Extreme Value Analysis in engineering

Patricia Mares Nasarre (p.maresnasarre@tudelft.nl)

Hydraulic Structures and Flood Risk

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- 2. Interpret and apply the concept of **return period**
- 3. Apply extreme value **sampling techniques** to datasets:
 - a. Block maxima
 - b. Peak over threshold

Concept of extreme value

Patricia Mares Nasarre (p.maresnasarre@tudelft.nl)

Hydraulic Structures and Flood Risk

What is an extreme?

What is an extreme?

An **extreme observation** is an observation that **deviates from the average observations**

Why are we interested in extremes?

Infrastructures and systems are designed to withstand extreme conditions (ULS).

- Breakwater \rightarrow wave storm
- Flood defences \rightarrow precipitation
- Bridge \rightarrow maximum load
- Energy systems → max. and min. consumption

Minimum values are also extreme values!

• Ecological discharges \rightarrow drought

To properly design and assess infrastructures and system we need to characterize the uncertainty of the loads.

Extreme Value Analysis

Based on historical observed extremes (limited)...

- Allows us to **model** the stochastic behaviour of extreme events
- Allows us to infer extremes we have not observed yet (extrapolation)

What do we need?

Time series of observations of the loading variable

Summary

Identify what is an **extreme value** and apply it within the engineering context

Return period

Patricia Mares Nasarre (p.maresnasarre@tudelft.nl)

Hydraulic Structures and Flood Risk

Percentile and Exceedance Probability

Consider x_q such that $\Pr(X \le x_q) = F(x_q) = q$

- x_q is the q^{th} percentile
- $Pr(X > x_q) = 1 F(x_q) = 1 q = p$ is the exceedance probability

Percentile and Exceedance Probability

Consider x_q such that $\Pr(X \le x_q) = F(x_q) = q$

• x_q is the q^{th} – percentile

• $Pr(X > x_q) = 1 - F(x_q) = 1 - q = p$ is the exceedance probability

80th-percentile: $x_q = 3.60$ $Pr(X \le 3.6) = 0.8$ Exceedance probability $Pr(X > x_q) = 0.20$

Let's apply Extreme Value Analysis together!!

Example case: intervention in the Mediterranean coast

- It may be a coastal structure, a water intake, the restoration of a sandy beach, between others.
- Here: design a mound breakwater
- Mound breakwater must resist wave storms
- But which one?

Design requirements

Regulations and recommendations \rightarrow Exceedance probability or return period

Country	Standard	T _R (years)	DL (years) p _{DL} (-)	
England	BS 6349-1-1:2013	50-100*	50-100	0.05*
Japan	TS Ports-2009	50-100	50	0.40-0.64
Spain	ROM 0.0-01/1.0-09	113-4,975	25-50	0.01-0.2

*Not well defined

Return Period - Derivation

We are interested in estimating, on **average**, the **time** (e.g., year^(*)) **at which an event** (here, the wave height) **higher than a given threshold**, (e.g. design value), **occurs**.

We know that $Pr(Z > z_q) = 1 - q = p$

TUDelft (*) the unit time reflects the interval time in which the observations are taken

Right figure from Salas, et la (2013). Journal of Hydrologic Engineering, 19(3), 554-568.

Return Period - Derivation

Every year the probability of the event being higher/lower than the threshold is always the same

Let's calculate the probability that an event z_0 higher than the design value z_q occurs at time t

$$f(t) = Pr(z_0 \text{ at time } t) = (1-p)(1-p) \dots (1-p)p$$

$$\hline \textbf{Geometric Distribution}$$

$$\text{it models the number of trials up to the first success (included)}$$

$$f(t) = Pr(z_0 \text{ at time } t) = q^{t-1}p$$

$$T(t) = \frac{1}{p} \quad \textbf{T(t) expectation}$$

$$T(t) = \frac{1}{p$$

Design requirements

Regulations and recommendations \rightarrow Exceedance probability or return period

$$T_R = \frac{1}{p} = \frac{1}{1 - (1 - p_{DL})^{1/DL}}$$

Country	Standard	T _R (years)	DL (years)	р _{DL} (-)	
England	BS 6349-1-1:2013	50-100*	50-100	0.05*	
Japan	TS Ports-2009	50-100	50	0.40-0.64	
Spain	ROM 0.0-01/1.0-09	113-4,975	25-50	0.01-0.2	

