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Lecture Topic

2

 Asymptotic model for Extreme Value
Analysis

 Generalized Extreme Value Distribution

 Generalized Pareto Distribution

 Example application



Learning Objectives
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At the end of the lecture, you will be able to:

 LO1. Discuss extreme events in
statistical terms

 LO2. Calculate statistical characteristics
of extremes

 LO3. Identify distribution functions for
modelling extremes

 LO4. Perform Extreme Value Analysis in
a case study



Asymptotic model for Extreme Value 
Analysis
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Modelling Extremes – asymptotic model
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 𝑿 = (𝑿𝟏, … , 𝑿𝒏) sequence of independent and identically distributed (i.i.d.) random

variables (e.g., daily discharge, daily traffic load)

 𝑭(𝒙) distribution function

We are interested in modeling the statistical behavior of

𝑴𝒏 = 𝐦𝐚𝐱(𝑿𝟏, … , 𝑿𝒏)

 𝑴𝒏 maximum of the process



Modelling Extremes – asymptotic model
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 𝑿 = (𝑿𝟏, … , 𝑿𝒏) sequence of independent and identically distributed (i.i.d.) random

variables (e.g., daily discharge, daily traffic load)

 𝑭(𝒙) distribution function

We are interested in modeling the statistical behavior of

𝑴𝒏 = 𝐦𝐚𝐱(𝑿𝟏, … , 𝑿𝒏)

 𝑴𝒏 maximum of the process

The theoretical distribution of 𝑴𝒏 (𝑭 known) is 𝑭(𝒙)𝒏



Modelling Extremes – asymptotic model
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 𝑿 = (𝑿𝟏, … , 𝑿𝒏) sequence of independent and identically distributed (i.i.d.) random

variables (e.g., daily discharge, daily traffic load)

 𝑭(𝒙) distribution function

We are interested in modeling the statistical behavior of

𝑴𝒏 = 𝐦𝐚𝐱(𝑿𝟏, … , 𝑿𝒏)

 𝑴𝒏 maximum of the process

The theoretical distribution of 𝑴𝒏 (𝑭 known) is

𝑷𝒓 (𝑴𝒏 ≤ 𝒙) = 𝑃𝑟 max 𝑋 ≤ 𝑥
= 𝑃𝑟 𝑋1 ≤ 𝑥,… , 𝑋𝑛 ≤ 𝑥
= 𝑃𝑟 𝑋1 ≤ 𝑥 ∙ … ∙ 𝑃𝑟(𝑋𝑛 ≤ 𝑥) = 𝑭(𝒙)𝒏



Modelling Extremes – asymptotic model
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 𝑿 = (𝑿𝟏, … , 𝑿𝒏) sequence of independent and identically distributed (i.i.d.) random

variables (e.g., daily discharge, daily traffic load)

 𝑭(𝒙) distribution function

We are interested in modeling the statistical behavior of

𝑴𝒏 = 𝐦𝐚𝐱(𝑿𝟏, … , 𝑿𝒏)

 𝑴𝒏 maximum of the process

The theoretical distribution of 𝑴𝒏 (𝑭 known) is

𝑷𝒓 (𝑴𝒏 ≤ 𝒙) = 𝑃𝑟 max 𝑋 ≤ 𝑥
= 𝑃𝑟 𝑋1 ≤ 𝑥,… , 𝑋𝑛 ≤ 𝑥
= 𝑃𝑟 𝑋1 ≤ 𝑥 ∙ … ∙ 𝑃𝑟(𝑋𝑛 ≤ 𝑥) = 𝑭(𝒙)𝒏

Distribution of 

the Extremes



Example: Estimate 𝑭(𝒙)𝒏

 Random generate 100 samples of length

N = 30 from N~(6,1)

 Store the maximum for each sample (xmax)

– block maximum
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Example: Estimate 𝑭(𝒙)𝒏

 Random generate 100 samples of length

N = 30 from N~(6,1)

 Store the maximum for each sample (xmax)

– block maximum

mu = 6

Sigma = 1

N = 30

for i = 1:100

x(:,i) = normrnd(mu,sigma,N,1)

x_max(i) = max(x(:,i))

end
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𝒉𝒊𝒔𝒕(𝒙)

𝒉𝒊𝒔𝒕(𝒙𝒎𝒂𝒙)

𝑭(𝒙)

𝑭(𝒙)𝑵

Example: Estimate 𝑭(𝒙)𝒏

 Random generate 100 samples of length

N = 30 from N~(6,1)

 Store the maximum for each sample (xmax)

– block maximum

 Plot the distribution of the maxima

mu = 6

Sigma = 1

N = 30

for i = 1:100

x(:,i) = normrnd(mu,sigma,N,1)

x_max(i) = max(x(:,i))

end

plot histogram(x_max)

plot x_max empirical cdf



Generalized Extreme Value Distribution 
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Generalized Extreme Value Distribution
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 We are interested in modeling the statistical behavior of the maximum of the sequence

X1, … , Xn of independent and identically distributed (i.i.d.) random variables, Mn =
max X1, … , Xn , where n is the number of observations in a block (e.g., annual maximum).

