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Learning objectives
1. Identify what is an extreme value and 

apply it within the engineering context

2. Interpret and apply the concept of return 
period and design life

3. Apply extreme value analysis to 
datasets:

a. Block maxima - GEV

b. Peak over threshold (POT) – GPD

4. Apply techniques to support the 
threshold selection in POT
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Extremes and Extreme 
Value Analysis
An extreme observation is an observation 
that deviates from the average 
observations.

Infrastructures and systems are designed to 
withstand extreme conditions (ULS).
• Breakwater → wave storm

• Flood defences → floods, droughts

To properly design and assess infrastructures 
and system we need to characterize the 
uncertainty of the loads.
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Extreme Value Analysis
Based on historical observed extremes 
(limited)…

• Allows us to model the stochastic 
behaviour of extreme events

• Allows us to infer extremes we have 
not observed yet (extrapolation)
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Time series of observations of the 
loading variable

EVA
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EVA: Design requirements. 
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Bernoulli trial
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Example case: intervention in the Mediterranean coast

• It may be a coastal structure, a 
water intake, the restoration of 
a sandy beach, between 
others.

• Here: design a mound 
breakwater

• Mound breakwater must resist 
wave storms → Hs

• But which one?
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Design requirements

Regulations and recommendations → Exceedance probability or return period
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Country Standard TR (years) DL (years) pf,DL (-)
England BS 6349-1-1:2013 50-100* 50-100 0.05*
Japan TS Ports-2009 50-100 50 0.40-0.64
Spain ROM 0.0-01/1.0-09 113-4,975 25-50 0.01-0.2

*Not well defined

But what is return 
period?



Return Period

Assumption of stationarity: 
Every year the probability of the event 
being higher/lower than the threshold 

is always the same

𝑻𝑹 𝒕 =
𝟏
pf,y

The Return Period (TR) is the expected time between exceedances. 
“In other words, we have to make, on average, 1/pf,y trials in order that 
the event happens once” (Gumbel) or wait 1/pf,y years before the 
next occurrence, being pf,y the exceedance probability.
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Design requirements

Regulations and recommendations → Exceedance probability or return period

Country Standard TR (years) DL (years) pf,DL (-)
England BS 6349-1-1:2013 50-100* 50-100 0.05*
Japan TS Ports-2009 50-100 50 0.40-0.64
Spain ROM 0.0-01/1.0-09 113-4,975 25-50 0.01-0.2

*Not well defined

But also Design Life and the 
probability of failure during 

the design life (pf,DL)
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Back to basics – Bernoulli process

Bernoulli process Extremes

Two possible outcomes: success or failure ✓ Each observation can be an over or below

Outcomes are mutually exclusive and 
collectively exhaustive ✓ over vs. below the design value

Constant probability of success ✓ stationarity

Independence between trials ✓ Hypothesis of EVA iid events

"Coin Toss (3635981474)" by ICMA 
Photos is licensed under CC BY-SA 2.0.
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Extremes can be assimilated as a Bernoulli process



Back to basics – Binomial distribution

Number of exceedances (succeses) in a given number of trials follows a Binomial distribution

𝑝! 𝑥 = 𝑃 𝑋 = 𝑥 𝑛, 𝑝 =
𝑛
𝑥
𝑝"(1 − 𝑝)#$" 𝑓𝑜𝑟 𝑥 = 0, 1, … , 𝑛; 𝑝 ∈ [0,1]

𝑝! 𝑥 = 𝑃 𝑋 = 𝑥 𝑛, 𝑝 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where

𝑛
𝑥 =

𝑛!
𝑥! 𝑛 − 𝑥 !
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Extremes can be assimilated as a Bernoulli process



Design requirements

Regulations and recommendations → Exceedance probability or return period

Country Standard RT (years) DL (years) pf,DL (-)
England BS 6349-1-1:2013 50-100* 50-100 0.05*
Japan TS Ports-2009 50-100 50 0.40-0.64
Spain ROM 0.0-01/1.0-09 113-4,975 25-50 0.01-0.2

*Not well defined

But also Design Life and the 
probability of failure during 

the design life (pDL)
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Any idea 
now?



