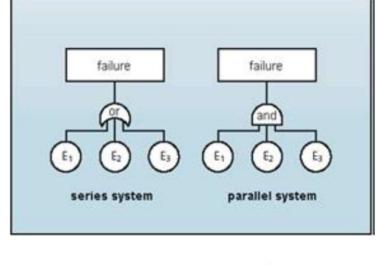
Risk based design of hydraulic structures Fault Tree Workshop

In cooperation with



Aalberts, Verheijen, Le Lanzafame, Jonkman, Breedveld, and Co.

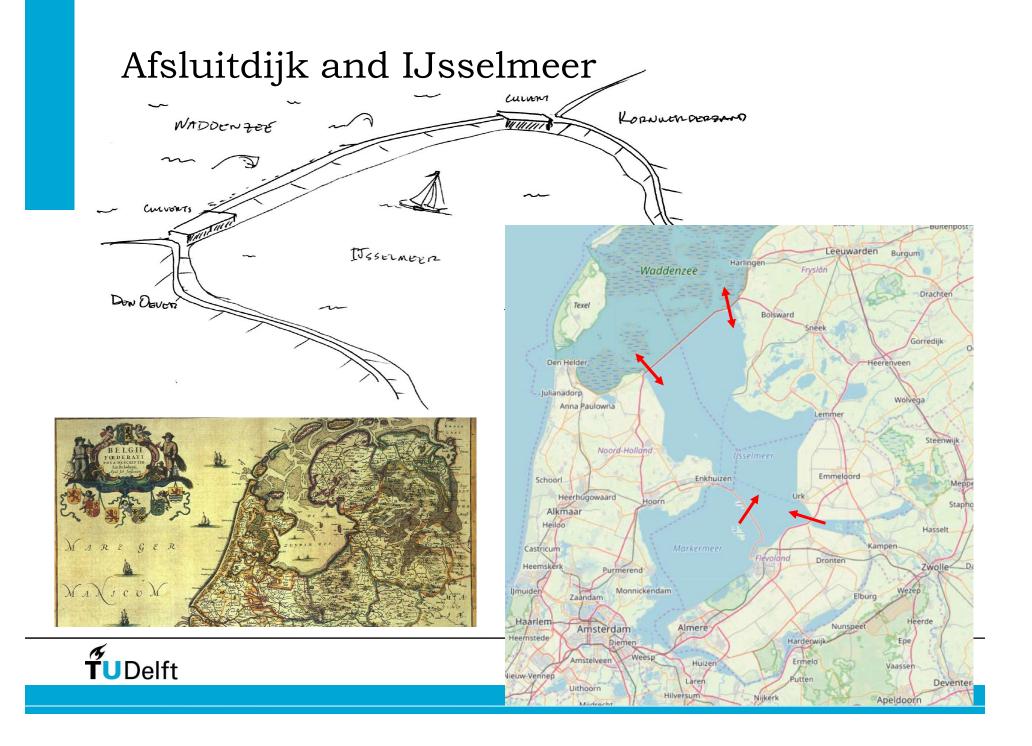
System reliability – Fault trees

- Graphical method for evaluating system failure probability
- Lecture notes Chapter 9

system	gate	operator	components			
			mutually exclusive	independent	fully dependent	
series		U	$\sum_{i=1}^{n} P_i$ (upper bound)	$1 - \prod_{i=1}^{n} (1 - P_i)$	$\max\{P_i\}$ (lower bound)	
parallel		Π	0 (lower bound)	$\prod_{i=1}^{n} P_{i}$	$\min\{P_i\}$ (upper bound)	

P_{f,system} (with *n* components):

