Extreme Value Theory

Elisa Ragno

Assistant Professor Department of Hydraulic Engineering – CiGT- TU Delft

Hydraulic Structures and Flood Risk Section

e.ragno@tudelft.nl

Lecture Topic

- Asymptotic model for Extreme Value Analysis
- Generalized Extreme Value Distribution
- Generalized Pareto Distribution
- Example application

Learning Objectives

At the end of the lecture, you will be able to:

- LO1. Discuss extreme events in statistical terms
- LO2. Calculate statistical characteristics of extremes
- LO3. Identify distribution functions for modelling extremes
- LO4. Perform Extreme Value Analysis in a case study

Asymptotic model for Extreme Value Analysis

e.ragno@tudelft.nl

- $X = (X_1, ..., X_n)$ sequence of independent and identically distributed (i.i.d.) random variables (e.g., daily discharge, daily traffic load)
- F(x) distribution function

We are interested in modeling the statistical behavior of

 $M_n = \max(X_1, \dots, X_n)$

• *M_n* maximum of the process

- $X = (X_1, ..., X_n)$ sequence of independent and identically distributed (i.i.d.) random variables (e.g., daily discharge, daily traffic load)
- F(x) distribution function

We are interested in modeling the statistical behavior of

 $M_n = \max(X_1, \dots, X_n)$

• M_n maximum of the process

The theoretical distribution of M_n ($F \underline{known}$) is $F(x)^n$

- $X = (X_1, ..., X_n)$ sequence of independent and identically distributed (i.i.d.) random variables (e.g., daily discharge, daily traffic load)
- F(x) distribution function

We are interested in modeling the statistical behavior of

 $M_n = \max(X_1, \dots, X_n)$

• M_n maximum of the process

The theoretical distribution of M_n (F <u>known</u>) is

$$Pr(M_n \le x) = Pr(\max(X) \le x)$$

= $Pr(X_1 \le x, ..., X_n \le x)$
= $Pr(X_1 \le x) \cdot ... \cdot Pr(X_n \le x) = F(x)^n$

- $X = (X_1, ..., X_n)$ sequence of independent and identically distributed (i.i.d.) random variables (e.g., daily discharge, daily traffic load)
- F(x) distribution function

We are interested in modeling the statistical behavior of

 $M_n = \max(X_1, \dots, X_n)$

• M_n maximum of the process

The theoretical distribution of M_n (F <u>known</u>) is

$$Pr(M_n \le x) = Pr(\max(X) \le x)$$

= $Pr(X_1 \le x, ..., X_n \le x)$
= $Pr(X_1 \le x) \cdot ... \cdot Pr(X_n \le x) = F(x)^n$

Example: Estimate $F(x)^n$

- Random generate 100 samples of length N = 30 from N~(6,1)
- Store the maximum for each sample (x_{max})
 - block maximum

Example: Estimate $F(x)^n$

- Random generate 100 samples of length N = 30 from N~(6,1)
- Store the maximum for each sample (x_{max})
 - block maximum

TUDel

Example: Estimate $F(x)^n$

- Random generate 100 samples of length N = 30 from N~(6,1)
- Store the maximum for each sample (x_{max})
 block maximum
- Plot the distribution of the maxima

Generalized Extreme Value Distribution

e.ragno@tudelft.nl

Generalized Extreme Value Distribution

- We are interested in modeling the statistical behavior of the maximum of the sequence $X_1, ..., X_n$ of independent and identically distributed (i.i.d.) random variables, $M_n = \max(X_1, ..., X_n)$, where n is the number of observations in a block (e.g., annual maximum).
- We can prove that, for **large n**

 $Pr(M_n \le x) \to G(x)$

Where G belongs to the Generalized Extreme Value family of distributions regardless of the distribution of X

Generalized Extreme value distribution

GEV for block maxima

$$G(x) = exp\left\{-\left[1 + \xi \cdot \left(\frac{x-\mu}{\sigma}\right)\right]^{-\frac{1}{\xi}}\right\}, \qquad \left(1 + \xi \cdot \frac{x-\mu}{\sigma}\right) > 0$$

parameters: location ($-\infty < \mu < \infty$), scale ($\sigma > 0$), and shape ($-\infty < \xi < \infty$)

Generalized Extreme value distribution

GEV for block maxima

$$G(x) = exp\left\{-\left[1 + \xi \cdot \left(\frac{x-\mu}{\sigma}\right)\right]^{-\frac{1}{\xi}}\right\}, \qquad \left(1 + \xi \cdot \frac{x-\mu}{\sigma}\right) > 0$$

parameters: location ($-\infty < \mu < \infty$), scale ($\sigma > 0$), and shape ($-\infty < \xi < \infty$)

Generalized Extreme value distribution

GEV for block maxima

$$G(x) = exp\left\{-\left[1 + \xi \cdot \left(\frac{x-\mu}{\sigma}\right)\right]^{-\frac{1}{\xi}}\right\}, \qquad \left(1 + \xi \cdot \frac{x-\mu}{\sigma}\right) > 0$$

parameters: location ($-\infty < \mu < \infty$), scale ($\sigma > 0$), and shape ($-\infty < \xi < \infty$)

Exceedance Probability - GEV

The three types behave differently at the tails

This is even more evident for very small probability of exceedance, e.g. event with a very low probability of occurrence

- Gumbel "Light tail"
- Frechet "Heavy tail"
- Weibull Bounded

TUDelft

GEV – Domain of Attraction

Example Case: how big is the 100-year event?

Example Case: how big is the 100-year event?

>> check the fit (e.g. QQ-plot)

>> design event: inverse of GEV for yearly exceedance probability p_{ex} = 1/100 = 0.01

$$z_{p} = G^{-1}(1 - p_{ex}) = \begin{cases} \mu - \frac{\sigma}{\xi} \left[1 - \{ -\log(1 - p_{ex}) \}^{-\xi} \right], & \text{for } \xi \neq 0 \\ \mu - \sigma \log\{ -\log(1 - p_{ex}) \}, & \text{for } \xi = 0 \end{cases}$$

TUDelft

22

Generalized Pareto Distribution

e.ragno@tudelft.nl

Different definition of extreme

Different definition of extreme

Generalized Pareto Distribution

Given, $X_1, ..., X_n$ a sequence of independent random variables, with a common distribution function F(x), and $M_n = \max(X_1, ..., X_n)$ so that for large n

$$\Pr(M_n \le z) \approx G(z)$$

where:

$$G(z) = exp\left\{-\left[1 + \xi \cdot \left(\frac{z - \mu}{\sigma}\right)\right]^{-\frac{1}{\xi}}\right\}$$

for $\mu, \xi, \sigma > 0$.

Generalized Pareto Distribution

Important aspects to keep in mind when working with POT

- Threshold selection
- Excesses
 - independent
 - Poisson process
- Pareto distribution conditional probability:

•
$$Pr(X < x) = P(X > u) \cdot Pr(X < x \mid X > u) = \zeta_u \cdot \left(1 - \left(1 + \frac{\xi \cdot (x - u)}{\sigma}\right)^{-\frac{1}{\xi}}\right)$$

• On average more than one excesses per year

Example Case: how big is the 100-year event?

Example Case: how big is the 100-year event?

Model Selection

When selecting a model:

- Number of observations used
- Results of GoF tests
- Uncertainty

