

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- 2. Interpret and apply the concept of **return period and design life**
- 3. Apply **extreme value analysis** to datasets:
 - a. Block maxima GEV
 - b. Peak over threshold (POT) GPD
- 4. Apply techniques to **support the threshold selection** in POT

Extremes and Extreme Value Analysis

An **extreme observation** is an observation that **deviates from the average observations**.

Infrastructures and systems are designed to withstand extreme conditions (ULS).

- Breakwater \rightarrow wave storm
- Flood defences → floods, droughts

To properly design and assess infrastructures and system we need to characterize the uncertainty of the loads.

Extreme Value Analysis

Based on historical observed extremes (limited)...

- Allows us to model the stochastic behaviour of extreme events
- Allows us to infer extremes we have not observed yet (extrapolation)

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
 - 2. Interpret and apply the concept of **return period and design life**
 - 3. Apply **extreme value analysis** to datasets:
 - a. Block maxima GEV
 - b. Peak over threshold (POT) GPD
 - 4. Apply techniques to **support the threshold selection** in POT

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
 - Interpret and apply the concept of return period and design life
 - 3. Apply **extreme value analysis** to datasets:
 - a. Block maxima GEV
 - b. Peak over threshold (POT) GPD
 - 4. Apply techniques to **support the threshold selection** in POT

Example case: intervention in the Mediterranean coast

- It may be a coastal structure, a water intake, the restoration of a sandy beach, between others.
- Here: design a mound breakwater
- Mound breakwater must resist wave storms $\rightarrow H_s$
- But which one?

8

Design requirements

Regulations and recommendations \rightarrow Exceedance probability or return period

Country	Standard	T _R (years)	DL (years)	р _{f,DL} (-)
England	BS 6349-1-1:2013	50-100*	50-100	0.05*
Japan	TS Ports-2009	50-100	50	0.40-0.64
Spain	ROM 0.0-01/1.0-09	113-4,975	25-50	0.01-0.2

*Not well defined

Return Period

The Return Period (T_R) is the expected time between exceedances. "In other words, we have to make, on average, $1/p_{f,v}$ trials in order that the event happens once" (Gumbel) or wait $1/p_{f,v}$ years before the **next occurrence**, being $p_{f,v}$ the exceedance probability.

Assumption of stationarity: Every year the probability of the event being higher/lower than the threshold is always the same

Design requirements

Regulations and recommendations \rightarrow Exceedance probability or **return period**

But also Design Life and the probability of failure during the design life (p_{f,DL})

Country	Standard	T _R (years)	DL (years)	p _{f,DL} (-)
England	BS 6349-1-1:2013	50-100*	50-100	0.05*
Japan	TS Ports-2009	50-100	50	0.40-0.64
Spain	ROM 0.0-01/1.0-09	113-4,975	25-50	0.01-0.2

*Not well defined

Back to basics – Bernoulli process

Extremes can be assimilated as a Bernoulli process

Bernoulli process	Extremes
Two possible outcomes: success or failure	\checkmark Each observation can be an over or below
Outcomes are mutually exclusive and collectively exhaustive	\checkmark over vs. below the design value
Constant probability of success	\checkmark stationarity
Independence between trials	\checkmark Hypothesis of EVA <i>iid</i> events

Back to basics – Binomial distribution

Extremes can be assimilated as a Bernoulli process

Number of exceedances (succeses) in a given number of trials follows a Binomial distribution

 $p_X(x) = P[X = x | n, p] = \binom{n}{x} p^x (1 - p)^{n - x} \quad for \ x = 0, 1, \dots, n; p \in [0, 1]$

 $p_X(x) = P[X = x | n, p] = 0$ otherwise

where

$$\binom{n}{x} = \frac{n!}{x! (n-x)!}$$

Design requirements

Regulations and recommendations \rightarrow Exceedance probability or **return period**

But also Design Life and the probability of failure during the design life (p_{DL})

Country	Standard	RT (years)	DL (years)	р _{f,DL} (-)
England	BS 6349-1-1:2013	50-100*	50-100	0.05*
Japan	TS Ports-2009	50-100	50	0.40-0.64
Spain	ROM 0.0-01/1.0-09	113-4,975	25-50	0.01-0.2

