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Outline

▪ Reminder of fundamental concepts of probability

▪ Discrete Variables

▪ Fault Trees

▪ Discrete Bayesian Networks



Probability

▪ P(A) = probability of event A                               Mathematical definition → axioms

▪ Interpretations: 

▪ Classical: Laplace (1819) A philosophical essay on probabilities. The number of favourable cases divided by the 
number of equi-possible cases

▪ Frequentist: Von Mises R. (1936)  Probability statistics and truth. Limiting relative frequencies in a ‘collective’ or 
random ‘sequence’

▪ Subjective: Ramsey (1931) or Savage (1956) Foundations of statistics. Degree of belief of a rational subject. 
Measured by observing choice behaviour. For example, if A>.B and B>.C then A>.C  “>.” Stands for preferable 



▪ Euclid’s Postulates for geometry   (comparison)  : 

• To draw a line from any point to any point.

• To produce a finite straight line continuously in a straight 
line.

• To describe a circle with any center and distance ….

Mathematical definition

▪ Kolmogorov  axioms (1933)

▪ Probability can and should be developed from axioms in the 
same way as Geometry and Algebra

▪ Axiom: statements so evident that can be accepted without 
controversy

▪ Axioms:

▪ 1. P(A) ≥ 0        A  element of Ω

▪ 2. P(Ω) = 1       Ω collection of elements

▪ 3. P(A or B) =

▪ Few other technical axioms



Sets

𝐴 ⊂ 𝐵

𝐵 − 𝐴 = 𝐵/𝐴



Basic Probability Calculus

𝐴 ⊂ 𝐵

𝐵 − 𝐴 = 𝐵/𝐴



▪ Euclid’s Postulates for geometry   (comparison)  : 

• To draw a line from any point to any point.

• To produce a finite straight line continuously in a straight 
line.

• To describe a circle with any center and distance ….

Mathematical definition

▪ Kolmogorov  axioms (1933)

▪ Probability can and should be developed from axioms in the same 
way as Geometry and Algebra

▪ Axiom: statements so evident that can be accepted without 
controversy

▪ Axioms:

▪ 1. P(A) ≥ 0        A  element of Ω

▪ 2. P(Ω) = 1       Ω collection of elements

▪ 3. P(A or B) = P(A) + P(B) 
(if A and B are exclusive) 

▪ Few other technical axioms



Total Probability

▪ 𝑃 𝐴 = 𝑃 𝐴 𝐵 𝑃 𝐵 + 𝑃 𝐴 𝐵𝑛𝑜𝑡 𝑃 𝐵𝑛𝑜𝑡 with  𝐵 ∩ 𝐵𝑛𝑜𝑡 = ∅
and 𝐵ڂ𝐵𝑛𝑜𝑡 = Ω

▪ 𝑃 𝐴 = σ𝑖 𝑃 𝐴 𝐵𝑖 𝑃 𝐵𝑖 with  𝐵𝑗 ∩ 𝐵𝑘 = ∅ and ڂ𝑖 𝐵𝑖 = Ω

▪ Generalization to continuous integral “in which the uncertainty 
is integrated out”

𝐵𝑛𝑜𝑡

𝐵

𝐴

𝐵2

𝐵1

𝐴
𝐵3

𝐵4



Discrete Random Variable

• n identical and independent 
“experiments”

• Bernoulli trials 

• each experiment may have a 

• “success”  probability 𝑝 or 

• “failure” with probability  (1 − 𝑝)

• 𝑋 : number of successes after n
experiments



Discrete Random Variable

▪ Binomial: 

• n identical and independent 
“experiments”

• Bernoulli trials 

• each experiment may have a 

• “success”  probability 𝑝 or 

• “failure” with probability  (1 − 𝑝)

• 𝑋 : number of successes after n
experiments

• SSSSSSS    (7 successes in 7 trials)

• FFFFFFF     (7 failures in 7 trials)