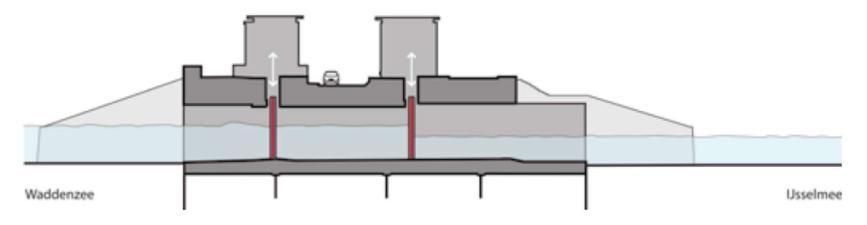
TUDelft


Overview of fault tree workshop

- Introduction to case study (this video)
- Case study: work on assignment in groups of 4-5
- Presentation by groups and discussion
- Wrap-up and conclusions

Documents:

- Fault tree workshop introduction (these slides)
- Fault tree workshop handout
- Calculation template (online Google sheet)
- Fault tree diagram template (optional, also online Google sheet)



Afsluitdijk inlet/outlet culverts

Culverts close to limit IJsselmeer level

Normal operation:

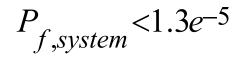
• prevent water from Waddenzee entering IJsselmeer

Failure:

TUDelft

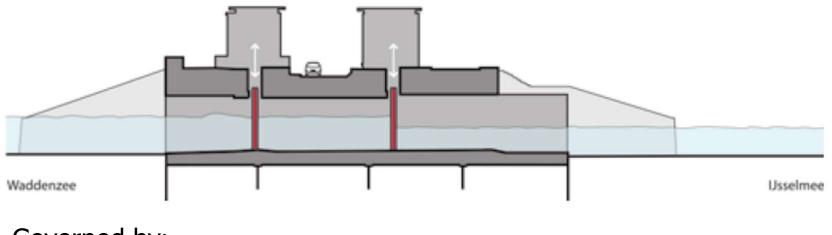
- Culvert does not close when asked, and
- Water flow into IJsselmeer exceeds critical amount

$$P_{f,system} = P(nc) \cdot P(Q > Q_{\max} | nc)$$



Derivation of norm for the Afsluitdijk

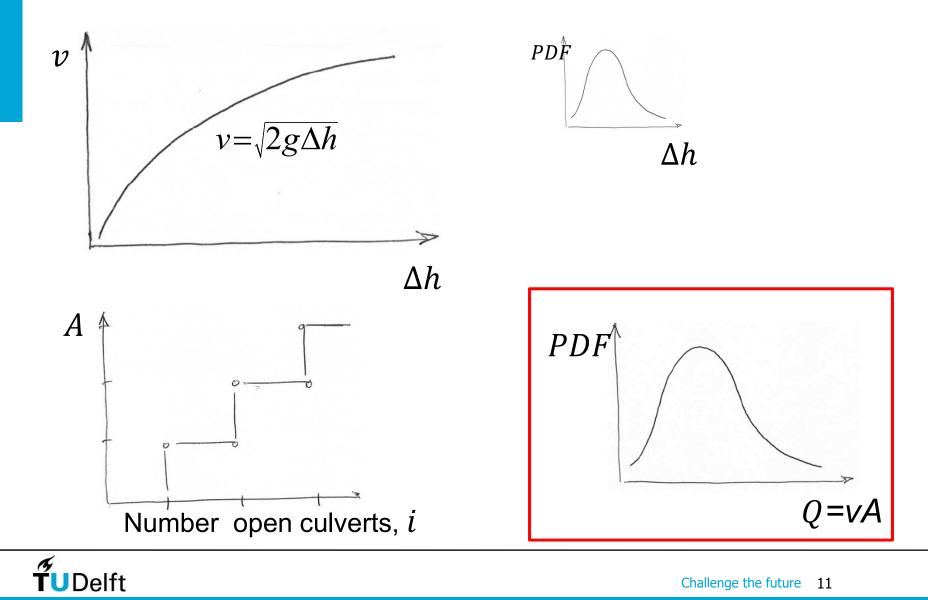
- Maximum allowable failure probability = 1/3000 = 0.00033
- Non-closure failure mechanism portion = 0.04
- Norm =
 0.04 * 0.0033 = 1.3e-5