*Not well defined

Design requirements – Binomial distribution

- $p_{f,DL} p_{f,y} DL T_R$ $T_R = 1/p_{f,y}$
- The number of exceedances (successes) in a given number of years (trials) ~ Binomial
- p_{f,DL} is the probability of an excess at least once in the DL
- $p_{f,DL} = 1 probability of no excess$ $p_X(0) = P[X = 0|DL, p_{f,y}] = {DL \choose 0} p_{f,y}^{0} (1 - p_{f,y})^{DL - 0}$
- $p_{f,DL} = 1 (1 p_{f,y})^{DL}$

$$T_R = \frac{1}{p_{f,y}} = \frac{1}{1 - (1 - p_{f,DL})^{1/DL}}$$

Μ

 \mathbf{O}

D E

Design requirements – Binomial distribution

$$T_R = \frac{1}{p_{f,y}} = \frac{1}{1 - (1 - p_{f,DL})^{1/DL}}$$

• DL = 20 years
•
$$p_{f,DL} = 0.20$$

$$T_R = \frac{1}{p_{f,y}} = \frac{1}{1 - (1 - 0.2)^{1/20}} \approx 90 \ years$$
• $p_{f,y} \approx 0.011$

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- Interpret and apply the concept of return period and design life
- 3. Apply **extreme value analysis** to datasets:
 - a. Block maxima GEV
 - b. Peak over threshold (POT) GPD
- 4. Apply techniques to **support the threshold selection** in POT

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- 2. Interpret and apply the concept of **return period and design life**
- 3. Apply **extreme value analysis** to datasets:
 - a. Block maxima GEV
 - b. Peak over threshold (POT) GPD
- 4. Apply techniques to **support the threshold selection** in POT

Time series

We need to sample extreme values!

Two techniques:

- **1.** Block Maxima
- 2. Peak Over Threshold (POT)

Sampling extremes: Block Maxima

1. Block Maxima (typically block=1year)

- Maximum value within the block
- Number of selected events=number of blocks recorded (e.g.: number of years)
- Easy to implement

- We are interested in modelling the maximum of the sequence $X = X_1, ..., X_n$ of *iid* random variables, $M_n = \max(X_1, ..., X_n)$, where *n* is the number of observations in a given block.
- We can prove that for large n, those maxima tend to the Generalized Extreme Value (GEV) family of distributions, regardless the distribution of X.

 $P[M_n \le x] \to G(x)$

Generalized Extreme Value is defined as

$$G(x) = exp - [1 + \xi rac{x-\mu}{\sigma}]^{-1/\xi} \qquad (1 + \xi rac{x-\mu}{\sigma}) > 0$$

With parameters location ($-\infty < \mu < \infty$), scale ($\sigma > 0$) and shape ($-\infty < \xi < \infty$).

Location parameter (μ **)**

Higher μ , right displacement of the distribution, higher values.

Generalized Extreme Value is defined as

$$G(x) = exp - [1 + \xi rac{x-\mu}{\sigma}]^{-1/\xi} \qquad (1 + \xi rac{x-\mu}{\sigma}) > 0$$

With parameters location ($-\infty < \mu < \infty$), scale ($\sigma > 0$) and shape ($-\infty < \xi < \infty$).

Scale parameter (
$$\sigma$$
)

Higher σ , wider distribution.

Generalized Extreme Value is defined as

$$G(x) = exp - [1 + \xi rac{x-\mu}{\sigma}]^{-1/\xi} \qquad (1 + \xi rac{x-\mu}{\sigma}) > 0$$

With parameters location ($-\infty < \mu < \infty$), scale ($\sigma > 0$) and shape ($-\infty < \xi < \infty$).

Shape parameter (ξ)

Determines the tail of the distribution.

Plotting the tails...

