MjMzOTuLg49uzZ4+nSRGqNApWIiFwWI0eOZMeOHVx55ZUUFxfzwQcf8Pnnn1NeXu7p0kRqnAKViIhcNm3btmXnzp2MHDkSgE2bNjFz5kxyc3M9XJlIzVKgEhGRy8rhcDBr1iw++OAD/P39OXLkCPHx8aSlpXm6NJEao0AlIiI14oEHHiA5OZn27dtTUlLCRx99xPLlyzUFKF5JgUpERGpM69atSUpK4rHHHgNg8+bNTJ8+nVOnTnm4MpHLS4FKRERqlI+PD1OnTmXevHkEBASQlZVFfHw8u3bt8nRpIpeNApWIiNSKESNGkJqaSqdOnXA6nXz88ccsXbqUsrIyT5cmcskUqEREpNY0b96cxMRERo8eDcDWrVuZPn06J0+e9HBlIpdGgUpERGqV3W7n//7v/1i0aBFBQUFkZ2cTHx9PcnKyp0sT+cUUqERExCOGDh1KWloaXbp0obS0lPnz57NkyRJNAUq9pEAlIiIe07RpU7Zs2cIf/vAHDMNg27ZtTJ06lePHj3u6NJGfRYFKREQ8ymaz8e9//5tPP/2UkJAQcnJymDJlCklJSZ4uTeSiKVCJiEidcOedd5KWlkb37t0pKytj0aJFLFy4kNLSUk+XJvKTFKhERKTOaNKkCV9//TXPPvsshmGwY8cOpkyZwrFjxzxdmsiPUqASEZE6xWq18s9//pPPP/+csLAwTpw4wdSpU9m2bRumaXq6PJHzUqASEZE6acCAAaSnp3P99ddTXl7OkiVLWLBgAU6n09OliZxDgUpEROqsxo0b89VXXzF+/HgsFgvJyclMmTKF7OxsT5cmUo0ClYiI1GkWi4XXXnuN1atXEx4ezsmTJ5k6dSpbtmzRFKDUGQpUIiJSL/Tr14/09HR69eqFy+Vi2bJlfPLJJ5SUlHi6NBEFKhERqT8iIiJISEjgpZdewmKxsGvXLuLj4zl69KinS5MGToFKRETqFcMwePnll/nyyy+JjIwkNzeX6dOns3nzZk0BiscoUImISL3Uq1cv0tPT6devHy6Xi+XLl/PRRx9RXFzs6dKkAVKgEhGReqtRo0asWbOGv//971itVtLT04mPj+fw4cOeLk0aGAUqERGp1wzD4IUXXmD9+vVERUVx+vRpZsyYwcaNGzUFKLVGgUpERLxCz5492b17NwMGDKCiooKVK1fy4YcfcubMGU+XJg2AApWIiHiNkJAQPv/8c958801sNht79uwhLi6OjIwMT5cmXk6BSkREvIphGPzpT39i48aNxMTEkJ+fz8yZM9mwYQMVFRWeLk+8lAKViIh4pR49epCens4dd9yBaZqsXr2aDz74gKKiIk+XJl5IgUpERLxWUFAQS5cu5d///jd2u529e/cSFxfHwYMHPV2aeBkFKhER8WqGYfCHP/yBzZs306xZMwoKCpg9ezYJCQmaApTLRoFKREQahGuvvZb09HSGDh2KaZqsXbuWd999l8LCQk+XJl5AgUpERBqMgIAAFi1axP/93//h4+PDgQMHeOedd9i/f7+nS5N6ToFKREQanNGjR7N161ZatmxJUVERc+bMYe3atZoClF/MKwLVP/7xD2644Qb8/f0JDQ09b5uMjAwGDx5MQEAAERER/P73v6e0tLRam+TkZPr06YOfnx9Nmzbl1Vdf1S67IiJeqlOnTuzatYsRI0YAkJCQwJw5c8jPz/dwZVIfeUWgKi0tZcSIETz55JPnfd/lcnHnnXdSVFTEhg0bmDt3LvPnz2fcuHHuNvn5+QwYMICYmBi2bNnC22+/zcSJE5k0aVJtdUNERGqZv78/8+bNY8qUKTgcDg4ePEhcXBx79+71dGlSz9g8XcDl8MorrwAwa9as876/cuVKUlNTyczMJCYmBoB//etfjBo1in/84x8EBwfz/vvvU1JSwqxZs3A4HHTs2JE9e/YwadIkxo4di2EYtdUdERGpZY8//jg33XQTgwYNYv/+/bz33nvcdNNN9OvXD6vV6unypB7wihGqn7Jp0yY6duzoDlMAt956K06nk8TERHebPn364HA4qrU5evToj+5X4nQ6yc/Pr/YSEZH6p3379uzatYsHH3wQgA0bNjB79mzy8vI8XJnUBw0iUGVnZxMVFVXtWlhYGD4+PmRnZ1+wzdmvz7Y5nwkTJhASEuJ+xcbGXubqRUSktvj6+vL+++8zc+ZMfH19ycjIIC4ujj179ni6NKnj6mygevnllzEM40dfW7duveifd74pO9M0q13/YZuzC9J/bLpv/Pjx5OXluV+ZmZkXXZOIiNRNo0aNYufOnVx55ZUUFxfzwQcfsHLlSlwul6dLkzqqzq6hGjNmDPfff/+PtmnZsuVF/azo6Gg2b95c7Vpubi5lZWXuUajo6OhzRqJycnIAzhm5+j6Hw1FtmlBERLxD27Zt2blzJ//zP//DnDlz2LhxIxkZGQwfPvyCT5RLw1VnR6giIiK46qqrfvTl6+t7UT+rZ8+epKSkkJWV5b62cuVKHA4H3bp1c7dZt25dta0UVq5cSUxMzEUHNxER8S4Oh4PZs2fz/vvv4+/vz+HDh4mLiyMtLc3TpUkdU2cD1c+RkZFBUlISGRkZuFwukpKSSEpKch8nMHDgQDp06MBDDz3E9u3bWbNmDc8++yyPP/44wcHBADz44IM4HA5GjRpFSkoKCxcu5LXXXtMTfiIiwoMPPkhycjJXXXUVJSUlfPTRRyxfvpzy8nJPlyZ1hFcEqhdffJFrr72Wl156icLCQq699lquvfZa9xorq9XKsmXL8PX15cYbb+Tee+9l2LBhTJw40f0zQkJCWLVqFYcPH6Z79+6MHj2asWPHMnbsWE91S0RE6pDWrVuzY8cOHnvsMQA2b97MjBkzOHXqlIcrk7rAMLUV+GWVn59PSEgIeXl57tEvERHxLvPmzeORRx6hqKgIh8PBkCFDuPrqqz1dVq2z2+2Mfe55ACa9+RplZWUeruiXKykp4fXXX//Fv7+9YoRKRESkNt17772kpqbSsWNHnE4nH3/8McuWLavXgUIujQKViIjIL9C8eXO2bdvmPvZsy5YtTJ8+nZMnT3q4MvEEBSoREZFfyG6389///peFCxcSFBREdnY28fHxJCcne7o0qWUKVCIiIpdo2LBhpKam0qVLF0pLS5k/fz5LlizRFGADokAlIiJyGTRr1owtW7bw+9//HsMw2LZtG1OnTuX48eOeLk1qgQKViIjIZWKz2fjPf/7Dp59+SkhICDk5OUyZMoWkpCRPlyY1TIFKRETkMrvzzjtJS0ujW7dulJWVsWjRIhYtWlTtNA7xLgpUIiIiNaBJkyZs3ryZcePGYRgGSUlJTJ061X1OrHgXBSoREZEaYrVamThxIitWrCAsLIzjx48zZcoUtm3bhvbV9i4KVCIiIjVs4MCBpKWlcd1111FeXs6SJUtYsGABTqfT06XJZaJAJSIiUguioqLYuHEj48ePx2KxkJyczJQpU8jOzvZ0aXIZKFCJiIjUEovFwmuvvcaqVasIDw/n5MmTTJ06la1bt2oKsJ5ToBIREall/fv3Jy0tjZtuugmXy8XSpUv55JNPKCkp8XRp8gspUImIiHhAZGQkCQkJvPjii1gsFnbt2kV8fDxHjx71dGnyCyhQiYiIeIjFYuGVV17hyy+/JDIyktzcXKZPn87mzZs1BVjPKFCJiIh4WK9evUhPT6dv3764XC6WL1/OvHnzKC4u9nRpcpEUqEREROqARo0a8cUXX/C3v/0Nq9VKWloa8fHxHD582NOlyUVQoBIREakjDMPgL3/5C+vXrycqKorTp08zY8YMNm7cqCnAOk6BSkREpI7p2bMnu3fv5pZbbqGiooKVK1fy4YcfcubMGU+XJhegQCUiIlIHhYSEsHLlSt58801sNht79uwhLi6OjIwMT5cm56FAJSIiUkcZhsGf/vQnNm7cSExMDPn5+cycOZMNGzZQUVHh6fLkexSoRERE6rgePXqQnp7O7bffjmmarF69mg8++ICioiJPlyZVFKhERETqgaCgIJYtW8akSZOw2+3s3buXuLg4Dh486OnSBAUqERGResMwDP74xz+yefNmmjVrRkFBAbNnz2bdunWaAvQwBSoREZF65tprryUtLY0hQ4ZgmiZffPEF7733HoWFhZ4urcFSoBIREamHAgMDWbx4MZMnT8bHx4f9+/cTFxfH/v37PV1ag6RAJSIiUo899dRTbNmyhRYtWlBYWMicOXNYu3atpgBrmQKViIhIPXfNNdeQmprKPffcA0BCQgJz5swhPz/fw5U1HApUIiIiXsDf359PPvmE+Ph4HA4HBw8eJC4ujr1793q6tAZBgUpERMSL/M///A/bt2+ndevWnDlzhvfee481a9bgcrk8XZpXU6ASERHxMu3btyclJYX7778fgPXr1zN79mzy8vI8XJn3UqASERHxQn5+fnz44YfMnDkTX19fMjIyiIuLY8+ePZ4uzSspUImIiHixUaNGsWPHDtq2bUtxcTEffPABK1eu1BTgZaZAJSIi4uWuvPJKkpOTefjhhwHYuHEjM2fO5PTp054tzIsoUImIiDQADoeD2bNn89577+Hn58fhw4eJi4sjPT3d06V5hXofqA4ePMijjz5Kq1at8PPzo02bNrz00kuUlpZWa5eRkcHgwYMJCAggIiKC3//+9+e0SU5Opk+fPvj5+dG0aVNeffVVTNOsze6IiIjUqF//+tckJyfTrl07SkpKmDt3LsuXL6e8vNzTpdVrNk8XcKnS09OpqKggPj6eK664gpSUFB5//HGKioqYOHEiAC6XizvvvJPIyEg2bNjAyZMnGTlyJKZp8vbbbwOQn5/PgAED6NevH1u2bGHPnj2MGjWKgIAAxo0b58kuioiIXFZt2rRh586djB49munTp7N582YyMzMZPnw4jRo18nR59ZJheuEQzD//+U/eeecd93lGy5cvZ9CgQWRmZhITEwPA3LlzGTVqFDk5OQQHB/POO+8wfvx4jh07hsPhAOD111/n7bff5vDhwxiGcVGfnZ+fT0hICHl5eQQHB9dMB0VERC6TefPm8cgjj1BUVITD4WDo0KF06NDhor7Xbrcz9rnnAZj05muUlZXVZKk1qqSkhNdff/0X//6u91N+55OXl1ctYW/atImOHTu6wxTArbfeitPpJDEx0d2mT58+7jB1ts3Ro0c5ePDgBT/L6XSSn59f7SUiIlJf3HvvvaSkpNCxY0ecTifz5s1j2bJl9ToceYLXBap9+/bx9ttv88QTT7ivZWdnExUVVa1dWFgYPj4+ZGdnX7DN2a/PtjmfCRMmEBIS4n7FxsZerq6IiIjUipYtW7Jt2zb3784tW7Ywffp0Tp486eHK6o86G6hefvllDMP40dfWrVurfc/Ro0e57bbbGDFiBI899li19843ZWeaZrXrP2xzdjb0x6b7xo8fT15envuVmZn5s/sqIiLiaXa7nXfeeYcFCxYQFBREdnY28fHxJCcne7q0eqHOLkofM2aMe8v8C2nZsqX7v48ePUq/fv3o2bMnU6ZMqdYuOjqazZs3V7uWm5tLWVmZexQqOjr6nJGonJwcgHNGrr7P4XBUmyYUERGpz+666y569OjBoEGD2LFjB/Pnz+fgwYPcdttt2O12T5dXZ9XZQBUREUFERMRFtT1y5Aj9+vWjW7duzJw5E4ul+sBbz549+cc//kFWVhZNmjQBYOXKlTgcDrp16+Zu8/zzz1NaWoqPj4+7TUxMTLXgJiIi4u2aNWvG1q1bGTduHG+//TaJiYlkZmYyYsQIIiMjPV1enVRnp/wu1tGjR+nbty+xsbFMnDiR48ePk52dXW20aeDAgXTo0IGHHnqI7du3s2bNGp599lkef/xx90r+Bx98EIfDwahRo0hJSWHhwoW89tprjB079qKf8BMREfEWNpuN//znPyxevJjg4GBycnKYMmUKO3bs8HRpdVK9D1QrV65k7969fPHFFzRr1owmTZq4X2dZrVaWLVuGr68vN954I/feey/Dhg1z71MFEBISwqpVqzh8+DDdu3dn9OjRjB07lrFjx3qiWyIiInXC4MGDSUtLo2vXrpSVlbFw4UIWLVp0zubYDZ1X7kPlSdqHSkREvJHL5eLPf/4zkyZNwjRNIiMj+fWvf82Ef74FaB+qej9CJSIiIjXParUyceJEli9fTmhoKMePH2fGjBmeLqvOUKASERGRi3brrbeSnp7OddddV+38P6fT6cGqPE+BSkRERH6WqKgoNm7cWO2s2xkzZ/7oRtjeToFKREREfjaLxcIrr7zq/vrUyZNMnTqVrVu30hCXZytQiYiIyCXr2bMnLpeLpUuX8sknn1BSUuLpkmqVApWIiIhcss8/X8mLL76IxWJh165dTJkyhaNHj3q6rFqjQCUiIiKXrHIK8BW++OILIiIiOHXqFNOnT2fz5s0NYgpQgUpEREQumz59+pCenk6fPn1wuVwsX76cefPmUVxc7OnSapQClYiIiFxW4eHhrF27lr/97W9YrVbS0tKIj4/n8OHDni6txihQiYiIyGVnGAZ/+ctfWLduHVFRUZw+fZoZM2awadMmr5wCVKASERGRGnPDDTeQnp7OLbfcQkVFBZ9//jlz587lzJkzni7tslKgEhERkRoVGhrKypUreeONN7DZbOzevZu4uDgyMzM9Xdplo0AlIiIiNc4wDJ577jm++uormjRpQn5+PjNmzGDDhg1UVFR4urxLpkAlIiIiteZXv/oV6enp3HbbbZimyerVq/nggw8oKirydGmXRIFKREREalVwcDCfffYZkyZNwm63s3fvXuLi4jh06JCnS/vFFKhERESk1hmGwR//+Ee+/vprmjVrRkFBAbNmzWLdunX1cgpQgUpEREQ8pmvXrqSlpTF48GBM0+SLL77gvffeo7Cw0NOl/SwKVCIiIuJRgYGBLF68mLfffhu73c7+/fuJi4tj//79ni7toilQiYiIiMcZhsGYMWPYunUrzZs3p7CwkDlz5rB27dp6MQWoQCUiIiJ1xjXXXENaWhp33303AAkJCcyZM4eCggIPV/bjFKhERESkTvH392f+/PnExcXhcDg4ePAgcXFx7Nu3z9OlXZAClYiIiNRJv/vd79i2bRutWrWiqKiId999lzVr1uByuTxd2jkUqERERKTO6tChA7t27eK+++4DYP369cyePZu8vDwPV1adApWIiIjUaX5+fsydO5cZM2bg6+tLRkYGcXFx7Nmzx9OluSlQiYiISL3w29/+lh07dtC2bVuKi4v54IMPWLlyZZ2YAlSgEhERkXrjyiuvJDk5mYceegiAjRs3MnPmTE6fPu3RuhSoREREpF5xOBzMmTOHd999Fz8/Pw4fPkxcXBzp6ekeq0mBSkREROql3/zmNyQnJ9OuXTtKSkqYO3cuK1asoLy8vNZrUaASERGReqtNmzbs3LmTRx55BICvv/6aGTNmkJubW6t1KFCJiIhIvebj48P06dOZO3cuAQEBHD16lLi4OFJTU2utBgUqERER8Qr33XcfKSkpXH311TidTubNm8dnn31GWVlZjX+2ApWIiIh4jZYtW7J9+3Z+97vfAfDNN98wffp0Tp48WaOfq0AlIiIiXsVutxMXF8f8+fMJDAwkOzub+Ph4UlJSauwzFahERETEK919992kpqbSuXNnSktL+eSTT/j0009rZApQgUpERES8VmxsLFu3bmXMmDEYhkFiYiLTpk3jxIkTl/VzvCJQDRkyhObNm+Pr60uTJk146KGHOHr0aLU2GRkZDB48mICAACIiIvj9739PaWlptTbJycn06dMHPz8/mjZtyquvvoppmrXZFREREbnMbDYbb7/9NosXLyY4OJhjx44RHx/Pjh07LttneEWg6tevH/PmzWP37t3Mnz+fffv2MXz4cPf7LpeLO++8k6KiIjZs2MDcuXOZP38+48aNc7fJz89nwIABxMTEsGXLFt5++20mTpzIpEmTPNElERERucwGDx5MWloaXbt2paysjIULF7Jo0aJzBlh+CcP0wiGYJUuWMGzYMJxOJ3a7neXLlzNo0CAyMzOJiYkBYO7cuYwaNYqcnByCg4N55513GD9+PMeOHcPhcADw+uuv8/bbb3P48GEMw7ioz87PzyckJIS8vDyCg4NrrI8iIiKeZprgrDqX2GGFi/xV6XEul4vnnnuOt956C9M0iYyMZOjQoUybNu0X//72ukB16tQpnnzySY4cOcKGDRsAePHFF1m8eHG1ob3c3FwaNWrEF198Qb9+/Xj44YfJy8tj8eLF7jbbt2+na9eu7N+/n1atWp3385xOJ06n0/11Xl4ezZs3JzMzU4FKRES8Wn0NVGetWrWKRx99lLy8PCwWCxUVFZw+fZqQkJCf/bNsNVCfR/z5z39m8uTJnDlzhuuvv56lS5e638vOziYqKqpa+7CwMHx8fMjOzna3admyZbU2Z78nOzv7goFqwoQJvPLKK+dcj42NvZTuiIiISC2qqKgAoKCgwLsC1csvv3zeoPJ9W7ZsoXv37gD86U9/4tFHH+XQoUO88sorPPzwwyxdutQ9VXe+KTvTNKtd/2Gbs4N3PzbdN378eMaOHev+uqKiglOnThEeHn7R04SXIj8/n9jY2AY3IqZ+q98NgfqtfjcEdaXfpmlSUFDgXhr0c9XZQDVmzBjuv//+H23z/RGliIgIIiIiuPLKK2nfvj2xsbF8/fXX9OzZk+joaDZv3lzte3NzcykrK3OPQkVHR7tHq87KyckBOGd06/scDod7zdVZoaGhP9W9yy44OLhB/QE8S/1uWNTvhkX9bljqQr9/ycjUWXU2UJ0NSL/E2ZGls2ubevbsyT/+8Q+ysrJo0qQJACtXrsThcNCtWzd3m+eff57S0lJ8fHzcbWJiYs6ZChQRERH5vnq/bcI333zD5MmTSUpK4tChQ6xdu5YHH3yQNm3a0LNnTwAGDhxIhw4deOihh9i+fTtr1qzh2Wef5fHHH3en4QcffBCHw8GoUaNISUlh4cKFvPbaa4wdO7ZWpu5ERESk/qr3gcrPz48FCxZw8803065dOx555BE6duxIQkKCeyrOarWybNkyfH19ufHGG7n33nsZNmwYEydOdP+ckJAQVq1axeHDh+nevTujR49m7Nix1dZH1UUOh4OXXnrpnGlHb6d+q98NgfqtfjcE3tJvr9s2QURERKS21fsRKhERERFPU6ASERERuUQKVCIiIiKXSIFKRERE5BIpUImIiIhcIgWqOmjdunUMHjyYmJgYDMNg0aJF1d43TZOXX36ZmJgY/Pz86Nu3L7t27arWxul08vTTTxMREUFAQABDhgzh8OHDtdiLn++n+j1q1CgMw6j2uv7666u1qY/9njBhAj169CAoKIjGjRszbNgwdu/eXa2NN97zi+m3N97zd955h2uuuca9K3TPnj1Zvny5+31vvNfw0/32xnt9PhMmTMAwDJ555hn3NW+95993vn572z1XoKqDioqK6Ny5M5MnTz7v+2+++SaTJk1i8uTJbNmyhejoaAYMGEBBQYG7zTPPPMPChQuZO3cuGzZsoLCwkEGDBuFyuWqrGz/bT/Ub4LbbbiMrK8v9+uyzz6q9Xx/7nZCQwFNPPcXXX3/NqlWrKC8vZ+DAgRQVFbnbeOM9v5h+g/fd82bNmvH666+zdetWtm7dSv/+/Rk6dKj7F6g33mv46X6D993rH9qyZQtTpkzhmmuuqXbdW+/5WRfqN3jZPTelTgPMhQsXur+uqKgwo6Ojzddff919raSkxAwJCTHj4uJM0zTN06dPm3a73Zw7d667zZEjR0yLxWKuWLGi1mq/FD/st2ma5siRI82hQ4de8Hu8od+maZo5OTkmYCYkJJim2XDu+Q/7bZoN556HhYWZ06ZNazD3+qyz/TZN77/XBQUFZtu2bc1Vq1aZffr0Mf/whz+Ypun9f74v1G/T9L57rhGqeubAgQNkZ2czcOBA9zWHw0GfPn3YuHEjAImJiZSVlVVrExMTQ8eOHd1t6qsvv/ySxo0bc+WVV/L444+7D7AG7+l3Xl4eAI0aNQIazj3/Yb/P8uZ77nK5mDt3LkVFRfTs2bPB3Osf9vssb77XTz31FHfeeSe33HJLtevefs8v1O+zvOme19nDkeX8srOzAYiKiqp2PSoqikOHDrnb+Pj4EBYWdk6bs99fH91+++2MGDGCFi1acODAAf7617/Sv39/EhMTcTgcXtFv0zQZO3YsN910Ex07dgQaxj0/X7/Be+95cnIyPXv2pKSkhMDAQBYuXEiHDh3cvyS89V5fqN/gvfcaYO7cuSQmJrJ169Zz3vPmP98/1m/wvnuuQFVP/fDAZtM0f/IQ54tpU5fdd9997v/u2LEj3bt3p0WLFixbtoy77777gt9Xn/o9ZswYdu7cyYYNG855z5vv+YX67a33vF27diQlJXH69Gnmz5/PyJEjSUhIcL/vrff6Qv3u0KGD197rzMxM/vCHP7By5Up8fX0v2M7b7vnF9Nvb7rmm/OqZ6OhogHPSeU5OjvtfONHR0ZSWlpKbm3vBNt6gSZMmtGjRgm+//Rao//1++umnWbJkCWvXrqVZs2bu695+zy/U7/Pxlnvu4+PDFVdcQffu3ZkwYQKdO3fmP//5j9ff6wv1+3y85V4nJiaSk5NDt27dsNls2Gw2EhIS+H//7/9hs9nctXvbPf+pfp9vUXl9v+cKVPVMq1atiI6OZtWqVe5rpaWlJCQkcMMNNwDQrVs37HZ7tTZZWVmkpKS423iDkydPkpmZSZMmTYD622/TNBkzZgwLFizgiy++oFWrVtXe99Z7/lP9Ph9vuec/ZJomTqfTa+/1hZzt9/l4y72++eabSU5OJikpyf3q3r07v/71r0lKSqJ169Zeec9/qt9Wq/Wc76n397y2V8HLTysoKDC3b99ubt++3QTMSZMmmdu3bzcPHTpkmqZpvv7662ZISIi5YMECMzk52XzggQfMJk2amPn5+e6f8cQTT5jNmjUzV69ebW7bts3s37+/2blzZ7O8vNxT3fpJP9bvgoICc9y4cebGjRvNAwcOmGvXrjV79uxpNm3atN73+8knnzRDQkLML7/80szKynK/zpw5427jjff8p/rtrfd8/Pjx5rp168wDBw6YO3fuNJ9//nnTYrGYK1euNE3TO++1af54v731Xl/ID59289Z7/kPf77c33nMFqjpo7dq1JnDOa+TIkaZpVj5m+9JLL5nR0dGmw+Ewe/fubSYnJ1f7GcXFxeaYMWPMRo0amX5+fuagQYPMjIwMD/Tm4v1Yv8+cOWMOHDjQjIyMNO12u9m8eXNz5MiR5/SpPvb7fH0GzJkzZ7rbeOM9/6l+e+s9f+SRR8wWLVqYPj4+ZmRkpHnzzTe7w5Rpeue9Ns0f77e33usL+WGg8tZ7/kPf77c33nPDNE2z9sbDRERERLyP1lCJiIiIXCIFKhEREZFLpEAlIiIicokUqEREREQukQKViIiIyCVSoBIRERG5RApUIiIiIpdIgUpERETkEilQiYiIiFwiBSoRkSrXXHMNhmFgGAbr168/b5vc3FwiIiLc7fbs2VPLVYpIXaRAJSIClJSUkJaWhs1mAyA5Ofm87V588UVyc3MBCAoKom3btrVWo4jUXQpUIiLAjh07KC8v5/bbb8disZw3UKWkpPDOO+9wxx13ANClSxcMw6jtUkWkDlKgEhEBtm3bBkDv3r1p06bNeQPVM888Q1BQEHfddRcA3bp1q9UaRaTuUqASEQESExMB6Nq1K126dDknUC1YsIA1a9bwyiuvcOjQIXdbERFQoBIRAb4boTobqPLz88nIyADA6XTy7LPP0r59e0aPHl2trYgIgM3TBYiIeFppaSkpKSm0bt2a0NBQunTpAlQuTG/evDkTJ07kwIEDfP7559hsNhITE/H39+eqq67ybOEiUmdohEpEGrydO3dSVlbmHnHq3LkzUBmojhw5woQJExgyZAgDBw4kOzubrKwsOnfujNVqBWDChAl0796doKAgoqKiuPfeezl48KCnuiMiHqBAJSIN3tkpvLOLzJs2bUpkZCTJyck899xzlJWV8a9//QuovtbqrISEBJ5++mk2b97MihUrOH36NLfffjvl5eW13BMR8RRN+YlIg3e+kNS5c2eWL19Obm4uf/7zn7niiisAzrt+asWKFdV+3vTp02nevDmpqalcc801NV2+iNQBGqESkQbvfCGpS5cu5ObmEh0dzQsvvOC+fjZ8/diWCXl5eQA0atSoJsoVkTrIME3T9HQRIiKeUlZW5l77dHY7BIADBw6wY8cO2rRpQ6dOndzXmzdvTk5ODgUFBdjt9nN+XkVFBbfffjs2m41ly5bVSh9ExPM05SciDdquXbtwOp3nbIHQqlUrWrVqVe3aiRMnyMzMpHv37ucNU6Zp8rvf/Y4DBw7w1Vdf1WjdIlK3KFCJSIN2vvVTv6StaZqMHj2a1atXs27dOiIjIy9voSJSp2nKT0TkEpmmyVNPPcXSpUtJSEg4Z2RLRLyfRqhERC7R6NGjmTt3Lp9++il+fn5kZ2cDlYvSfXx8PFydiNQGjVCJiFwiwzDOe33t2rX07du3dosREY/QCJWIyCXSv0tFRPtQiYiIiFwiBSoRERGRS6RAJSIiInKJFKhERERELpEClYiIiMglUqASERERuUQKVCIiIiKXSIFKRERE5BIpUImIiIhcIgUqERERkUukQCUiIiJyif4/kFxuQsKgMlQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "m1_sample = np.linspace(-300, 500, 200)\n", "m2_sample = [f_m2(k, x_star[2], x_star[3]) for k in m1_sample]\n", "\n", "f, ax = plt.subplots(1)\n", "\n", "ax.plot(m2_sample, m1_sample, label=\"LSF\", color=\"k\")\n", "# Contour plot\n", "X_grid,Y_grid = np.meshgrid(m2_sample,m1_sample)\n", "pdf = np.zeros(X_grid.shape)\n", "for i in range(X_grid.shape[0]):\n", " for j in range(X_grid.shape[1]):\n", " # This is correct, but only works when ALL RV's are independent!\n", " # pdf[i,j] = M2.computePDF(X_grid[i,j])*Y.computePDF(Y_grid[i,j])\n", " pdf[i,j] = inputDistribution_2.computePDF([Y_grid[i,j], X_grid[i,j], x_star[2], x_star[3]])\n", "ax.contour(X_grid, Y_grid, pdf, levels=8, cmap=cm.Blues)\n", "\n", "ax.set_xlabel(r\"$M_2$\", fontsize=14)\n", "ax.set_ylabel(r\"$M_1$\", fontsize=14)\n", "ax.plot(x_star[1], x_star[0], 'ro', label=\"Design point\")\n", "ylim = ax.get_ylim()\n", "ax.fill_between(m2_sample, m1_sample, ylim[1], color=\"grey\", label=\"Failure region\")\n", "ax.set_title(r\"Limit state function in the plane $(M_2, M_1)$\", fontsize=18)\n", "ax.legend();" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }