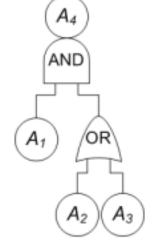
System's reliability: Fault Trees & Bayesian Networks

CIEM4210 / CIEM4220 / CIEM4230 CEG MSc CE Track Hydraulic and Offshore Structures (2024/2025) HOS B-1 Probablistic Design



Oswaldo Morales Nápoles

Outline

- Reminder of fundamental concepts of probability
- Discrete Variables
- Fault Trees
- Discrete Bayesian Networks

Probability

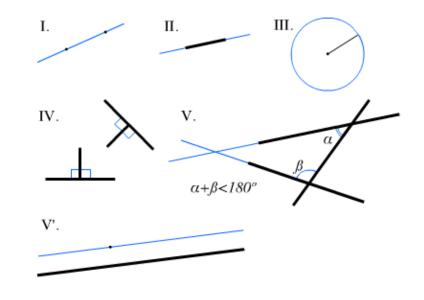
P(A) = probability of event A

Mathematical definition \rightarrow axioms

- Interpretations:
- Classical: Laplace (1819) A philosophical essay on probabilities. The number of favourable cases divided by the number of equi-possible cases
- Frequentist: Von Mises R. (1936) Probability statistics and truth. Limiting relative frequencies in a 'collective' or random 'sequence'
- **Subjective:** Ramsey (1931) or Savage (1956) *Foundations of statistics*. Degree of belief of a *rational* subject. Measured by observing choice behaviour. For example, if A>.B and B>.C then A>.C ">." Stands for preferable

Mathematical definition

- Kolmogorov axioms (1933)
- Probability can and should be developed from axioms in the same way as Geometry and Algebra
- Axiom: statements so evident that can be accepted without controversy
- Axioms:
 - 1. $P(A) \ge 0$ A element of Ω
 - 2. $P(\Omega) = 1$ Ω collection of elements
 - 3. P(A or B) =
- Few other technical axioms



- Euclid's Postulates for geometry (comparison) :
- To draw a line from any point to any point.
- To produce a finite straight line continuously in a straight line.
- To describe a circle with any center and distance

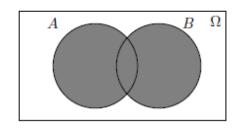


Figure 1.2: Union of events A and B: $A \cup B$; A or B

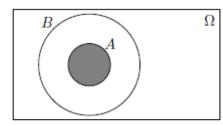


Figure 1.4: A is a subset of B: $A \subset B$; A is a part of B or B contains A

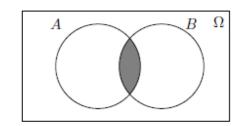


Figure 1.3: Intersection of events A and B: $A \cap B$; A and B

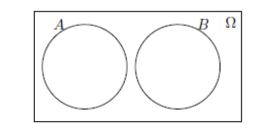


Figure 1.5: A and B are mutually exclusive $A \cap B = \emptyset$

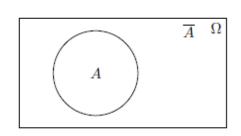


Figure 1.6: $A \cup \overline{A} = \Omega$ and $A \cap \overline{A} = \emptyset$; \overline{A} is called the complement of A

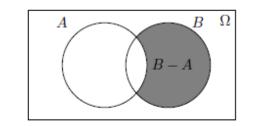


Figure 1.8: $A \cup (B - A) = A \cup B$, $A \cap (B - A) = \emptyset$

B - A = B/A

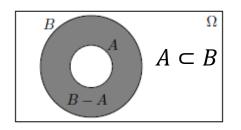


Figure 1.7: A is a subset of B then: $A \cup (B - A) = B$; $A \cap (B - A) = \emptyset$ and $A \cup B = B$