 We can prove that, for large 𝐧

𝐏𝐫 𝐌𝐧 ≤ 𝐱 → 𝐆(𝐱)

 Where G belongs to the Generalized Extreme Value family of distributions regardless of

the distribution of 𝑋



Generalized Extreme value distribution

𝑮 𝒙 = 𝒆𝒙𝒑 − 𝟏 + 𝝃 ∙
𝒙 − 𝝁

𝝈

−
𝟏

𝝃 ,                        1 + 𝜉 ∙
𝑥−𝜇

𝜎
> 0

parameters: location (−∞ < 𝝁 < ∞), scale (𝝈 > 0), and shape (−∞ < 𝝃 < ∞)

GEV for block maxima



Generalized Extreme value distribution

𝑮 𝒙 = 𝒆𝒙𝒑 − 𝟏 + 𝝃 ∙
𝒙 − 𝝁

𝝈

−
𝟏

𝝃 ,                        1 + 𝜉 ∙
𝑥−𝜇

𝜎
> 0

parameters: location (−∞ < 𝝁 < ∞), scale (𝝈 > 0), and shape (−∞ < 𝝃 < ∞)

GEV for block maxima

Location - 𝝁 Scale - 𝝈



Generalized Extreme value distribution
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𝝃 → 0
Exponential decay

𝝃 > 0
Polynomial decay

𝝃 < 0
Upper bound (𝜇 − Τ𝜎 𝜉)

Gumbel Fréchet Reverse Weibull

𝒙 𝒙 𝒙

𝑮 𝒙 = 𝒆𝒙𝒑 − 𝟏 + 𝝃 ∙
𝒙 − 𝝁

𝝈

−
𝟏

𝝃 ,                        1 + 𝜉 ∙
𝑥−𝜇

𝜎
> 0

parameters: location (−∞ < 𝝁 < ∞), scale (𝝈 > 0), and shape (−∞ < 𝝃 < ∞)

GEV for block maxima



Exceedance 
Probability - GEV
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𝝃 → 0 𝝃 > 0 𝝃 < 0

Gumbel Fréchet Reverse Weibull

𝒙 𝒙 𝒙
The three types behave

differently at the tails

This is even more evident for

very small probability of

exceedance, e.g. event with a

very low probability of

occurrence

• Gumbel – “Light tail”

• Frechet – “Heavy tail”

• Weibull - Bounded



GEV – Domain of Attraction
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Parent Distribution Asymptotic type maximum 

(D.A.)

Normal, Exponential, Gamma, 

Lognormal, Weibull

Gumbel

Pareto, Cauchy, Student-t (fat 

tail)

Fréchet

Uniform, Beta (short tail) Reverse Weibull



Example Case: how big is the 100-year event?
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>> read observations

>> for each year i

OBSmax(i) = max(observations in year i)

end

>> fit a GEV on OBSmax



Example Case: how big is the 100-year event?
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>> check the fit (e.g. QQ-plot)

>> design event: inverse of GEV for

yearly exceedance probability 𝑝𝑒𝑥 =

1/100 = 0.01

𝑧𝑝 = 𝐺−1(1 − 𝑝𝑒𝑥) = ቐ
𝜇 −

𝜎

𝜉
1 − − 𝑙𝑜𝑔 1 − 𝑝𝑒𝑥

−𝜉 , 𝑓𝑜𝑟 𝜉 ≠ 0

𝜇 − 𝜎𝑙𝑜𝑔 − 𝑙𝑜𝑔 1 − 𝑝𝑒𝑥 , 𝑓𝑜𝑟 𝜉 = 0



Generalized Pareto Distribution

e.ragno@tudelft.nl



Different definition of extreme

threshold 𝑢



Different definition of extreme

threshold 𝑢



Generalized Pareto Distribution 
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Given, 𝑿𝟏, … , 𝑿𝒏 a sequence of independent random variables, with a common distribution function 𝑭(𝒙),
and 𝑴𝒏 = 𝐦𝐚𝐱(𝑿𝟏, … , 𝑿𝒏) so that for large 𝒏

Pr 𝑀𝑛 ≤ 𝑧 ≈ 𝐺(𝑧)
where:

𝐺 𝑧 = 𝑒𝑥𝑝 − 1 + 𝜉 ∙
𝑧 − 𝜇

𝜎

−
1
𝜉

for  𝜇, 𝜉, 𝜎 > 0. 

Then, for large enough 𝒖

𝑷𝒓 𝑿 − 𝒖 ≤ 𝒚 𝑿 > 𝒖 ) = 𝑯 𝒚 = 𝟏 − 𝟏 +
𝝃 ∙ 𝒚

𝝈

−
𝟏
𝝃

defined on 𝑦: 𝑦 > 0, 1 +
𝜉∙𝑦

𝜎
> 0, and 𝜎 = 𝜎 + 𝜉 ∙ (𝑢 − 𝜇)

Generalized Pareto 
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Generalized Pareto Distribution 

Important aspects to keep in mind when working with POT

 Threshold selection

 Excesses

 independent

 Poisson process

 Pareto distribution conditional probability:

 𝑃𝑟( 𝑋 < 𝑥 ) = 𝑃 𝑋 > 𝑢 ∙ 𝑃𝑟 𝑋 < 𝑥 𝑋 > 𝑢) = 𝜁𝑢 ∙ 1 − 1 +
𝜉∙ 𝑥 − 𝑢

𝜎

−
1

𝜉

 On average more than one excesses per year



Example Case: how big is the 100-year event?
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>> fit a GP on Excesses

>> select Excesses = (OBS > U) – U

Important to consider also

• Threshold selection (u = 2.5 m)

• Declustering time (storm duration 2 days)

>> read observations



Example Case: how big is the 100-year event?
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>> check the fit (e.g. QQ-plot)

>> design event: inverse of GP for

exceedance probability corresponding to

100 yr return period

probability of exceedance must be adjusted depending on the number 

of exceedance per year: 
>> Tadj = T*(ny*NExcesses/NOBS)

Design value: 

>> Zcrt = U + σ*log(Tadj) if ξ = 0

>> Zcrt = U + σ / ξ *((Tadj)^ ξ – 1) otherwise



When selecting a model:

 Number of observations used

 Results of GoF tests

 Uncertainty

Model Selection
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