Extreme Value Analysis in engineering

Patricia Mares Nasarre (p.maresnasarre@tudelft.nl)

Hydraulic Structures and Flood Risk

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- 2. Interpret and apply the concept of **return period**
- 3. Apply extreme value **sampling techniques** to datasets:
	- a. Block maxima
	- b. Peak over threshold

Concept of extreme value

Patricia Mares Nasarre (p.maresnasarre@tudelft.nl)

Hydraulic Structures and Flood Risk

What is an extreme?

What is an extreme?

An **extreme observation** is an observation that **deviates from the average observations**

Why are we interested in extremes?

Infrastructures and systems are designed to **withstand extreme conditions (ULS)** .

- Breakwater \rightarrow wave storm
- Flood defences \rightarrow precipitation
- $Bridge \rightarrow$ maximum load
- Energy systems \rightarrow max. and min. consumption

Minimum values are also extreme values!

Ecological discharges \rightarrow drought

To properly design and assess infrastructures and system **we need to characterize the uncertainty of the loads** .

Extreme Value Analysis

Based on historical observed extremes (limited)…

- Allows us to **model** the stochastic behaviour of extreme events
- Allows us to **infer** extremes we have not observed yet (extrapolation)

What do we need?

Time series of observations of the loading variable

Summary

Identify what is an **extreme value** and apply it within the engineering context

Return period

Patricia Mares Nasarre (p.maresnasarre@tudelft.nl)

Hydraulic Structures and Flood Risk

Percentile and Exceedance Probability

Consider x_q such that $Pr(X \le x_q) = F(x_q) = q$

- x_q is the q^{th} percentile
- **•** $Pr(X > x_q) = 1 F(x_q) = 1 q = p$ is the exceedance probability

Percentile and Exceedance Probability

Consider x_q such that $Pr(X \le x_q) = F(x_q) = q$

 x_q is the q^{th} – percentile

• $Pr(X > x_q) = 1 - F(x_q) = 1 - q = p$ is the **exceedance probability**

80th-percentile: $x_q = 3.60$ $Pr(X \leq 3.6) = 0.8$ **Exceedance probability** $Pr(X > x_q) = 0.20$

Let's apply Extreme Value Analysis together!!

Example case: intervention in the Mediterranean coast

- It may be a coastal structure, a water intake, the restoration of a sandy beach, between others.
- Here: **design a mound breakwater**
- Mound breakwater must resist wave storms
- But which one?

Design requirements

Regulations and recommendations → Exceedance probability or **return period**

*Not well defined

Return Period - Derivation

We are interested in estimating, on **average**, the **time** (e.g., year(*)) **at which an event** (here, the wave height) **higher than a given threshold**, (e.g. design value), **occurs**.

We know that $Pr(Z > Z_q) = 1 - q = p$

Delft ζ^* the unit time reflects the interval time in which the observations are taken

Right figure from Salas, et la (2013). *Journal of Hydrologic Engineering*, *19*(3), 554-568.

Return Period - Derivation

Every year the probability of the event being higher/lower than the threshold is always the same

Let's calculate the probability that an event z_0 higher than the design value z_q occurs at time t

$$
f(t) = Pr(z_0 \text{ at time } t) = (1 - p)(1 - p) \dots (1 - p)p
$$
\n**Geometric Distribution**

\n
$$
f(t) = Pr(z_0 \text{ at time } t) = q^{t-1}p
$$

\n**Geometric Distribution**

\n**Geometric Distribution**

\n
$$
f(t) = Pr(z_0 \text{ at time } t) = q^{t-1}p
$$

\n**Teoplication**

\n**Tr** is also defined as **Return** period (in unit time).

\n**Tr** is also defined as **Return** period (in unit time).

\n**Tr** is also defined as **Return** period (in unit time).

\n**Tr** is also defined as **Return** period (in unit time).

\n**Tr** is also defined as **Return** period (in unit time).

\n**Tr** is also defined as **Return** period (in unit time).

\n**Tr** is also defined as **Return** period (in unit time).

\n**Tr** is also defined as **Return** period (in unit time).

\n**Tr** is also defined as **Return** period (in unit time).

\n**Tr** is also defined as **Return** period (in unit time).

\n**Tr** is also defined as **Return** period (in unit time).

\n**Tr** is also defined as **Return** period (in unit time).

\n**Tr** is also defined as **Return** period (in unit time).

\n**Tr** is also defined as **Return** period (in unit time).

\n**Tr** is also defined as **Return** period (in unit time).

\n**Tr** is also defined as **Return** period (in unit time).

\n**Error** is the result of **Value** of **Value**.

\n**Term** is the result of **Value** of **Value**.

\n**Term** is the result of **Value** of **Value** of **Value**.)