Design requirements – Binomial distribution
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• pf,DL - pf,y - DL - TR

• Each year is a trial 

• The number of exceedances (successes) in a given number of years (trials) ~ Binomial 

• pf,DL is the probability of an excess at least once in the DL

• pf,DL = 1 – probability of no excess

• pf,DL = 1 - (1 - pf,y)DL

Success (excess the design value) or failure (no excess)?
M
O
D
E
L

TR = 1/pf,y

𝑝! 0 = 𝑃 𝑋 = 0 𝐷𝐿, pf,y =
𝐷𝐿
0 pf,y%(1 − pf,y)&'$%

𝑇A =
1

pf,y
=

1
1 − (1 − pf,DL)B/DE



Design requirements – Binomial distribution
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• DL = 20 years

• pf,DL =  0.20

𝑇A =
1

pf,y
=

1
1 − (1 − pf,DL)B/DE

𝑇A =
1

pf,y
=

1
1 − (1 − 0.2)B/FG ≈ 90 𝑦𝑒𝑎𝑟𝑠

pf,y ≈ 0.011
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Time series
Can I use all the 

values in the time 
series for the 

analysis?
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We need to sample extreme values!

Two techniques:

1. Block Maxima

2. Peak Over 
Threshold (POT)
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Sampling extremes: Block Maxima
1. Block Maxima 

(typically block=1year)

• Maximum value 
within the block

• Number of selected 
events=number of 
blocks recorded (e.g.: 
number of years)

• Easy to implement



Generalized Extreme Value Distribution

▪ We are interested in modelling the maximum of the sequence 𝑋 = 𝑋B, … , 𝑋H
of iid random variables, 𝑀H = max(𝑋B, … , 𝑋H), where n is the number of 
observations in a given block. 

▪ We can prove that for large n, those maxima tend to the Generalized 
Extreme Value (GEV) family of distributions, regardless the distribution 
of X.

𝑃 𝑀H ≤ 𝑥 → 𝐺(𝑥)
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Generalized Extreme Value is defined as

With parameters location (.                  ), scale ( .      ) and shape (                  ).

Generalized Extreme Value Distribution
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Location parameter (µ)

Higher µ, right 
displacement of the 
distribution, higher values.



Generalized Extreme Value is defined as

With parameters location (.                  ), scale ( .      ) and shape (                  ).

Generalized Extreme Value Distribution
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Scale parameter (𝝈)

Higher 𝝈, wider 
distribution.



Generalized Extreme Value is defined as

With parameters location (.                  ), scale ( .      ) and shape (                  ).

Generalized Extreme Value Distribution
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Shape parameter (𝝃)

Determines the tail of the
distribution.



Plotting the tails…

▪ Gumbel: light tail

▪ Fréchet: heavy tail

▪ Reversed Weibull: 
bounded at 𝑥 = 𝜇 − I

J

Generalized Extreme Value Distribution
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Let’s apply it
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• Load: significant wave height (TR=90 
years)

• 20 years of hourly measurements → 20 
yearly maxima samples

read observations

for each year i:
obs_max[i] = max(observations in year i)
end

fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-
Smirnov test)

inverse GEV to determine the design
event
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Let’s apply it
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EVA: POT and GPD (I)
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Sampling extremes: Peak Over Threshold (POT)
2. Peak Over Threshold 

(POT)

• Usually, higher number 
of extremes identified

• Additional parameters:

• Threshold (th)

• Declustering time (dl)
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Choosing POT parameters

Basic assumption of EVA: extremes are iid th and dl should be chosen so the identified extreme
events are independent.

Extremes cluster in 
time!

If dl is big enough, we 
ensure that extremes 
do not belong to the 
same storm.

dl → th, physical 
phenomena (local 
conditions)



Generalized Pareto Distribution

▪ The maximum of the sequence 𝑋 = 𝑋B, … , 𝑋H of iid random variables, 𝑀H
= max(𝑋B, … , 𝑋H), where n is the number of observations in a given block, 
follows the Generalized Extreme Value (GEV) family of distributions, 
regardless the distribution of X for large n.

𝑃 𝑀H ≤ 𝑥 → 𝐺(𝑥)

▪ If that is true, the distribution of the excesses can be approximated by a 
Generalized Pareto distribution.

𝐹KL = 𝑃 𝑋 − 𝑡ℎ ≤ 𝑥 𝑋 > 𝑡ℎ → 𝐻(𝑦)

▪ where the excesses are defined as Y=X−th for X>th
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Generalized Pareto distribution of the excesses is defined as

These are conditional probabilities to X>th. As function of the random 
variable X and the threshold th

Generalized Pareto Distribution
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With parameters threshold (th>0), pareto’s scale (𝜎!" > 0) and shape (                    ).

Relationship with GEV’s parameters
▪ Shape parameter is the same
▪ 𝜎!" defined based on GEV’s parameters as

Generalized Pareto Distribution
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With parameters threshold (th>0), pareto’s scale (𝜎!" > 0) and shape (                    ).

Generalized Pareto Distribution
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Threshold (th)

Acts like a location 
parameter.