*Not well defined

Return Period and Design Life

Let's calculate the probability to observe an event z_0 higher than the design value z_q at least once in DL years of design life. Under *iid* conditions:

$$p_{DL} = 1 - (1 - p)(1 - p) \dots (1 - p) = 1 - \prod_{i=1}^{DL} (1 - p_i) = 1 - (1 - p)^{DL}$$
$$p_{DL} = 1 - (1 - p)^{DL} \rightarrow p = 1 - (1 - p)^{\frac{1}{DL}}$$
$$T_R = \frac{1}{p} = \frac{1}{1 - (1 - p_{DL})^{1/DL}}$$

Design requirements

Regulations and recommendations \rightarrow Exceedance probability or return period

$$T_R = \frac{1}{p} = \frac{1}{1 - (1 - p_{DL})^{1/DL}}$$

Country	Standard	T _R (years)	DL (years)	р _{DL} (-)
England	BS 6349-1-1:2013	50-100*	50-100	0.05*
Japan	TS Ports-2009	50-100	50	0.40-0.64
Spain	ROM 0.0-01/1.0-09	113-4,975	25-50	0.01-0.2

*Not well defined

Design requirements – Regulator example

15

ROM 1.0-09

Recommendations for the Project Design and Construction of Breakwaters (Part 1: Calculation and Project Factors. Climate Agents)

Figure 2.2.33. ERI, SERI and minimum useful life for different types of sheltered area

Recommendations for the Project Design and Construction of Breakwaters (Part 1: Calculation and Project Factors. Climate Agents)

ROM 1.0-09

MINIMUM USEFUL **TYPE OF SHELTERED OR** ERI 7 **PROTECTED AREA** LIFE (L_m) ⁷ (years) 50 All vessel types r₃ High COMMERCIAL PORT Medium r₂(r₃)¹ Specific vessel types 25 (50)1 (high)¹ DL=25years FISHING PORT Medium 25 r₂ p_{DL}=0.20 4 0 R MARINA Medium 25 r₂ HARB $r_2(r_3)^1$ | Medium (High)¹ INDUSTRIAL PORT 25 (50)¹ $r_2(r_3)^2$ | Medium (High)² NAVAL PORT $25(50)^2$ PROTECTION OF FILL MATERIAL r₂ Medium (High)³ 25 (50)³ $(r_3)^3$ OR SHORELINE DEFENSE AGAINST EXTREME High 50 r₃ FLOOD EVENTS⁴ AREAS PROTECTION OF WATER INTAKE r₂(r₃)⁵ Medium (High)⁵ 25 (50)5 **ASTAL** OR DISCHARGE STRUCTURE SHORELINE PROTECTION AND DEFENSE $|r_1(r_3)^6|$ Low (High)⁵ 15 (50)7 0