- Gumbel: light tail
- Fréchet: heavy tail
- **Reversed Weibull:** bounded at $x = \mu - \frac{\sigma}{\xi}$

- Load: significant wave height (T_R=90 years)
- 20 years of hourly measurements → 20
 yearly maxima samples

read observations for each year i: obs_max[i] = max(observations in year i) end

fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-Smirnov test)

inverse GEV to determine the design event 28

- Load: significant wave height (T_R=90 years)
- 20 years of hourly measurements → 20
 yearly maxima samples

read observations for each year i: obs_max[i] = max(observations in year i) end

fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-Smirnov test)

inverse GEV to determine the design 29

- Load: significant wave height (T_R=90 years)
- 20 years of hourly measurements → 20 yearly maxima samples

read observations
for each year i:
obs_max[i] = max(observations in year i)
end

fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-Smirnov test)

inverse GEV to determine the design ³⁰

- Load: significant wave height (T_R=90 years)
- 20 years of hourly measurements → 20 yearly maxima samples

read observations
for each year i:
 obs_max[i] = max(observations in year i)
 end
fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-Smirnov test)

inverse GEV to determine the design event 31

$$z_p = G^{-1}(1-p_{f,y}) = egin{cases} \mu - rac{\sigma}{\xi} [1-\{-log(1-p_{f,y})\}^{-\xi}] & for \ \xi
eq 0 \ \mu - \sigma log\{1-p_{f,y}\} & for \ \xi = 0 \end{cases}$$

- Load: significant wave height (T_R=90 years)
- 20 years of hourly measurements → 20 yearly maxima samples

read observations for each year i: obs_max[i] = max(observations in year i) end

fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-Smirnov test)

inverse GEV to determine the design ³²

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- 2. Interpret and apply the concept of **return period and design life**
- 3. Apply **extreme value analysis** to datasets:
 - a. Block maxima GEV
 - b. Peak over threshold (POT) GPD
- 4. Apply techniques to **support the threshold selection** in POT

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- 2. Interpret and apply the concept of **return period and design life**
- 3. Apply **extreme value analysis** to datasets:
 - a. Block maxima GEV
 - b. Peak over threshold (POT) GPD
- 4. Apply techniques to **support the threshold selection** in POT

Sampling extremes: Peak Over Threshold (POT)

2. Peak Over Threshold (POT)

- Usually, higher number of extremes identified
- Additional parameters:
 - Threshold (*th*)
 - Declustering time (*dl*)

Choosing POT parameters

Basic assumption of EVA: extremes are *iid th* and *dl* should be chosen so the identified extreme events are independent.

Extremes cluster in time!

If *dl* is big enough, we ensure that extremes do not belong to the same storm.

 $dl \rightarrow th$, physical phenomena (local conditions)

• The maximum of the sequence $X = X_1, ..., X_n$ of *iid* random variables, $M_n = \max(X_1, ..., X_n)$, where *n* is the number of observations in a given block, follows **the Generalized Extreme Value (GEV) family of distributions**, **regardless the distribution of X** for large *n*.

 $P[M_n \le x] \to G(x)$

 If that is true, the distribution of the excesses can be approximated by a Generalized Pareto distribution.

$$F_{th} = P[X - th \le x | X > th] \to H(y)$$

where the excesses are defined as Y=X-th for X>th

Generalized Pareto distribution of the excesses is defined as

$$H(y) = egin{cases} 1 - \left(1 + rac{\xi y}{\sigma_{th}}
ight)^{-1/\xi} & for \ \xi
eq 0 \ 1 - exp\left(-rac{y}{\sigma_{th}}
ight) & for \ \xi = 0 \end{cases}$$

where
$$y \geq 0$$
 if $\xi \geq 0$, and $0 \leq y \leq -rac{\sigma_{th}}{\xi}$ if $\xi < 0$.

These are conditional probabilities to *X*>*th*. As function of the random variable *X* and the threshold *th*

$$P[X < x | X > th] = \begin{cases} 1 - \left(1 + \frac{\xi(x - th)}{\sigma_{th}}\right)^{-1/\xi} & \text{for } \xi \neq 0\\ 1 - exp\left(-\frac{x - th}{\sigma_{th}}\right) & \text{for } \xi = 0 \end{cases}$$
TUDelft

$$P[X < x | X > th] = egin{cases} 1 - \left(1 + rac{\xi(x-th)}{\sigma_{th}}
ight)^{-1/\xi} & for \ \xi
eq 0 \ 1 - exp\left(-rac{x-th}{\sigma_{th}}
ight) & for \ \xi = 0 \end{cases}$$

With parameters threshold (*th*>0), pareto's scale ($\sigma_{th} > 0$) and shape ($-\infty < \xi < \infty$).

Relationship with GEV's parameters

- Shape parameter is the same
- σ_{th} defined based on GEV's parameters as

$$\sigma_{th}=\sigma+\xi(th-\mu)$$

$$P[X < x | X > th] = egin{cases} 1 - \left(1 + rac{\xi(x-th)}{\sigma_{th}}
ight)^{-1/\xi} & for \ \xi
eq 0 \ 1 - exp\left(-rac{x-th}{\sigma_{th}}
ight) & for \ \xi = 0 \end{cases}$$

With parameters threshold (*th*>0), pareto's scale ($\sigma_{th} > 0$) and shape ($-\infty < \xi < \infty$).

$$P[X < x | X > th] = egin{cases} 1 - \left(1 + rac{\xi(x-th)}{\sigma_{th}}
ight)^{-1/\xi} & for \ \xi
eq 0 \ 1 - exp\left(-rac{x-th}{\sigma_{th}}
ight) & for \ \xi = 0 \end{cases}$$

With parameters threshold (*th*>0), pareto's scale ($\sigma_{th} > 0$) and shape ($-\infty < \xi < \infty$).

$$P[X < x | X > th] = egin{cases} 1 - \left(1 + rac{\xi(x-th)}{\sigma_{th}}
ight)^{-1/\xi} & for \ \xi
eq 0 \ 1 - exp\left(-rac{x-th}{\sigma_{th}}
ight) & for \ \xi = 0 \end{cases}$$

With parameters threshold (*th*>0), pareto's scale ($\sigma_{th} > 0$) and shape ($-\infty < \xi < \infty$).

Shape parameter (ξ)

- *ξ*<0: upper bound
- *ξ*>0: heavy tail
- $\xi = 0 \& th = 0$: Exponential
- *ξ*=-1: Uniform

GPD: m return levels

We are interested in the *N*-year return level x_N of the studied variable, which is expected to be exceeded once every *N* years.

We have already fitted a GPD with ξ >0 as

 $P[X>x|X>th]=\left(1+rac{\xi(x-th)}{\sigma_{th}}
ight)^{-1/\xi}$

Which is a conditional probability! Accounting for the probability of observing and excess (ζ_{th})

$$P[X>x]=P[X>th]~P[X>x|X>th]=\zeta_{th}\left(1+rac{\xi(x-th)}{\sigma_{th}}
ight)^{-1/\xi}$$

Then, the return level x_m exceeded in average every *m* observations is computed as

$$1/m = \zeta_{th} \Big[1 + \xi rac{(x_m-th)}{\sigma_{th}} \Big]^{-1/\xi} \hspace{1cm} \Longrightarrow \hspace{1cm} x_m = th + rac{\sigma_{th}}{\xi} ig[(m \zeta_{th})^{\xi} - 1 ig]$$

x_m is the *m*-observations return level

GPD: from m observations to N years

We are interested in the *N*-year return level x_N of the studied variable.

The x_m return level is given by

 $x_m = th + rac{\sigma_{th}}{\xi}ig[(m\zeta_{th})^{\xi}-1ig]$

To go from *m* observations to *N* years, we need to account for the number of observations each year n_v as

 $m = N \times n_y$

Applied to the previous expression, we obtain the N-year return level as

$$x_N = egin{cases} th + rac{\sigma_{th}}{\xi} [(Nn_y \zeta_{th})^{\xi} - 1] & for \, \xi
eq 0 \ th + \sigma_{th} log(Nn_y \zeta_{th}) & for \, \xi = 0 \end{cases}$$

But how can I calculate ζ_{th} ?

Hydraulic and Offshore Structures (HOS) Track **Civil Engineering MSc Program**

EVA: POT and GPD (II).

Poisson approximation to Binomial.

Patricia Mares Nasarre

ŤUDelft

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- Interpret and apply the concept of return period and design life
- 3. Apply **extreme value analysis** to datasets:
 - a. Block maxima GEV
 - b. Peak over threshold (POT) GPD-
- 4. Apply techniques to support the threshold selection in POT

GPD: from m observations to N years

We are interested in the *N*-year return level x_N of the studied variable.