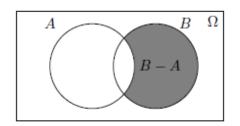


Figure 1.9: $(B - A) \cup (A \cap B) = B$, $(B - A) \cap (A \cap B) = \emptyset$

Basic Probability Calculus

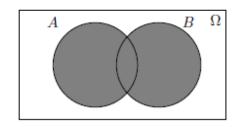


Figure 1.2: Union of events A and B: $A \cup B$; A or B

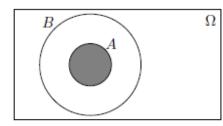


Figure 1.4: A is a subset of B: $A \subset B$; A is a part of B or B contains A

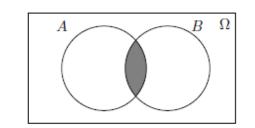


Figure 1.3: Intersection of events A and B: $A \cap B$; A and B

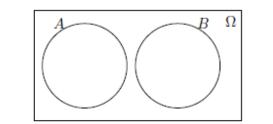


Figure 1.5: A and B are mutually exclusive $A \cap B = \emptyset$

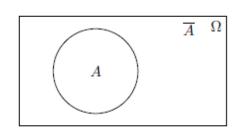


Figure 1.6: $A \cup \overline{A} = \Omega$ and $A \cap \overline{A} = \emptyset$; \overline{A} is called the complement of A

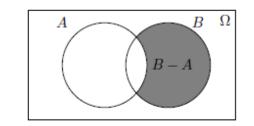


Figure 1.8: $A \cup (B - A) = A \cup B$, $A \cap (B - A) = \emptyset$

B - A = B/A

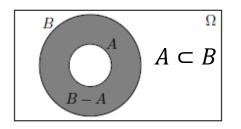


Figure 1.7: A is a subset of B then: $A \cup (B - A) = B$; $A \cap (B - A) = \emptyset$ and $A \cup B = B$

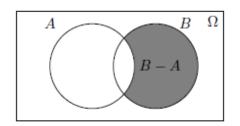
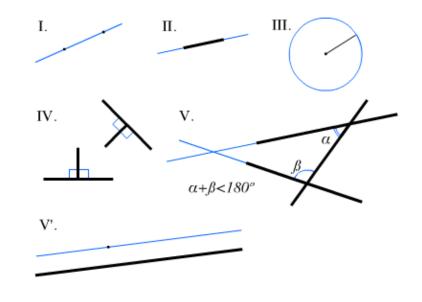


Figure 1.9: $(B - A) \cup (A \cap B) = B$, $(B - A) \cap (A \cap B) = \emptyset$

Mathematical definition

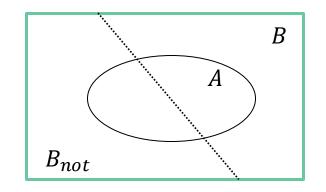
- Kolmogorov axioms (1933)
- Probability can and should be developed from axioms in the same way as Geometry and Algebra
- Axiom: statements so evident that can be accepted without controversy
- Axioms:
 - 1. $P(A) \ge 0$ A element of Ω
 - 2. $P(\Omega) = 1$ Ω collection of elements
 - 3. P(A or B) = P(A) + P(B) (if A and B are exclusive)
- Few other technical axioms

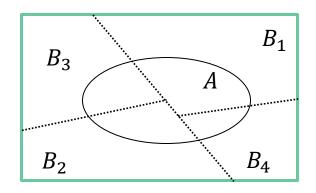


- Euclid's Postulates for geometry (comparison) :
- To draw a line from any point to any point.
- To produce a finite straight line continuously in a straight line.
- To describe a circle with any center and distance

Total Probability

- $P(A) = P(A|B)P(B) + P(A|B_{not})P(B_{not})$ with $B \cap B_{not} = \emptyset$ and $B \cup B_{not} = \Omega$
- $P(A) = \sum_{i} P(A|B_i) P(B_i)$ with $B_j \cap B_k = \emptyset$ and $\bigcup_{i} B_i = \Omega$
- Generalization to continuous integral "in which the uncertainty is integrated out"





- *n* identical and independent "experiments"
 - Bernoulli trials
- each experiment may have a
 - "success" probability p or
 - "failure" with probability (1-p)
- X : number of successes after n experiments

- Binomial:
- *n* identical and independent "experiments"
 - Bernoulli trials
- each experiment may have a
 - "success" probability p or
 - "failure" with probability (1-p)
- X : number of successes after n experiments

- SSSSSSS (7 successes in 7 trials)
- FFFFFFF (7 failures in 7 trials)
- SSFFFFF, SFSFFFF, SFFSFFF, ..., FFFFSS (2 successes in 7 trials)
- $P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$
- $P(X = 2) = \binom{7}{2}p^2(1-p)^{7-2}$
- Suppose we toss a fair coin 7 times \rightarrow
 - P(X = 2) = 0.1641

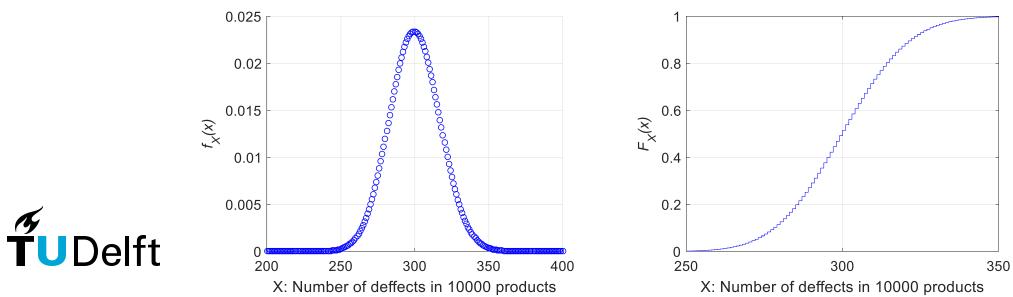
- Binomial:
- Assume a producer knows P(defect) = 0,03 in a daily batch of n = 10,000 articles.

•
$$f_X(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

mass function

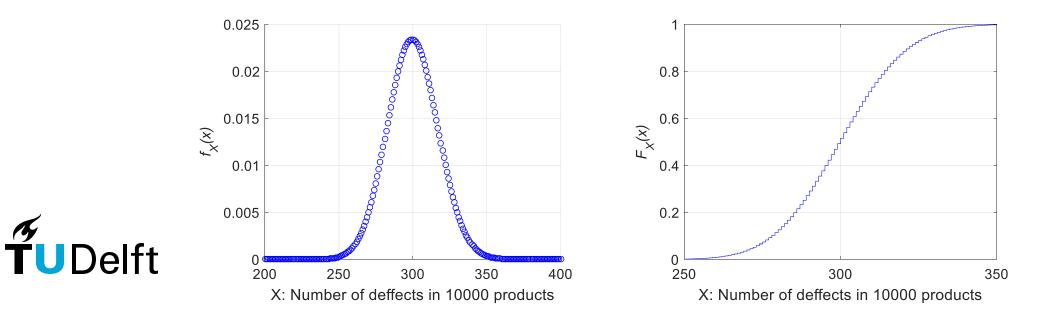
•
$$F_X(x) = P(X \le x) = \sum_{\{X \le x\}} P(X = x)$$

• cumulative distribution function (cdf)



- Expectation: intuitively the "long-run" mean value: $E(X) = \sum_{x \in X} x P(X = x)$
- For binomial E(X) = np
- Median: x for which $P(X \le x) = 0.5$
- Mode: most probable value

For our example E(X) = 300For our example 50th percentile = 300For our example = 300



Geometric:

- *n* identical and independent "experiments"
 - Bernoulli trials
- each experiment may have a
 - "success" probability p or
 - "failure" with probability (1-p)
- *X* : number of trials to first successes

• Example: number of wells to excavate before finding water **UDelft**

Geometric:

- *n* identical and independent "experiments"
 - Bernoulli trials
- each experiment may have a
 - "success" probability p or
 - "failure" with probability (1-p)
- *X* : number of trials to first successes
- Example:
 - S (successes in 1st trial)
 - FS (successes in 2nd trial)
 - FFS, FFFS, FFFFS, ..., FFFFF...S (third, fourth, fifth, ...)

•
$$P(X = x) = p(1 - p)^{n-1}$$

Remember binomial: $P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}$

• Example: number of wells to excavate before finding water

CIE4130

Discrete Random Variable

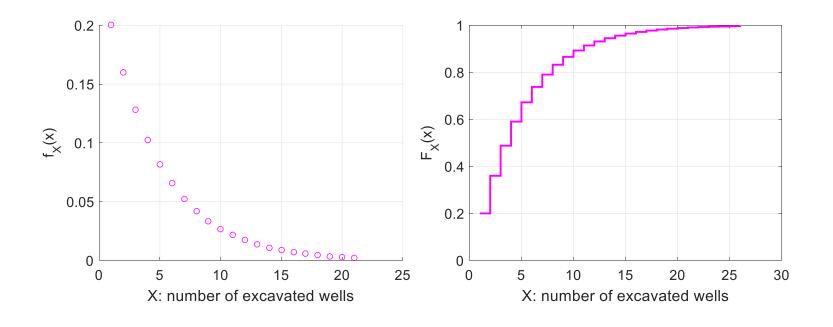
Geometric: Finding water after drilling a well P(success) = 0,2