r

Low

Figure 2.2.34. SERI and joint probability of failure for ULS and SLS

TYPE OF SHELTERED OR PROTECTED AREA			SERI		P _{f,ULS}	P _{f,SLS}	
COMMER-	Storage areas or areas for pas- sengers and/or cargo handling adjacent to the breakwater ¹	Hazardous cargo ²	s ₃	High	0.01	0.07	
		Passengers and non- hazardous cargo ¹	s ₂	Low	0.10	0.10	
	No storage areas or areas for passengers and/or cargo handling adjacent to the breakwater		sı	Insignificant	0.20	0.20	
HINC	Storage or operational areas adiacent to the breakwater			Low	0 10	0 10	
PORT	No storage or operational areas adjacent to the breakwater		s _i	Insignificant	0.20	0.20	
Storage or operational areas adjacent to the breakwater		ent to the breakwater	s ₂	Low	0.10	0.10	
MARINA	No storage or operational areas adjacent to the breakwater		sı	Insignificant	0.20	0.20	
INDUS- TRIAL PORT	Storage or cargo handling areas adjacent to the breakwater ¹	Hazardous cargo ²	s ₃	High	0.01	0.07	
		Non-hazardous cargo	s ₂	Low	0.10	0.10	
	No storage or cargo handling areas adjacent to the breakwater		sı	Insignificant	0.20	0.20	
NAVAL	NAVAL Storage or operational areas adjacent to the breakwater 1		s ₃	High	0.01	0.07	
PORT	No storage or operational areas a	e or operational areas adjacent to the breakwater		Insignificant	0.20	0.20	
PROTEC- TION *	Storage area adjacent to the	Hazardous cargo ²	s ₃	High	0.01	0.07	
	breakwater ¹	Non-hazardous cargo	s ₂	Low	0.10	0.10	

BEACH DEFENSE AND NOURISHMENT

Design requirements

Regulations and recommendations \rightarrow Exceedance probability or return period

$$T_R = \frac{1}{p} = \frac{1}{1 - (1 - p_{DL})^{1/DL}}$$
$$T_R = \frac{1}{p} = \frac{1}{1 - (1 - 0.20)^{1/25}} = 112.5 \text{ years}$$

Example case: intervention in the Mediterranean coast

- Load: significant wave height (T_R=100 years)
- Historical data from a buoy in the Mediterranean sea, in front of Valencia coast
- 20 years of hourly measurements → infer design value using EVA

Learning objectives

1. Identify what is an **extreme value** and apply it within the engineering context

- 2. Interpret and apply the concept of return period
 - 3. Apply extreme value **sampling techniques** to datasets:
 - a. Block maxima
 - b. Peak over threshold

Sampling extremes

Patricia Mares Nasarre (p.maresnasarre@tudelft.nl)

Hydraulic Structures and Flood Risk

Example case: intervention in the Mediterranean coast

- Load: significant wave height (T_R=100 years)
- Historical data from a buoy in the Mediterranean sea, in front of Valencia coast
- 20 years of hourly measurements → infer design value using EVA

Time series

How can we sample extremes?

Sampling extremes: Block Maxima

- Maximum value within the block (typically one year)
- Number of selected events=number of blocks
- Easy to implement

- >> read observations
- >> for each year i
 OBSmax(i) = max(observation in year i)

end

Sampling extremes: Peak Over Threshold (POT)

- Excesses over a threshold
- Usually, higher number of identified extremes
- Additional parameters:
 - o Threshold
 - Declustering time

d=2*24 d=2*24 *Declustering time (storm duration) = 2 days (in hours)*

Sampling extremes: Peak Over Threshold (POT)

Parameters for POT (threshold and declustering time) should be chosen so the identified extreme events are independent (*iid* assumption).

Parameters for POT (threshold and declustering time) should be chosen so the identified extreme events are independent (*iid* assumption).

Under *iid* conditions, we have:

- A series of Bernoulli trials (exceeds or not the threshold)
- Sum the number of excesses each year \rightarrow Poisson distribution

Number of exceedances per year follows a Poisson distribution. We can check it using:

- Mean=variance=parameter (property of Poisson distribution)
- GOF to Poisson distribution (e.g.: Chi Square test for discrete distributions)

Number of exceedances per year follows a Poisson distribution. We can check it using:

- Mean=variance=parameter (property of Poisson distribution)
- GOF to Poisson distribution (e.g.: Chi Square test for discrete distributions)

Number of exceedances per year follows a Poisson distribution. We can check it using:

- Mean=variance=parameter (property of Poisson distribution)
- GOF to Poisson distribution (e.g.: Chi Square test for discrete distributions)

Learning objectives

1. Identify what is an **extreme value** and apply it within the engineering context

2. Interpret and apply the concept of return period

3. Apply extreme value **sampling techniques** to datasets:

a. Block maxima

b. Peak over threshold