• SSFFFFF, SFSFFFF, SFFSFFF, …, 
FFFFFSS  (2 successes in 7 trials)

• 𝑃 𝑋 = 𝑥 = 𝑛
𝑥
𝑝𝑥(1 − 𝑝)𝑛−𝑥

• 𝑃 𝑋 = 2 = 7
2
𝑝2(1 − 𝑝)7−2

• Suppose we  toss a fair coin 7 times →

• 𝑃 𝑋 = 2 = 0.1641



Discrete Random Variable

▪ Binomial: 

▪ Assume a producer knows P(defect) = 0,03 in a daily batch of 𝑛 = 10,000 articles.

• 𝑓𝑋 𝑥 = 𝑃 𝑋 = 𝑥 = 𝑛
𝑥
𝑝𝑥(1 − 𝑝)𝑛−𝑥

• mass function                               (pdf)

• 𝐹𝑋 𝑥 = 𝑃 𝑋 ≤ 𝑥 = σ{𝑋≤𝑥}𝑃 𝑋 = 𝑥

• cumulative distribution function   (cdf)



Discrete Random Variable

▪ Expectation: intuitively the  “long-run” mean value:  𝐸 𝑋 = σ𝑥∈𝑋 𝑥 𝑃 𝑋 = 𝑥

• For binomial  𝐸 𝑋 = 𝑛𝑝 For our example  𝐸 𝑋 = 300

▪ Median:  𝑥 for which 𝑃 𝑋 ≤ 𝑥 = 0.5 For our example  50𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 = 300

▪ Mode: most probable value                               For our example  = 300
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Geometric: 

• n identical and independent “experiments”
• Bernoulli trials 

• each experiment may have a 
• “success”  probability 𝑝 or 
• “failure” with probability  (1 − 𝑝)

• 𝑋 : number of trials to first successes

• Example: number of wells to excavate before finding water

Discrete Random Variable
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Geometric: 

• n identical and independent “experiments”
• Bernoulli trials 

• each experiment may have a 
• “success”  probability 𝑝 or 
• “failure” with probability  (1 − 𝑝)

• 𝑋 : number of trials to first successes

• Example: 
• S    (successes in 1st trial)
• FS     (successes in 2nd trial)
• FFS, FFFS, FFFFS, …, FFFFF…S   

(third, fourth, fifth, …)
• 𝑃 𝑋 = 𝑥 = 𝑝(1 − 𝑝)𝑛−1

• Example: number of wells to excavate before finding water

Discrete Random Variable

Remember binomial: 

𝑃 𝑋 = 𝑥 =
𝑛

𝑥
𝑝𝑥(1 − 𝑝)𝑛−𝑥
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Geometric: 
Finding water after drilling a well P(success) = 0,2

• 𝑓𝑋 𝑥 = 𝑃 𝑋 = 𝑥 = 𝑝(1 − 𝑝)𝑛−𝑥

• mass function                               (pdf)
• 𝐹𝑋 𝑥 = 𝑃 𝑋 ≤ 𝑥 = σ{𝑋≤𝑥}𝑃 𝑋 = 𝑥

• cumulative distribution function   (cdf)

Discrete Random Variable
CIE4130 
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Binomial: 
Expectation: intuitively the  “long-run” mean value: 𝐸 𝑋 =
σ𝑥∈𝑋 𝑥 𝑃 𝑋 = 𝑥

• For geometric  𝐸 𝑋 = 1/𝑝 example  𝐸 𝑋 =
1

0,2
= 5

Median:  𝑥 for which 𝑃 𝑋 ≤ 𝑥 = 0.5
• 50𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 = −1/log2(1 − 𝑝) = 4
Mode: most probable value
• For our example  = 1

Discrete Random Variable
CIE4130 



Fault Trees

▪ A graphic model 

▪ parallel and serial combinations of faults

▪ result → occurrence of the predefined undesired event. 