•
$$f_X(x) = P(X = x) = p(1-p)^{n-x}$$

• mass function (pdf)

•
$$F_X(x) = P(X \le x) = \sum_{\{X \le x\}} P(X = x)$$

• cumulative distribution function (cdf)



ŤUDelft

CIE4130

Discrete Random Variable

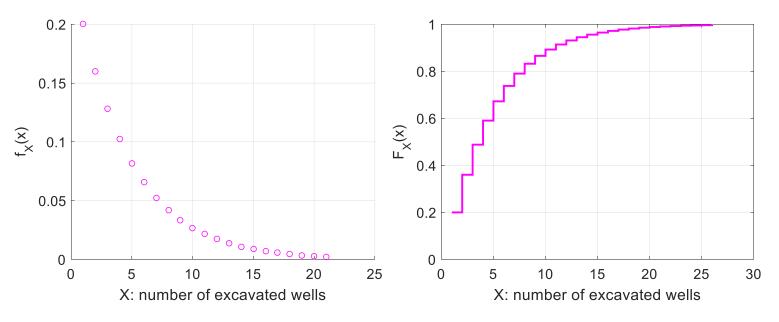
Binomial:

Expectation: intuitively the "long-run" mean value: $E(X) = \sum_{x \in X} x P(X = x)$

• For geometric E(X) = 1/p example $E(X) = \frac{1}{0,2} = 5$

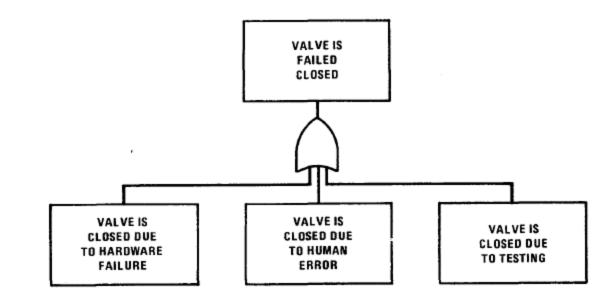
Median: *x* for which $P(X \le x) = 0.5$

- $50th \ percentile = [-1/\log_2(1-p)] = 4$ Mode: most probable value
- For our example = 1

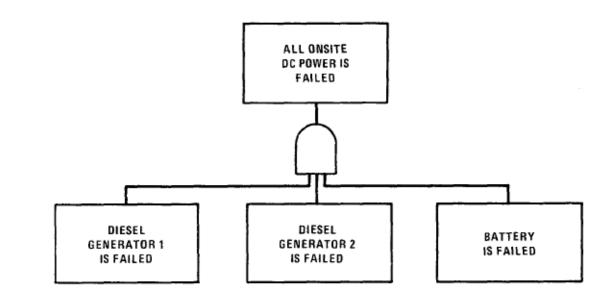


ŤUDelft

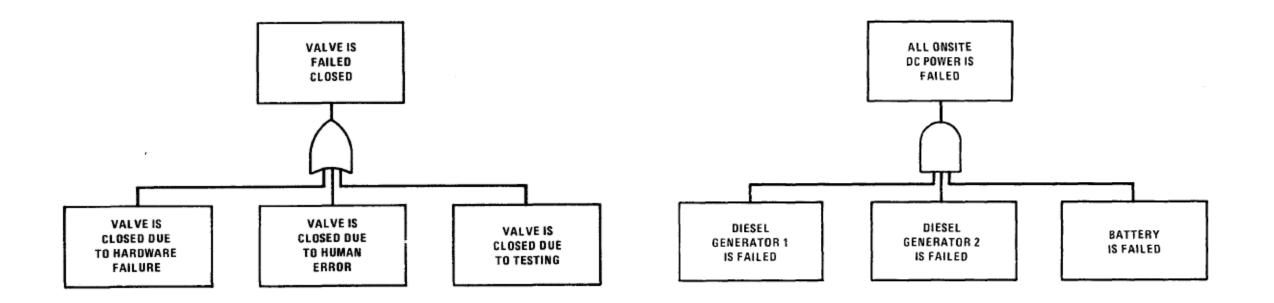
- A graphic model
- parallel and serial combinations of faults
- result \rightarrow occurrence of the predefined undesired event.
- (Fault tree handbook NUREG-0492)