\n**Term** is the result of **Value** of **Value** of **Value** of **Value** of

Design requirements

Regulations and recommendations → Exceedance probability or **return period**

$$
T_R = \frac{1}{p} = \frac{1}{1 - (1 - p_{DL})^{1/DL}}
$$

*Not well defined

Return Period and Design Life

Let's calculate the probability to observe an event z_0 higher than the design value z_q at least once in DL years of design life. Under *iid* conditions:

$$
p_{DL} = 1 - (1 - p)(1 - p) \dots (1 - p) = 1 - \prod_{i=1}^{DL} (1 - p_i) = 1 - (1 - p)^{DL}
$$

$$
p_{DL} = 1 - (1 - p)^{DL} \rightarrow p = 1 - (1 - p)^{\frac{1}{DL}}
$$

$$
T_R = \frac{1}{p} = \frac{1}{1 - (1 - p_{DL})^{1/DL}}
$$

Design requirements

Regulations and recommendations → Exceedance probability or **return period**

$$
T_R = \frac{1}{p} = \frac{1}{1 - (1 - p_{DL})^{1/DL}}
$$

*Not well defined

Design requirements – Regulator example

ROM 1.0-09

 $\widetilde{\mathsf{T}}$ UDelft

Recommendations for the Project Design and Construction of Breakwaters (Part 1: Calculation and Project Factors. Climate Agents)

Recommendations for the Project Design and Construction of Breakwaters (Part 1: Calculation and Project Factors. Climate Agents)

ROM 1.0-09

P_{f,ULS} P_{f,SLS} $0.01 \, | \, 0.07$

 $0.10 \, | \, 0.10$

 $0.10 - 0.10$

 $0.10 \, | \, 0.10$

 $0.01 \, | \, 0.07$

 $0.10 \, | \, 0.10$

 0.01 0.07

 $0.01 \, | \, 0.07$

 $0.10 \ 0.10$

Figure 2.2.33. ERI. SERI and minimum useful life for different types of sheltered area

Figure 2.2.34. SERI and joint probability of failure for ULS and SLS

Design requirements

Regulations and recommendations → Exceedance probability or **return period**

$$
T_R = \frac{1}{p} = \frac{1}{1 - (1 - p_{DL})^{1/DL}}
$$

$$
T_R = \frac{1}{p} = \frac{1}{1 - (1 - 0.20)^{1/25}} = 112.5 \text{ years}
$$

$$
T_R \approx 100 \text{ years}
$$

Example case: intervention in the Mediterranean coast

- **Load: significant wave height (TR=100 years)**
- Historical data from a buoy in the Mediterranean sea, in front of Valencia coast
- 20 years of hourly measurements → **infer design value using EVA**

Learning objectives

1. Identify what is an **extreme value** and apply it within the engineering context

- 2. Interpret and apply the concept of **return period**
	- 3. Apply extreme value **sampling techniques** to datasets:
		- a. Block maxima
		- b. Peak over threshold

Sampling extremes

Patricia Mares Nasarre (p.maresnasarre@tudelft.nl)

Hydraulic Structures and Flood Risk

Example case: intervention in the Mediterranean coast

- **Load: significant wave height (TR=100 years)**
- Historical data from a buoy in the Mediterranean sea, in front of Valencia coast
- 20 years of hourly measurements → **infer design value using EVA**

Time series

How can we sample extremes?

Sampling extremes: Block Maxima

- Maximum value within the block (typically one year)
- Number of selected events=number of blocks
- Easy to implement

- **>> read** observations
- **>> for** each year i OBSmax(i) = max(observation in year i)

end

Sampling extremes: Peak Over Threshold (POT)

- Excesses over a threshold
- Usually, higher number of identified extremes
- Additional parameters:
	- o Threshold
	- o Declustering time
	- **>> read** observations
	- **>> Define** parameters
	- $u=2.5$ $d=2*24$ *Threshold=2.5m Declustering time (storm duration) = 2 days (in hours)*
	- **>>Select** Excesses= find peaks(OBS, threshold=u, distance=d)-u

Sampling extremes: Peak Over Threshold (POT)

Parameters for POT (threshold and declustering time) should be chosen so the identified extreme events are independent (*iid* assumption).

Parameters for POT (threshold and declustering time) should be chosen so the identified extreme events are independent (*iid* assumption).

Under *iid* conditions, we have:

- A series of Bernoulli trials (exceeds or not the threshold)
- Sum the number of excesses each year \rightarrow Poisson distribution

Number of exceedances per year follows a Poisson distribution. We can check it using:

- Mean=variance=parameter (property of Poisson distribution)
- GOF to Poisson distribution (e.g.: Chi Square test for discrete distributions)

Number of exceedances per year follows a Poisson distribution. We can check it using:

- Mean=variance=parameter (property of Poisson distribution)
- GOF to Poisson distribution (e.g.: Chi Square test for discrete distributions)

Number of exceedances per year follows a Poisson distribution. We can check it using:

- Mean=variance=parameter (property of Poisson distribution)
- GOF to Poisson distribution (e.g.: Chi Square test for discrete distributions)

Learning objectives

1. Identify what is an **extreme value** and apply it within the engineering context

2. Interpret and apply the concept of **return period**

3. Apply extreme value **sampling techniques** to datasets:

a. Block maxima

b. Peak over threshold