▪ (Fault tree handbook NUREG-0492)



Fault Trees

▪ A graphic model 

▪ parallel and serial combinations of faults

▪ result → occurrence of the predefined undesired event. 

▪ (Fault tree handbook NUREG-0492)



▪ Objective: 

▪ Probability of system failure based on basic event probabilities 

▪ Basic (intermediate) event probabilities knowing probability of system failure 

Fault Trees



Fault Trees

▪ Boolean algebra is used to operate with the Tree   → Avoid double counting  probabilities 

▪ Probabilities are computed with the usual rules of probability



Example:  Fault Tree Polder

Inundation

failure
dike 1

failure
dune

failure
dike 2

failure
sluice

failure
section i-1

failure
section i

failure
section i+1

failure
section i+2

failure
section i+3

or

or

 



Example:  Fault Tree Polder

f ailure of

section i

ov ertopping

Ri<S

wav e ov ertopping

Ri<S

slide plane

Ri<S

piping

Ri<S

wl

Hs
h,B D

wl

Hs

or



Example:  Fault Tree Polder

sluice fails

failure

of foundation

R<S

piping

R<S

failure

construction

material

R<S

door open

door fails

R<S

door not

closed

warning

f ails

HW

warning

human

failure

and

or

or

or



Fault Trees    (AND)

▪ Assume 

▪ P(Diesel Generator 1 Fails) = 0,02
on demand 

▪ P(Diesel Generator 2 Fails) = 0,02
on demand 

▪ P(Battery Fails) = 0,05
on demand 

▪ P(All onsite DC power is failed)?



• BNs  Directed Acyclic Graph (3)

• Nodes represent random variables

• A,B,C  (parents) of E (child); 

• D NOT a direct influence for E (ancestor)

• A ⊥ B;   A ⊥ C;  A ⊥ D;    D ⊥ E | C

• Information (influence) flow / sampling order:

• {A,  {D→C →B}} → E

• {{D, A} →C → B} → E

A

B

CD E

(1) (2)

(3) (4)

What is a Bayesian Network



Fault Trees
▪ Assume 

▪ P(Diesel Generator 1 Fails) = 0,02
on demand 

▪ P(Diesel Generator 2 Fails) = 0,02
on demand 

▪ P(Battery Fails) = 0,05
on demand 

▪ P(All onsite DC power is failed)?

Diesel_1

yes
no

2.00
98.0

Diesel_2

yes
no

2.00
98.0

Battery

yes
no

5.00
95.0

Power_Failed

yes
no

.002
 100



Information encoded in the graph (Semantics)

▪ a) X1 is conditionally independent of  X3

▪ b) X1 is conditionally independent of  X3

▪ c) X1 is independent of X3 but not conditionally independent



Information encoded in the graph (Semantics)

Snow

yes
no

7.00
93.0

Lung Cancer

present
absent

5.50
94.5

Smoking

smoker
non smoker

50.0
50.0

you_late

yes
no

44.7
55.3

train_late

yes
no

8.51
91.5

Bronchitis

present
absent

45.0
55.0

Burglary

yes
no

40.0
60.0

Alarm

yes
no

40.0
60.0

Earthquake

yes
no

10.0
90.0



Fault Trees (AND with dependence)

• 𝑃 𝐷𝑖𝑒𝑠𝑒𝑙2 = 𝑌𝑒𝑠 = 0.02

• 𝑃 ȁ𝐷𝑖𝑒𝑠𝑒𝑙2 = 𝑌𝑒𝑠 𝐷𝑖𝑒𝑠𝑒𝑙1 = 𝑁𝑜 = 0.001 (from experts, data, or some other source)

• From total probability, we can evaluate 𝑃 ȁ𝐷𝑖𝑒𝑠𝑒𝑙2 = 𝑌𝑒𝑠 𝐷𝑖𝑒𝑠𝑒𝑙1 = 𝑌𝑒𝑠 :