With parameters threshold (th>0), pareto’s scale (𝜎!" > 0) and shape (                    ).

Generalized Pareto Distribution
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Scale parameter (𝝈𝒕𝒉)

Higher 𝝈𝒕𝒉, wider 
distribution.



With parameters threshold (th>0), pareto’s scale (𝜎!" > 0) and shape (                    ).

Generalized Pareto Distribution
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Shape parameter (𝝃)

▪ 𝝃<0:	upper bound
▪ 𝝃>0:	heavy tail
▪ 𝝃=0 & th = 0: Exponential
▪ 𝝃=-1:	Uniform



GPD: m return levels

44

We are interested in the N-year return level xN of the studied variable, which is expected to be 
exceeded once every N years.

We have already fitted a GPD with 𝝃>0 as

Which is a conditional probability! Accounting for the probability of observing and excess (𝜁!")

Then, the return level xm exceeded in average every m observations is computed as

xm is the m-observations 
return level



GPD: from m observations to N years
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We are interested in the N-year return level xN of the studied variable.

The xm return level is given by

To go from m observations to N years, we need to account for the number of observations 
each year ny as

𝑚 = 𝑁 × 𝑛#

Applied to the previous expression, we obtain the N-year return level as

But how can I calculate 𝜁()? 



EVA: POT and GPD (II). 
Poisson approximation to 
Binomial.
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Poisson distribution



GPD: from m observations to N years
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We are interested in the N-year return level xN of the studied variable.

The xm return level is given by

To go from m observations to N years, we need to account for the number of observations 
each year ny as

𝑚 = 𝑁 × 𝑛#

Applied to the previous expression, we obtain the N-year return level as

But how can I calculate 𝜁()? 
Poisson 
distribution



Intermezzo – Poisson distribution
The Binomial distribution is defined as

If n → ∞, x and p are finite and defined and p is very small, 𝜆 = 𝑛𝑝.

After some simplifications… Poisson distribution

Binomial is based on discrete events, while the Poisson is based on continuous events.
That is, in Poisson distribution n→∞ and p is very small, so you have an infinite number of
trials with infinitesimal chance of success.



POT and Poisson
• Each hour is a trial (n → ∞)

• Over or below the threshold?

• pabove is very small (tail of 
the distribution)

• Block = 1 year

• Number of excesses over 
the threshold ~ Poisson

Almost all the techniques to formally select the threshold and declustering time for
POT are based on the assumption that the sampled extremes should follow a Poisson
distribution.



GPD: N Return levels
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The N-year return level is given by

Modelling the number of exceedances per year using a Poisson distribution

where *𝜆 can be estimated as



Let’s apply it
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• Load: significant wave height (TR=90 
years)

read observations

th = 2.5
dl = 48 #in hours
excesses = find_peaks(observations,
threshold = th, distance = dl) – th

fit GPD(excesses)

check fit (e.g., QQ-plot or Kolmogorov-
Smirnov test)

determine lambda

inverse GPD to determine the design
event
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Let’s apply it
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TR=90 years
M = 20 years
nth = 54 events

O𝜆 = *+
,%
= 2.7
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Poisson distribution



EVA: POT and GPD (III). 
Threshold and declustering time 
selection.
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Choosing POT parameters

Basic assumption of EVA: extremes are iid th and dl should be chosen so the identified extreme
events are independent.

Extremes cluster in 
time!

If dl is big enough, we 
ensure that extremes 
do not belong to the 
same storm.

dl → th, physical 
phenomena (local 
conditions)



Samples: Poisson

If the number of excesses per year follows
a Poisson distribution

Sampled maxima are independent

• Compute the number of 
excesses per year

• Empirical pmf and cdf

• Fit Poisson distribution using L-
moments

• Check the fit

• Graphically

• Chi-squared test



Mean Residual Life (MRL) plot

MRL plot presents in the x-axis different values of th and, in the y-axis, the mean excess for that
value of the th. The range of appropriate threshold would be that where the mean excesses
follows a linear trend.



GPD parameter stability plot

GPD distribution is “threshold stable”
If the exceedances over a high threshold (th0) a GPD with parameters 𝜉 and 𝜎!"$, then for any
other threshold (th>th0), the exceedances will also follow a GPD with the same 𝜉 and
𝜎!" = 𝜎!"$ + 𝜉(𝑡ℎ − 𝑡ℎ0) 𝜎∗ = 𝜎() − 𝜉𝑡ℎ 𝜎∗ = 𝜉 𝑡ℎ0



Dispersion Index (DI)

Based on Poisson process
Property of Poisson distribution:

Dispersion Index: 𝐷𝐼 = %"

& ≈ 1

Confidence interval for DI:
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