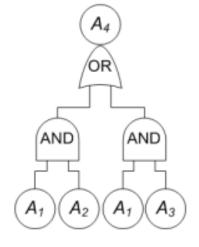
- A graphic model
- parallel and serial combinations of faults
- result \rightarrow occurrence of the predefined undesired event.
- (Fault tree handbook NUREG-0492)



- Objective:
- Probability of system failure based on basic event probabilities
- Basic (intermediate) event probabilities knowing probability of system failure



- Boolean algebra is used to operate with the Tree \rightarrow Avoid double counting probabilities
- Probabilities are computed with the usual rules of probability



TUDelft

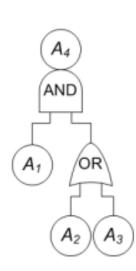
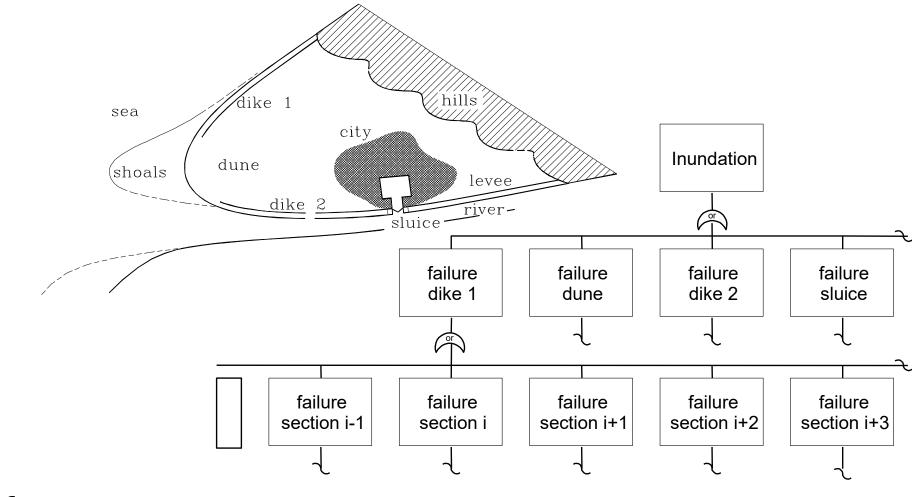


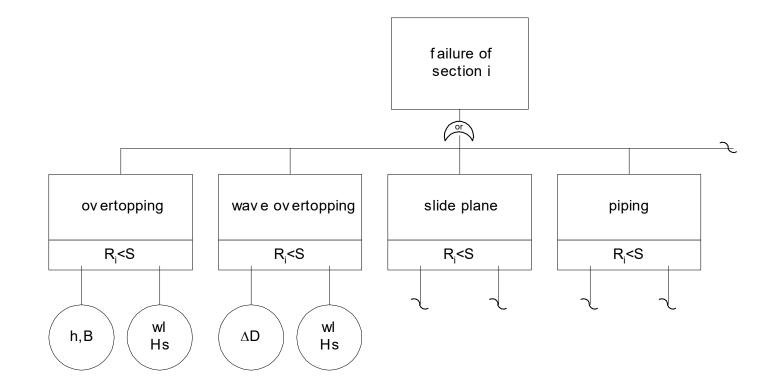
Table 6.1. Laws of Boolean algebra

Commutative laws	$X \cdot Y = Y \cdot X$
	X + Y = Y + X
Associative laws	$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$
	X + (Y + Z) = (X + Y) + Z
Distributive laws	$X \cdot (Y + Z) = X \cdot Y + X \cdot Z$
Idempotent laws	$X \cdot X = X$
-	X + X = X
Absorption law	$X + X \cdot Y = X$
Complementation	$X + X' = \Omega$
1	(X')' = X
De Morgan's laws	$(X \cdot Y)' = X' + Y'$
De morgano iano	$(X+Y)' = X' \cdot Y'$
Empty set/universal set	$\emptyset' = \Omega$
Empty set/universal set	$\psi = zz$