The x_m return level is given by

 $x_m = th + rac{\sigma_{th}}{\xi}ig[(m\zeta_{th})^{\xi}-1ig]$

To go from *m* observations to *N* years, we need to account for the number of observations each year n_v as

 $m = N \times n_y$

Applied to the previous expression, we obtain the N-year return level as

$$x_N = egin{cases} th + rac{\sigma_{th}}{\xi} [(Nn_y \zeta_{th})^{\xi} - 1] & for \, \xi
eq 0 \ th + \sigma_{th} log(Nn_y \zeta_{th}) & for \, \xi = 0 \end{cases}$$

Intermezzo – Poisson distribution

The Binomial distribution is defined as

 $p_X(x)=P[X=x|n,p]=inom{n}{x}p^x(1-p)^{n-x}$

If $n \to \infty$, x and p are finite and defined and p is very small, $\lambda = np$.

After some simplifications... Poisson distribution

$$p_X(x) = P[X=x|n,p] = rac{\lambda^x \, e^{-\lambda}}{x!} \qquad for \ x=0,1,2,\dots \ and \ \lambda>0$$

 $p_X(x) = P[X=x|p] = 0$ otherwise

Binomial is based on **discrete events**, while the **Poisson** is based on **continuous events**. That is, in Poisson distribution $n \rightarrow \infty$ and p is very small, so you have an infinite number of trials with infinitesimal chance of success.

POT and Poisson

- Each hour is a trial $(n \rightarrow \infty)$
- Over or below the threshold?
- *p_{above}* is very small (tail of the distribution)
- Block = 1 year
- Number of excesses over the threshold ~ Poisson

Almost all the techniques to formally select the threshold and declustering time for POT are based on the assumption that the sampled extremes should follow a Poisson distribution.

GPD: N Return levels

The *N*-year return level is given by

$$x_N = egin{cases} th + rac{\sigma_{th}}{\xi} [(Nn_y \zeta_{th})^{\xi} - 1] & for \, \xi
eq 0 \ th + \sigma_{th} log(Nn_y \zeta_{th}) & for \, \xi = 0 \end{cases}$$

Modelling the number of exceedances per year using a Poisson distribution

$$E[X] = Var[X] = \lambda \implies \hat{\zeta}_{th} = rac{\hat{\lambda}}{n_y}$$

where $\hat{\lambda}$ can be estimated as

 $\hat{\lambda} = rac{n_{th}}{M}$

$$egin{aligned} x_N &= egin{cases} th + rac{\sigma_{th}}{\xi} [(\lambda N)^{\xi} - 1] & for \ \xi
eq 0 \ th + \sigma_{th} log(\lambda N) & for \ \xi = 0 \end{aligned}$$
 or $x_N &= egin{cases} th + rac{\sigma_{th}}{\xi} [(rac{n_{th}}{M}N)^{\xi} - 1] & for \ \xi
eq 0 \ th + \sigma_{th} log(rac{n_{th}}{M}N) & for \ \xi = 0 \end{aligned}$

Load: significant wave height (T_R=90 years)

read observations th = 2.5dl = 48 #in hoursexcesses = find_peaks(observations, threshold = th, distance = dI) – th fit GPD(excesses) check fit (e.g., QQ-plot or Kolmogorov-Smirnov test) determine lambda inverse GPD to determine the design 52 event

Load: significant wave height (T_R=90 years)

read observations

th = 2.5 dl = 48 #in hours excesses = find_peaks(observations, threshold = th, distance = dl) – th

fit GPD(excesses)

check fit (e.g., QQ-plot or Kolmogorov-Smirnov test)

determine lambda

inverse GPD to determine the design event 53

Load: significant wave height (T_R=90 years)

read observations	
th = 2.5 dl = 48 #in hours excesses = find_peaks(observations, threshold = th, distance = dl) – th	
fit GPD(excesses)	

check fit (e.g., QQ-plot or Kolmogorov-Smirnov test)

determine lambda

inverse GPD to determine the design event 54

Load: significant wave height (T_R=90 years)

read observations th = 2.5dl = 48 #in hoursexcesses = find_peaks(observations, threshold = th, distance = dI) – th fit GPD(excesses) check fit (e.g., QQ-plot or Kolmogorov-Smirnov test) determine lambda inverse GPD to determine the design 55 event

$$x_N = egin{cases} th + rac{\sigma_{th}}{\xi} [(\lambda N)^{\xi} - 1] & for \ \xi
eq 0 \ th + \sigma_{th} log(\lambda N) & for \ \xi = 0 \end{cases}$$

