System’s reliability: Fault
Trees & Bayesian
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Outline

= Reminder of fundamental concepts of probability
= Discrete Variables
= Fault Trees

= Discrete Bayesian Networks
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Probability

P(A) = probability of event A Mathematical definition - axioms

Interpretations:

Classical: Laplace (1819) A philosophical essay on probabilities. The number of favourable cases divided by the
number of equi-possible cases

Frequentist: Von Mises R. (1936) Probability statistics and truth. Limiting relative frequencies in a ‘collective’ or
random ‘sequence’

Subjective: Ramsey (1931) or Savage (1956) Foundations of statistics. Degree of belief of a rational subject.
Measured by observing choice behaviour. For example, if A>.B and B>.C then A>.C “>.” Stands for preferable
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Mathematical definition

Kolmogorov axioms (1933)

Probability can and should be developed from axioms in the
same way as Geometry and Algebra

Axiom: statements so evident that can be accepted without
controversy

Axioms:

- 1.P(A)=0 A element of Q

= 2.P(Q)=1 QQ collection of elements
= 3.P(AorB)=

Few other technical axioms

]
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Euclid’s Postulates for geometry (comparison) :

To draw a line from any point to any point.

To produce a finite straight line continuously in a straight
line.

To describe a circle with any center and distance ....



Figure 1.2: Union of events 4 and B: AUB;

Aor B

Figure 1.4: A is a subset of B: AC B; A is

a part of B or B contains A
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Figure 1.3: Intersection of events A and B:

AnB; A and B

Figure 1.5: A and B are mutually erclusive

AnB =0

=

Figure 1.6: AUA =0 and AnA=0; A is

called the complement of A

A

Figure 1.8: AU(B—A)=AUB, An(B -

A) =0

B—A=B/A
0
AcCB
Figure 1.7: A is a subset of B then: AU(B—

A)=B;An(B—A)=0and AUB=B

A B

0

Figure 1.9: (B-A)u{ANEB) =
An{AnB) =0

B, (B -



Basic Probability Calculus

B—A=B/A
A B 1 a2 0
AcCB
. . . . . . Figure 1.3: Intersection of events A and B: Figure 1.6: AUA =0 and AnA=0; A is Figure 1.7: A is a subset of B then: AU(B—
ilgﬂflg 1.2: Union of events A and B: AUB; AnB; A and B called the complement of A A)=B; An(B-A)=0and AUB=1
B 0 0 A A B 0
Figure 1.4: A s a subset of B: A C B; A is Figure 1.5: A and B are mutually erclusive ﬂlgfl; 18: AU(B-A)=AUB, An(B- Elgur; 1'3: EBEI —A)u(AnB) =B, (B-
a part of B or B contains A AnB=42 ) = Jn{AnB) =
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Mathematical definition

Kolmogorov axioms (1933)

Probability can and should be developed from axioms in the same Vv
way as Geometry and Algebra : I

Axiom: statements so evident that can be accepted without

controversy

= Euclid’s Postulates for geometry (comparison) :
Axioms:
- 1.P(A)20 A element of Q «  Todraw a line from any point to any point.

= 2.P(Q)=1 Q collection of elements

= 3.P(AorB)=P(A) + P(B;

(if A and B'are exclusive To produce a finite straight line continuously in a straight

line.

Few other technical axioms _ _ _ _
To describe a circle with any center and distance ....
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Total Probability

« P(A) = P(A|B)P(B) + P(A|B,,,t)P(Byo:) With BN B, = @
and BUB,,,; = Q

- P(A) = le(AlBl)P(Bl) with B] N Bk = @ and UiBi =)

= Generalization to continuous integral “in which the uncertainty
is integrated out”

]
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Discrete Random Variable

* nidentical and independent
“experiments”

« Bernoulli trials
« each experiment may have a
« “success” probability p or
« “failure” with probability (1 — p)

* X : number of successes after n
experiments

]
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Discrete Random Variable

- Binomial: « SSSSSSS (7 successes in 7 trials)
*nidentical and independent
“experiments” - FFFFFFF (7 failures in 7 trials)
« Bernoulli trials
« each experiment may have a - SSFFFFF, SFSFFFF, SFFSFFF, ...,