Waddenzee

System failure (critical hydraulic conditions)

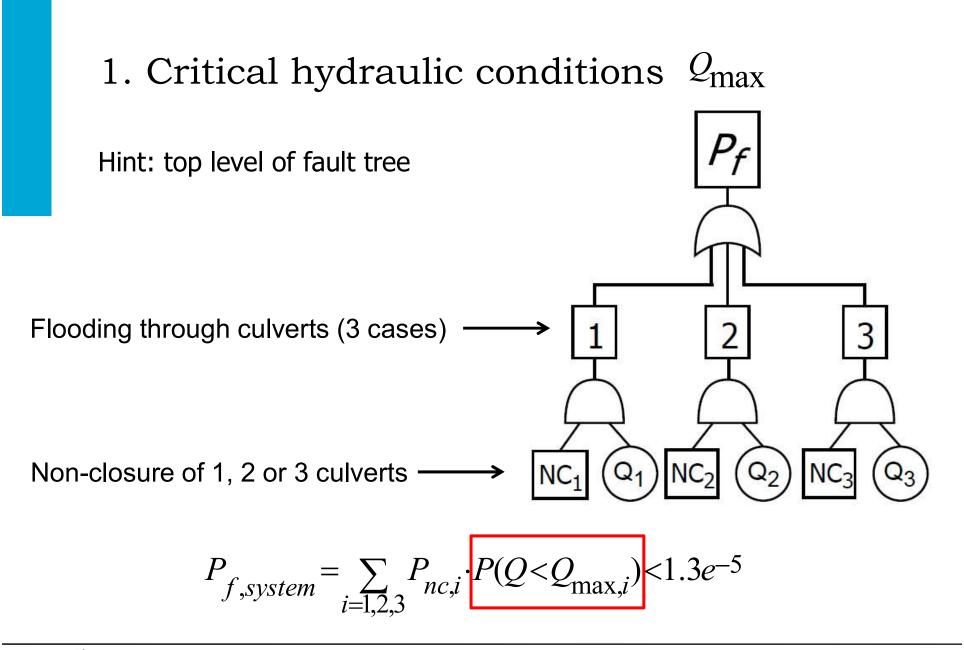
Governed by:


TUDelft

- 1. Critical hydraulic conditions in Ijsselmeer and Waddenzee
- 2. Number of open culverts, *i* (non-closure, *nc*)

$$P_{f,system} = P(nc) \cdot P(Q > Q_{\max} | nc)$$

1. Critical hydraulic conditions Q_{max}


1. Critical hydraulic conditions Q_{max}

- 3 cases of non-closure
- Sum all scenarios (OR case)

Number of open culverts, <i>i</i>	$P(Q > Q_{\max})$
1	6.39 E-3
2	3.27 E-2
3	1.89 E-1

$$P_{f,system} = \sum_{i=1,2,3} P_{nc,i} \cdot P(Q < Q_{\max,i}) < 1.3e^{-5}$$

Probability of 1, 2 or 3 non-closures, $P_{nc,i}$

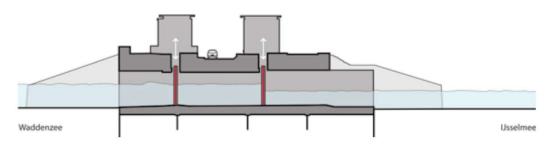
- All 3 culverts are always asked to close together (*n*=3)
- Bernoulli: probability of *i* failures in *n* trials