▪ 𝑃 𝐷𝑖𝑒𝑠𝑒𝑙2 = 𝑌𝑒𝑠 = 𝑃 ȁ𝐷𝑖𝑒𝑠𝑒𝑙2 = 𝑌𝑒𝑠 𝐷𝑖𝑒𝑠𝑒𝑙1 = 𝑌𝑒𝑠

𝑃 𝐴 = 𝑃 𝐴 𝐵 𝑃 𝐵 + 𝑃 𝐴 𝐵𝑛𝑜𝑡 𝑃 𝐵𝑛𝑜𝑡
with  𝐵 ∩ 𝐵𝑛𝑜𝑡 = ∅ and 𝐵ڂ𝐵𝑛𝑜𝑡 = Ω

𝐵𝑛𝑜𝑡

𝐵

𝐴



Fault Trees (AND with dependence)

• 𝑃 𝐷𝑖𝑒𝑠𝑒𝑙2 = 𝑌𝑒𝑠 = 0.02

• 𝑃 ȁ𝐷𝑖𝑒𝑠𝑒𝑙2 = 𝑌𝑒𝑠 𝐷𝑖𝑒𝑠𝑒𝑙1 = 𝑁𝑜 = 0.001 (from experts, data, or some other source)

• From total probability, we can evaluate 𝑃 ȁ𝐷𝑖𝑒𝑠𝑒𝑙2 = 𝑌𝑒𝑠 𝐷𝑖𝑒𝑠𝑒𝑙1 = 𝑌𝑒𝑠 :

▪ 𝑃 𝐷𝑖𝑒𝑠𝑒𝑙2 = 𝑌𝑒𝑠 = 𝑃 ȁ𝐷𝑖𝑒𝑠𝑒𝑙2 = 𝑌𝑒𝑠 𝐷𝑖𝑒𝑠𝑒𝑙1 = 𝑌𝑒𝑠 ∗ 𝑃 𝐷𝑖𝑒𝑠𝑒𝑙1 = 𝑌𝑒𝑠 +

▪ 𝑃 ȁ𝐷𝑖𝑒𝑠𝑒𝑙2 = 𝑌𝑒𝑠 𝐷𝑖𝑒𝑠𝑒𝑙1 = 𝑁𝑜 ∗ 𝑃 𝐷𝑖𝑒𝑠𝑒𝑙1 = 𝑁𝑜

▪ → 0.02 = 𝑃 ȁ𝐷𝑖𝑒𝑠𝑒𝑙2 = 𝑌𝑒𝑠 𝐷𝑖𝑒𝑠𝑒𝑙1 = 𝑌𝑒𝑠 ∗ 0.02 + 0.001 ∗ 0.98

• Then, we can compute 𝑃 𝑃𝑜𝑤𝑒𝑟_𝐹𝑎𝑖𝑙𝑒𝑑

Diesel_1

yes
no

2.00
98.0

Diesel_2

yes
no

2.00
98.0

Battery

yes
no

5.00
95.0

Power_Failed

yes
no

.002
 100

Diesel_1

yes
no

2.00
98.0

Diesel_2

yes
no

2.00
98.0

Battery

yes
no

5.00
95.0

Power_Failed

yes
no

.095
99.9

𝑃 𝐴 = 𝑃 𝐴 𝐵 𝑃 𝐵 + 𝑃 𝐴 𝐵𝑛𝑜𝑡 𝑃 𝐵𝑛𝑜𝑡
with  𝐵 ∩ 𝐵𝑛𝑜𝑡 = ∅ and 𝐵ڂ𝐵𝑛𝑜𝑡 = Ω

𝐵𝑛𝑜𝑡

𝐵

𝐴



Conditional distributions

Diesel_1

yes
no

2.00
98.0

Diesel_2

yes
no

2.00
98.0

Battery

yes
no

5.00
95.0

Power_Failed

yes
no

.002
 100

Diesel_1

yes
no

2.00
98.0

Diesel_2

yes
no

2.00
98.0

Battery

yes
no

5.00
95.0

Power_Failed

yes
no

.095
99.9

Diesel_1

yes
no

 100
   0

Diesel_2

yes
no

95.0
5.00

Battery

yes
no

5.00
95.0

Power_Failed

yes
no

4.75
95.2

Diesel_1

yes
no

 100
   0

Diesel_2

yes
no

2.00
98.0

Battery

yes
no

5.00
95.0

Power_Failed

yes
no

0.10
99.9



Fault Trees    (OR)