T_R=90 years
M = 20 years
$$\hat{\lambda} = \frac{54}{20} = 2.7$$

n_{th} = 54 events

TUDelft

Load: significant wave height (T_R=90 years)

read observations th = 2.5dl = 48 #in hours excesses = find_peaks(observations, threshold = th, distance = dI) – th fit GPD(excesses) check fit (e.g., QQ-plot or Kolmogorov-Smirnov test) determine lambda inverse GPD to determine the design 56 event

$$x_N = egin{cases} th + rac{\sigma_{th}}{\xi} [(\lambda N)^{\xi} - 1] & for \ \xi
eq 0 \ th + \sigma_{th} log(\lambda N) & for \ \xi = 0 \end{cases}$$

T_R=90 years
M = 20 years
$$\hat{\lambda} = \frac{54}{20} = 2.$$

n_{th} = 54 events

7

Load: significant wave height (T_R=90 years)

read observations

th = 2.5 dI = 48 #in hours excesses = find_peaks(observations, threshold = th, distance = dI) - th

fit GPD(excesses)

check fit (e.g., QQ-plot or Kolmogorov-Smirnov test)

determine lambda

inverse GPD to determine the design event 57

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- Interpret and apply the concept of return period and design life
- 3. Apply **extreme value analysis** to datasets:
 - a. Block maxima GEV
 - b. Peak over threshold (POT) GPD-
- 4. Apply techniques to support the threshold selection in POT

Learning objectives

1. Identify what is an **extreme value** and apply it within the engineering context

2. Interpret and apply the concept of return period and design life

- 3. Apply **extreme value analysis** to datasets:
 - a. Block maxima GEV
 - b. Peak over threshold (POT) GPD
- 4. Apply techniques to support the threshold selection in POT

Choosing POT parameters

Basic assumption of EVA: extremes are *iid th* and *dl* should be chosen so the identified extreme events are independent.

Extremes cluster in time!

If *dl* is big enough, we ensure that extremes do not belong to the same storm.

 $dl \rightarrow th$, physical phenomena (local conditions)

Samples: Poisson

Delft

- Compute the number of excesses per year
- Empirical pmf and cdf
- Fit Poisson distribution using Lmoments

$$E[X] = Var[X] = \lambda$$

- Check the fit
 - Graphically
 - Chi-squared test

Mean Residual Life (MRL) plot

MRL plot presents in the x-axis different values of *th* and, in the y-axis, the mean excess for that value of the *th*. The range of **appropriate threshold** would be that where the **mean excesses follows a linear trend**.

GPD parameter stability plot

GPD distribution is "threshold stable"

If the exceedances over a high threshold (*th0*) a GPD with parameters ξ and σ_{th0} , then for any other threshold (*th>th0*), the exceedances will also follow a GPD with the same ξ and

 $\sigma_{th} = \sigma_{th0} + \xi(th - th0) \implies \sigma^* = \sigma_{th} - \xi th \implies \sigma^* = \xi th0$

Dispersion Index (DI)

Based on Poisson process

Property of Poisson distribution: $E[X] = Var[X] = \lambda$

Confidence interval for DI:

$$(rac{\chi^2_{lpha/2,M-1}}{(M/1)},rac{\chi^2_{1-lpha/2,M-1}}{(M/1)})$$

Learning objectives

1. Identify what is an **extreme value** and apply it within the engineering context

2. Interpret and apply the concept of return period and design life

- 3. Apply **extreme value analysis** to datasets:
 - a. Block maxima GEV
 - b. Peak over threshold (POT) GPD

Apply techniques to **support the threshold selection** in POT