‘ . . FFFFFSS (2 successes in 7 trials)
« “success” probability p or

- “failure” with probability (1 — p)

c PX=x)=")p*@A —-p)"*
* X :number of successes after n (97‘) , s
experiments - PX=2)=()p*(1-p)

*  Suppose we toss a fair coin 7 times 2>
- P(X =2) =0.1641
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Discrete Random Variable

= Binomial:

fx() =P =x) = (Jr*1 - p)"*
* mass function

Fx(x) = P(X < x) = Yix<y P(X = x)

cumulative distribution function (cdf)

(pdf)
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X: Number of deffects in 10000 products

Assume a producer knows P(defect) = 0,03 in a daily batch of n = 10,000 articles.
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Discrete Random Variable

Expectation: intuitively the “long-run” mean value: E(X) = Y, exx P(X = x)
For our example E(X) = 300

For binomial E(X) =np
Median: x for which P(X < x) = 0.5 For our example 50th percentile = 300

= Mode: most probable value For our example = 300

0.025r 1
0.02 f ﬁ 0.8
-
8 0
o 2
0.015 it o 0.6
-~ o 9} =
X o 3 ~
X S o3 W
0.01¢ s e 0.4Ff
g 3
0.005 0.2
h TR 0 |
300 350

0 o vl . Ly
T U D e I ft 20 25 300 350 400 250
X: Number of deffects in 10000 products

X: Number of deffects in 10000 products
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Discrete Random Variable

Geometric:

n identical and independent “experiments”
« Bernoulli trials

each experiment may have a
« “success” probability p or
« “failure” with probability (1 — p)

X : number of trials to first successes

Example: number of wells to excavate before finding water

13
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Discrete Random Variable

Geometric:

n identical and independent “experiments”
« Bernoulli trials
each experiment may have a
« “success” probability p or
« “failure” with probability (1 — p)
X : number of trials to first successes
Example:
« S (successes in 15t trial)
« FS  (successes in 2™ trial)
« FFS, FFFS, FFFFS, ..., FFFFF...S

(third, fourth, fifth, ...) Remember binomial:
P(X =2x)=p1-p)"" PO =) = () p 1 —p)"

Example: number of wells to excavate before finding water
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CIE4130

Discrete Random Variable

Geometric:

Finding water after drilling a well P(success) = 0,2

© fx() = P(X =x) = p(1—p)"

 mass function

(pdf)

i FX(x) — P(X S x) — Z{XSX}P(X - X)
« cumulative distribution function (cdf)

0.2r©°

0.15 |

0.05F ©

o
o
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X: number of excavated wells

5 10 15 20 25
X: number of excavated wells

30

15



CIE4130 . .
Discrete Random Variable

Binomial:
Expectation: intuitively the “long-run” mean value: E(X) =

ZxEXxP(X — X)

- For geometric E(X) = 1/p example E(X) = 0—12 =5
Median: x for which P(X < x) = 0.5

* 50th percentile =|—1/log,(1 —p)] =4

Mode: most probable value

« For our example =1

0.2ro 1
o 0.8
0.15¢
(@]
__06¢
< x
o0 ° %
o 0.4
O
0.05 © 5
o 0.2
O
Q
O I | ° © CI) ©o Cooo | 0 | L | I |
0 5 10 15 20 25 0 5 10 15 20 25 30
X: number of excavated wells X: number of excavated wells
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Fault Trees

A graphic model
parallel and serial combinations of faults
result 2 occurrence of the predefined undesired event.

(Fault tree handbook NUREG-0492)
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VALVE IS
FAILED
CLOSED
[ l
VALVE 1§ VALVE 15
CLOSED DUE CLOSED DUE :E;SLE‘EIEL':TIE
T0 HARDWARE TO HUMAN T0 TESTING
FAILURE ERRDR




Fault Trees

A graphic model
parallel and serial combinations of faults
result 2 occurrence of the predefined undesired event.

(Fault tree handbook NUREG-0492)
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ALL DNSITE
DC POWER 15
EAILED

DIESEL
GENERATOR 1
IS FAILED

DIESEL
GENERATOR 2
IS FAILED

1

BATTERY
IS FAILED




Fault Trees
= Objective:
= Probability of system failure based on basic event probabilities

= Basic (intermediate) event probabilities knowing probability of system failure

VALVE IS ALL ONSITE
FAILED DC POWER IS
CLOSED FAILED
VALVE I$ VALVE IS
VALVE IS DIESEL DIESEL
s, o e
IS FAILED IS FAILED
FAILURE ERROR TO TESTING




Fault Trees

Boolean algebra is used to operate with the Tree - Avoid double counting probabilities

Probabilities are computed with the usual rules of probability

Table 6.1. Laws of Boolean algebra

Commutative laws X-¥Y¥=Y-X
( ;;w,_ |A_:) o X+Y=Y+X
N’ Sl Assoclative laws XY -Z2)=(X-Y)-Z2
/OR\ AND X+iY+Z2)=(X+Y )+ 2
b EJ Distributive laws X Y+Z2)=X-Y+X-Z
,LJ Lfiﬁ A _L [dempotent laws A X=X
(AND' ’@E 'x'q':' fOR\ X+X=X
H — TC Absorption law X+X-Y=X
SN f—l _;--L ,l Complementation X+X'=0
AN, (A2)(As) (X') =X
De Morgan's laws (X - ¥YY=X"+Y'

(X+Y)=X"-Y'
Empty set/universal set @ =0Q
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Example: Fault Tree Polder
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Inundation
]
[ | [ e
failure failure failure failure
dike 1 dune dike 2 sluice
I I I | ~
failure failure failure failure failure
section i-1 section i section i+1 section i+2 section i+3
{ { { { {



Example: Fault Tree Polder
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failure of
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Example: Fault Tree Polder
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duice fails

a

I
failure

failure ipin congtruction
of foundation PIPING i
material
R<S R<S R<S

door open

R

door not
closed

A

door fails

R<S

warning HW human
fails warning failure




Fault Trees (AND)

= Assume

= P(Diesel Generator 1 Fails) = 0,02
on demand

- P(Diesel Generator 2 Fails) = 0,02
on demand

- P(Battery Fails) = 0,05
on demand

= P(All onsite DC power is failed)?
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ALL ONSITE
DC POWER 15
FAILED

:

DIESEL
GENERATOR 1
I35 FAILED

DIESEL
GENERATOR 2
IS FAILED

1

BATTERY
IS FAILED




What 1s a Bayesian Network

BNs Directed Acyclic Graph (3)

Nodes represent random variables

A,B,C (parents) of E (child);

D NOT a direct influence for E (ancestor)
Al1B, ALC ALD, DLE]|C
Information (influence) flow / sampling order:
{A, {D—-C -»B}} > E

{{D, A} -C > B}—>E

]
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(1)

3)

(4)




FB.U.lt TreeS 5 Power_Failed Table (in Bayes net FT_AND_NUREG) * | = || & |[f5s]|

Node: Power_Failed d | Apply | | OK |
= Assume
] _ Chance - % Probability vl | Reset | | Close |
= P(Diesel Generator 1 Fails) = 0,02
on demand Diesel_1 Diesel_2 Battery yes no |
= P(Diesel Generator 2 Fails) = 0,02 yes yes yes 100 :
on demand yes yes no ] 100
] yes no Ves 0 100
= P(Battery Fails) = 0,05 e no no - 100
on demand no yes VEs 0 100
no yes no 0 100
no no Ves 0 100
= P(All onsite DC power is failed)? no no no | o 100 "
ALL ONSITE Power_Fai.Ied. .
OC POWER IS yes .002| { i
FAILED no 100
i ]
DIESEL DIESEL Diesel_1 Diesel_2 Battery
iy EEEY S R




Information encoded in the graph (Semantics)

= a) X is conditionally independent of X;

(X1 LX5)
(X1 L X35/ X))
- b) X, is conditionally independent of X5 @ ’@ ’@

= ¢) X is independent of X5 but not conditionally independent

X1l X3

5 X L XAl X
TUDelft X[



Information encoded in the graph (Semantics)