• 𝑃 𝑉𝐶_𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = 0.05, on demand 

• 𝑃 𝑉𝐶_𝐻𝐸𝑟𝑟𝑜𝑟 = 0.01, on demand 

• 𝑃 𝑉𝐶_𝑇𝑒𝑠𝑡 = 0.1, on demand 

• What is 𝑃(𝑉𝑎𝑙𝑣𝑒_𝐶𝑙𝑜𝑠𝑒𝑑)?

Valve_Closed

yes
no

15.4
84.6

VC_HError

yes
no

1.00
99.0

VC_Test

yes
no

10.0
90.0

VC_Hardware

yes
no

5.00
95.0



Fault Trees    (OR with dependence)
• 𝑃 𝑉𝐶_𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = 𝑁𝑜 = 0.95

• 𝑃 ȁ𝑉𝐶_𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = 𝑁𝑜 𝑉𝐶_𝑇𝑒𝑠𝑡 = 𝑌𝑒𝑠 = 0.77 (from experts, data, or some other source)

• From total probability, we can evaluate 𝑃 ȁ𝑉𝐶_𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = 𝑁𝑜 𝑉𝐶_𝑇𝑒𝑠𝑡 = 𝑁𝑜 :

▪ 𝑃 𝑉𝐶_𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = 𝑁𝑜 = 𝑃 ȁ𝑉𝐶_𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = 𝑁𝑜 𝑉𝐶_𝑇𝑒𝑠𝑡 = 𝑁𝑜 ∗ 𝑃 𝑉𝐶_𝑇𝑒𝑠𝑡 = 𝑁𝑜 +

▪ 𝑃 ȁ𝑉𝐶_𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = 𝑁𝑜 𝑉𝐶_𝑇𝑒𝑠𝑡 = 𝑌𝑒𝑠 ∗ 𝑃 𝑉𝐶_𝑇𝑒𝑠𝑡 = 𝑌𝑒𝑠

▪ → 0.95 = 𝑃 ȁ𝑉𝐶_𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = 𝑁𝑜 𝑉𝐶_𝑇𝑒𝑠𝑡 = 𝑁𝑜 ∗ 0.90 + 0.77 ∗ 0.10

• Then, we can compute 𝑃 𝑉𝑎𝑙𝑣𝑒_𝐶𝑙𝑜𝑠𝑒𝑑

Valve_Closed

yes
no

15.4
84.6

VC_HError

yes
no

1.00
99.0

VC_Test

yes
no

10.0
90.0

VC_Hardware

yes
no

5.00
95.0

Valve_Closed

yes
no

13.6
86.4

VC_HError

yes
no

 1.0
99.0

VC_Test

yes
no

10.0
90.0

VC_Hardware

yes
no

5.00
95.0



Fault Trees    (OR with dependence)

Valve_Closed

yes
no

15.4
84.6

VC_HError

yes
no

1.00
99.0

VC_Test

yes
no

10.0
90.0

VC_Hardware

yes
no

5.00
95.0

Valve_Closed

yes
no

13.6
86.4

VC_HError

yes
no

 1.0
99.0

VC_Test

yes
no

10.0
90.0

VC_Hardware

yes
no

5.00
95.0

Valve_Closed

yes
no

3.97
96.0

VC_HError

yes
no

 1.0
99.0

VC_Test

yes
no

   0
 100

VC_Hardware

yes
no

3.00
97.0

Valve_Closed

yes
no

10.9
89.1

VC_HError

yes
no

 1.0
99.0

VC_Test

yes
no

10.0
90.0

VC_Hardware

yes
no

   0
 100



Simplified Flooding (during lecture)