TUDelft

• Need probability of single culvert non-closure, P_{nc}

$$P_i = \frac{n!}{i!(n-i)!} * p^i * (1-p)^{(n-i)}$$

$$P_{f,system} = \sum_{i=1,2,3} P_{nc,i} P(Q < Q_{\max,i}) < 1.3e^{-5}$$


 $P_{nc,i}$

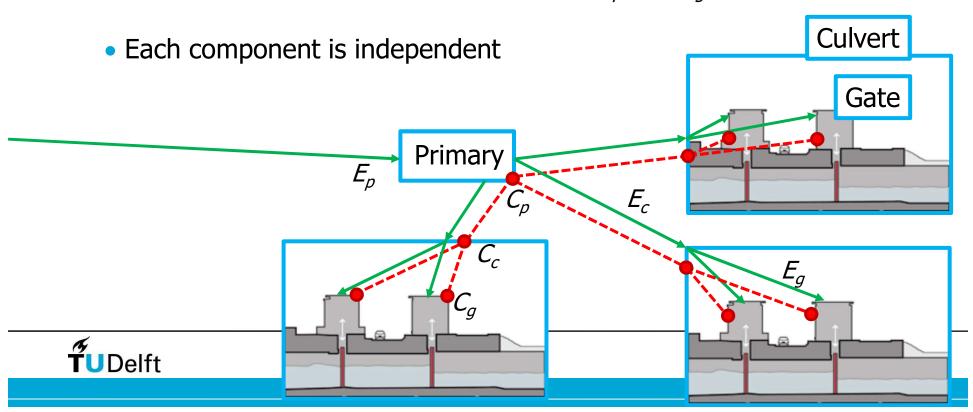
Bernoulli

i of n

 P_{nc}

Single culvert non-closure, P_{nc}

- System contains: 3 culverts, each with 2 gates
- Failure modes:
 - Gates can jam
 - Culvert fails due to a construction problem
 - Electrical and control system between components
 - Human error (causes all 3 culverts to stay open)



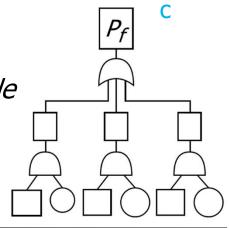
Electricity and control system

- Component levels: primary, culvert, gate
- Electricity connection to each level $(E_{\rho}, E_{\sigma}, E_{q})$ ----- Control

Electricity

• Closure signal sent/recieved each level ($C_{\rho}, C_{\sigma}, C_{q}$)

Failure modes and probability for fault tree


S	Symbol	Component	Consequence	Probability
	C _p	Primary control system	All culverts open	3.5E-05
	E _ρ	Primary electrical supply	All culverts open	7.3E-05
	C _c	Culvert control system	Culvert open	3.8E-04
	E _c	Culvert electrical supply	Culvert open	9.6E-06
	C _g	Gate control system	Gate open	8.7E-06
	E _g	Gate electrical supply	Gate open	1.5E-04
	СС	Construction failure of culvert	Culvert open	2.0E-09
	HE	Human error	All culverts open	2.5E-06
-	J _g	Jammed gate	Gate open	2.4E-03
•			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

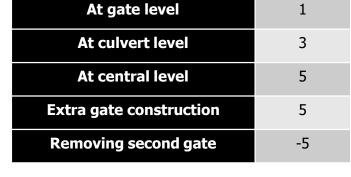
Assignment – 1. System failure

- 1. Find probability of culvert system failure $P_{f,system}$
 - a. Fault tree for single culvert non-closure, P_{nc}
 - b. Evaluate P_{nc,i} for *i* non-closure cases using Bernoulli
 - c. Fault tree for $P_{f,system}$ that includes 3 non-closure cases

b

P_{nc,i}

Bernoulli *i of n*


'nc

Assignment – 2. Design optimization (if time)

What part of the fault tree influences system failure the most?

- Get as close to norm as possible (but still below) while minimizing the expected projects costs
- "Investment points" = proxy for costs

- Don't introduce new components
- Add or remove redundancy within the existing system
- If number of culverts changes, $P_{nc,i}$ will also change

Points

Design option

Assignment

- 1. Find probability of culvert system failure $P_{f,system}$
- 2. Optimize design (if time allows)

Form groups of 4-5, prepare fault tree and results for discussion

Documents:

- Fault tree workshop introduction (these slides)
- Fault tree workshop handout
- Calculation template (online Google sheet)
- Fault tree diagram template (optional, also online Google sheet)