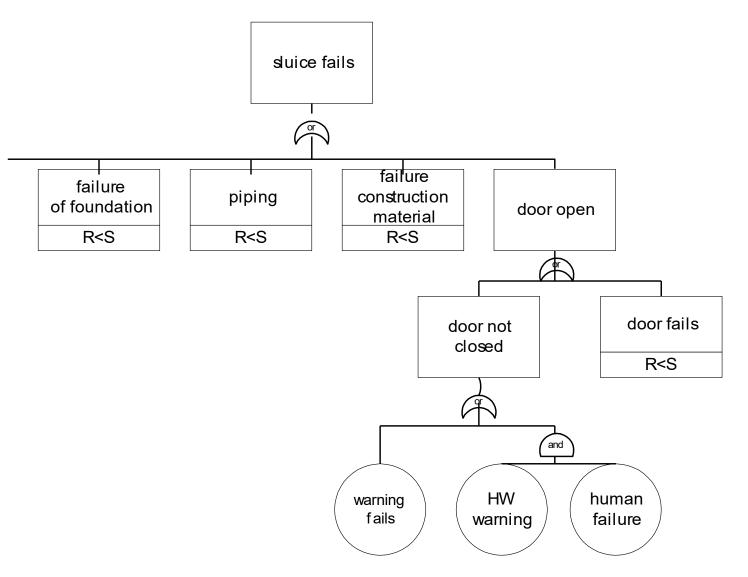
Example: Fault Tree Polder



Example: Fault Tree Polder

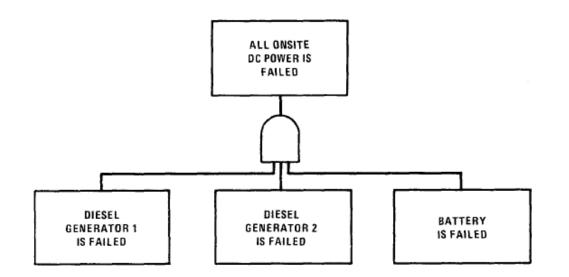


Example: Fault Tree Polder



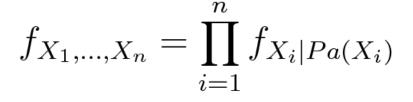
Fault Trees (AND)

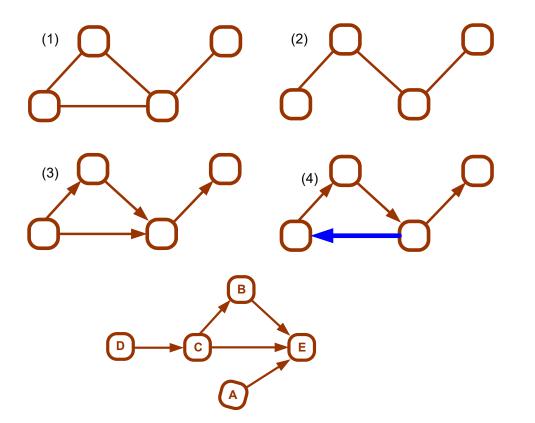
- Assume
- P(Diesel Generator 1 Fails) = 0,02 on demand
- P(Diesel Generator 2 Fails) = 0,02 on demand
- P(Battery Fails) = 0,05 on demand
- P(All onsite DC power is failed)?



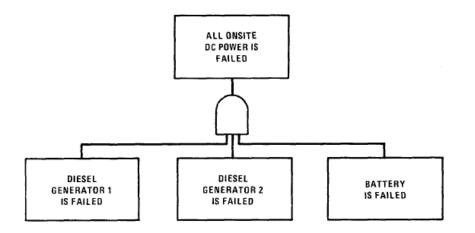
What is a Bayesian Network

- BNs Directed Acyclic Graph (3)
- Nodes represent random variables
- A,B,C (parents) of E (child);
- D NOT a direct influence for E (ancestor)
- $A \perp B$; $A \perp C$; $A \perp D$; $D \perp E \mid C$
- Information (influence) flow / sampling order:
- {A, {D \rightarrow C \rightarrow B}} \rightarrow E
- $\{\{D, A\} \rightarrow C \rightarrow B\} \rightarrow E$

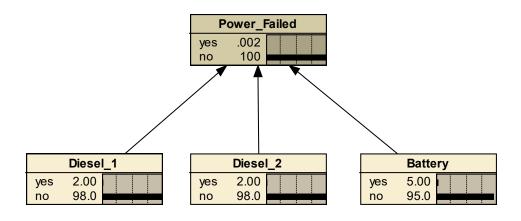




- Assume
- P(Diesel Generator 1 Fails) = 0,02 on demand
- P(Diesel Generator 2 Fails) = 0,02 on demand
- P(Battery Fails) = 0,05 on demand
- P(All onsite DC power is failed)?