seismicity

low
medium
high

33.3
33.3
33.3

rain

low
medium
high

33.3
33.3
33.3

overtopping

low
medium
high

33.3
33.3
33.3

breaching

low
medium
high

33.3
33.3
33.3

flooding

low
medium
high

33.3
33.3
33.3

piping

low
medium
high

33.3
33.3
33.3



Probabilistic Modelling of real-world phenomena 
through ObseRvations and Elicitation (MORE) 



What is MORE?

Real-world phenomena (e.g., rainfall,
earthquakes, cars crossing bridges, ocean waves)
are random and unpredictable!

How can we take this into account in our
engineering research and design?



What is MORE?

Real-world phenomena (e.g., rainfall,
earthquakes, cars crossing bridges, ocean waves)
are random and unpredictable!

How can we take this into account in our
engineering research and design?

In this module, you will use advanced
probabilistic methods that incorporate
observations and expert opinion to support
decisions that make our lives safer and more
manageable.



Who is MORE?

▪ You!

▪ Elisa Ragno (HE)

▪ Femke Vossepoel (Geo Eng)

▪ Patricia Mares Nasarre (HE) 

▪ Anna Storiko (WM)

▪ Max Ramgraber (Geo Eng) 

▪ Oswaldo Morales Napoles (HE)

▪ Robert Lanzafame (HE)

▪ Juan Pablo Aguilar-López (HE)



What will 
we do in 
MORE? 

Week Day time Topic Assignment Group Project Lecturer
11-11-2024 13:45 Intro CO Elisa
12-11-2024 10:45 Bayes Theorem and Monte Carlo A1 Anna
15-11-2024 10:45 Solution A1 and Markov Chain Monte Carlo Anna
15-11-2024 13:45 Implementation Metropolis-Hastings MCMC Anna
18-11-2024 13:45 Discrete RVs and Bayesian Networks Juan
19-11-2024 10:45 Dependence and Nonstationary Analysis A2 Elisa
22-11-2024 10:45 Solution A2 and Intro to Bivariate Copulas Elisa
22-11-2024 13:45 Bivariate Copulas A3 Elisa
25-11-2024 13:45 Intro graphical models Elisa
26-11-2024 10:45 Nonparametric Bayesian Networks (A4) A4 Patricia
29-11-2024 10:45 Solutions A3 and A4 Elisa
29-11-2024 13:45 Vines Oswaldo
2-12-2024 13:45 Vines  A5 Oswaldo
3-12-2024 10:45 Overview of Projects and Feedback Session Elisa
6-12-2024 10:45 Solution A5 Oswaldo
6-12-2024 13:45 Groups Working on Data for their project (no class) -
9-12-2023 13:45 Data Assimilation Max

10-12-2023 10:45 Data Assimilation A6 Max
13-12-2024 10:45 Solution A6 Max
13-12-2024 13:45 Additional Lecture on Vines Oswaldo
16-12-2023 13:45 Expert Judgment Oswaldo
17-12-2024 10:45 Expert Judgment A7 Oswaldo
20-12-2024 10:45 No Class -
20-12-2024 13:45 No Class -

Form Group and 
Find Topic

Form Group and 
Find Topic

Deadline Project 
Proposal

Refine Proposal 
and Data 
collection

Data Collection 
and Processing

1

2

3

4

5

6

Finalize Project 
Proposal including 

detailed porcessing 
of data

BAYES THEOREM AND MCMC

DEPENDENCE MODELLING:
Nonstatioanry distributions
Multivariate distributions

DATA ASSIMILATION

EXPERT JUDGMENT



Anduryl, PyBanshee, 
Matlatzinca, Chimera 
and the modelling of risk 
and reliability

Oswaldo Morales Nápoles
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