Snow
yes 7.00p
no 93.0

Lung Cancer

present 5.50
absent 94.5

train_late
> yes 851m
no 915

you_late

™ yes 447

Smoking

no 553

]
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Burglary

yes 40.0
no 60.0

A

smoker 50.0
non smoker 50.0

Bronchitis

™ present 45.0

Alarm

> yes 40.0
no 60.0

absent 55.0

A

Earthquake
yes 100m
no 90.0




Fault Trees (AND with dependence) pu = peais)r) + Peais.. )P,
with BN B,,: =® and BU B, = ()

* P(Diesel, =Yes) = 0.02
* P(Diesel, = Yes|Diesel, = No) = 0.001 (from experts, data, or some other source) B
- From total probability, we can evaluate P(Diesel, = Yes|Diesel, = Yes):

P(Diesel, = Yes) = P(Diesel, = Yes|Diesel; = Yes)

Bnot

]
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Fault Trees (AND with dependence) pu = peais)r) + Peais.. )P,
with BN Buoe =@ and B U By = )

* P(Diesel, =Yes) = 0.02

* P(Diesel, = Yes|Diesel; = No) = 0.001 (from experts, data, or some other source) B

- From total probability, we can evaluate P(Diesel, = Yes|Diesel, = Yes): :

= P(Diesel, = Yes) = P(Diesel, = Yes|Diesel; = Yes) = P(Diesel; = Yes) +

= P(Diesel, = Yes|Diesel; = No) x P(Diesel; = No) B,
n

= > 0.02 = P(Diesel, = Yes|Diesel, = Yes) x0.02 + 0.001 = 0.98
- Then, we can compute P(Power_Failed) =0 -

Chance - % Probability w

Diesel_1 yes no

Power_Fai.Ied. . yes a5 5 - Power_Fai.Ied. .
e el o | o s - [ ol

I U D e I ft Diesel_1 Diesel_2 Battery Diesel_1 Diesel_2 Battery

yes 20001 i @ [Py 200[] i . yes 500f ¢ & | yes 200[ 0 @ yes 2001 b8 Gl
EFE B iB B I P—— — no 95.0

no 95.0 no 98.0 no 98.0

no 98.0

no 98.0




Conditional distributions

Power_Failed

Power_Failed

yes 4.75 yes 0.10
no 95.2 no 99.9
Diesel_1 Diesel_2 Battery Diesel_1 Diesel_2
yes 100 mm yes 95.0 mm yes 5.00] yes 100 mm yes 2.00| i
no 0 no 5.00 no 95.0 no 0 no 98.0
Power_Failed Power_Failed
yes .095| i ¢ yes .002| i
no 99.9 no 100
Diesel_1 Diesel_2 Battery Diesel_1 Diesel_2
yes 200 i —P| yes 2.00 [ yes 500 i yes 2.00[ : yes 2.00[ i
no 98.0 no 98.0 no 95.0 no 98.0 no 98.0

Battery
yes 5.00])
no 95.0

Battery
yes 500}
no 95.0




Fault Trees (OR)

- P(VC_Hardware) = 0.05, on demand
- P(VC_HError) = 0.01, on demand
« P(VC_Test) = 0.1, on demand

* What is P(Valve_Closed)?

Mode: Valve_Closed

v

Deterministic w

Function vl

Apply Ok

Reset Close

VALVE IS
FAILED
CLOSED
[ |
VALVE 1§ VALVE IS
CLOSED DUE CLOSED DUE cf;s";fn'f,e
T0 HARDWARE T0O HUMAN TO TESTING
FAILURE ERRDR

VC Hardware VC HErmror VC Test Valve Closed
yes yes yes yes
yes yes no yes
yes no yes yes
yes no no yes
no yes yes yes
no yes no yes
no no yes yes
no no no no
Valve_Closed
yes 154 mi |
no 84.6
VC_Hardware VC_HError VC_Test
yes 500f ¢ yes 1.00] § i yes 100 jm |
no 95.0 |—— no 99.0 no 90.0




Fault Trees

(OR with dependence)

P(VC_Hardware = No) = 0.95
P(VC_Hardware = No|VC_Test = Yes) = 0.77 (from experts, data, or some other source)
From total probability, we can evaluate P(VC_Hardware = No|VC_Test = No):

Mode: VC_Hardware

w

Chance -

% Probability w

VC Test yes no
P(VC_Hardware = No) = P(VC_Hardware = No|VC_Test = No) * P(VC_Test = No) + yes 23 7 I
nao 3 97 -
P(VC_Hardware = No|VC_Test = Yes) * P(VC_Test = Yes) . 1 K ’
- 0.95 = P(VC_Hardware = No|VC_Test = No) * 0.90 + 0.77 = 0.10
Then, we can compute P(Valve_Closed)
Valve_Closed Valve_Closed
yes 154 mi | i s 136 ED
no 84.6 no 86.4
VC_Hardware VC_HError VC_Test VC_Hardware VC_HError VC_Test
yes 500) | | i yes 1.00[ § | i yes 100 @m { | i yes 500y i i ¢ yes 1.0 § § yes 100 m { | i
no  95.0 p—— no  99.0 p— no  90.0 p—— no 950 no 99.0 no 900

]
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Fault Trees

(OR with dependence)

Valve_Closed

yes 10.9

no 89.1

Valve_Closed

yes 3.97

no 96.0

VC_Hardware VC_HError VC_Test
yes 3.00( i i i yes 10| § | i yes of ¢
no 97.0 mm f no 99.0 — no 100 |

Valve_Closed

yes 13.6
no 86.4

N7

VC_Hardware VC_HError VC_Test
yes of i i yes 10 | ¢ yes 100 jm |
no 100 no 99.0 no 90.0

Valve_Closed
yes 154 m |
no 84.6

VC_Hardware VC_HError VC_Test
yes 5.00) | | yes 1.00| i i yes 100 [ i
no 95.0 no 99.0 no 90.0

VC_Hardware VC_HError VC_Test
yes 500} § i yes 10 | | yes 100 [ |
no 95.0 no 99.0 no 90.0

]
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Simplified Flooding (during lecture)

flooding
low 333 [ i
medium  333| | i
high 333 [
overtopping breaching piping
low low low :
medium : medium : medium
high high high
seismicity rain
low low 3331
medium : medium 333 | |
high high 333

]
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Probabilistic Modelling of real-world phenomena
through ObseRvations and Elicitation (MORE)
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What 1s MORE?

Real-world phenomena (e.g., rainfall,
earthquakes, cars crossing bridges, ocean waves)
are random and unpredictable!

How can we take this into account in our
engineering research and design?

]
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What 1s MORE?

Real-world phenomena (e.g., rainfall,
earthquakes, cars crossing bridges, ocean waves)
are random and unpredictable!

How can we take this into account in our
engineering research and design?

In this module, you will use advanced
probabilistic  methods that incorporate
observations and expert opinion to support
decisions that make our lives safer and more
manageable.
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Who 1s MORE?

= You!

= Elisa Ragno (HE)

= Femke Vossepoel (Geo Eng)

= Patricia Mares Nasarre (HE)

= Anna Storiko (WMm)

= Max Ramgraber (Geo Eng)

= Oswaldo Morales Napoles (HE)
= Robert Lanzafame (HE)

= Juan Pablo Aguilar-Lopez (HE)

]
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What will
we do 1In
MORE?

]
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Week |[Day time Topic Assignment|Group Project Lecturer
44—aa_nnoa ao—ac : aa Elisa
1 BAYES THEOREM AND MCMC A1 Form Group and |Anna
Find Topic Anna
. : Anna
| [ o M Juan
, DEPENDENCE MODELLING: A2 Form Group and |Elisa
Nonstatioanry distributions Find Topic  |Elisa
Multivariate distributions A3 E:fsa
isa
. A4 Deadline Project |Patricia
Proposal Elisa
Oswaldo
A5 ) Oswaldo
Refine Proposal Eli
4 and Data 58
. Oswaldo
collection
J N &V ™7 I T\U.TTJ I -
! Lo Max
. DATA ASSIMILATION A6 Data Collection |Max
and Processing [Max
, : Oswaldo
I I Oswaldo
Finalize Project
5 EXPERT JUDGMENT A7 Proposal including [Oswaldo
detailed porcessing |_
of data
LU-14£-LVUZLS lTo.490 -




Anduryl, PyBanshee,
Matlatzinca, Chimera Py BANSHEE

BAYESIAN NETWORKS

and the modelling of risk §
and reliability

Oswaldo Morales Napoles
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