Noue. For	ver_Failed	•		Apply	ОК
Chance V Probability Reset Close					
Diesel_1	Diesel_2	Battery	yes	no	
yes	yes	yes	100	0	
yes	yes	no	0	100	
yes	no	yes	0	100	
yes	no	no	0	100	
no	yes	yes	0	100	
no	yes	no	0	100	
no	no	yes	0	100	
no	no	no	0	100	

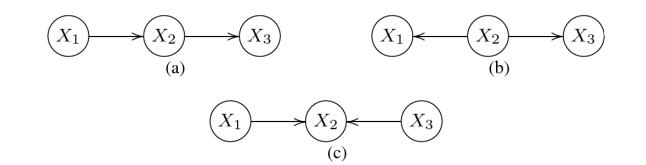


Information encoded in the graph (Semantics)

• a) X_1 is conditionally independent of X_3

 $(X_1 \not\perp X_3)$ $(X_1 \perp X_3 | X_2)$

• b) X_1 is conditionally independent of X_3

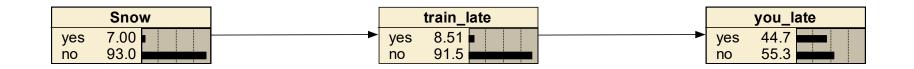


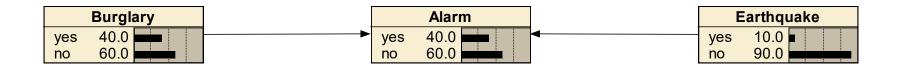
• c) X_1 is independent of X_3 but not conditionally independent

$$X_1 \perp X_3$$

 $X_1 \not\perp X_3 | X_2$
UDelft

Information encoded in the graph (Semantics)

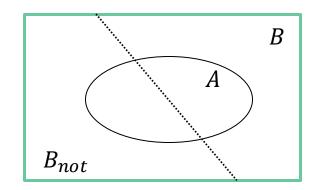




Fault Trees (AND with dependence)

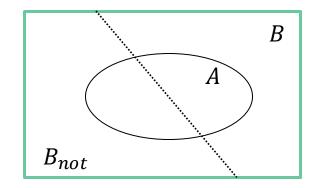
 $P(A) = P(A|B)P(B) + P(A|B_{not})P(B_{not})$ with $B \cap B_{not} = \emptyset$ and $B \cup B_{not} = \Omega$

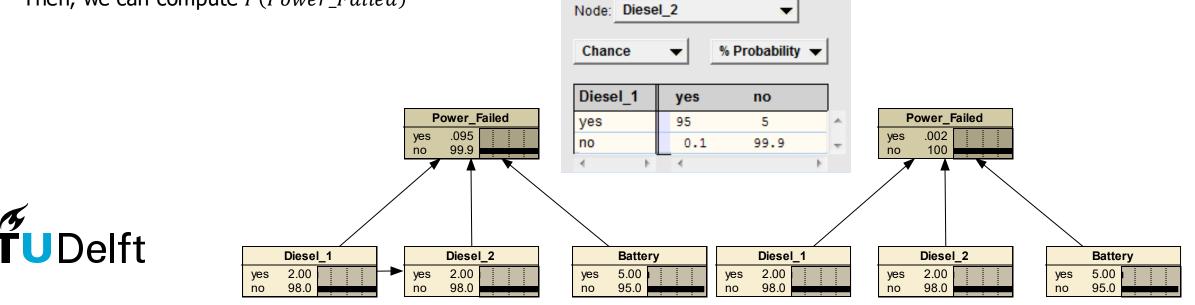
- $P(Diesel_2 = Yes) = 0.02$
- $P(Diesel_2 = Yes|Diesel_1 = No) = 0.001$ (from experts, data, or some other source)
- From total probability, we can evaluate $P(Diesel_2 = Yes | Diesel_1 = Yes)$:
- $P(Diesel_2 = Yes) = P(Diesel_2 = Yes|Diesel_1 = Yes)$



Fault Trees (AND with dependence)

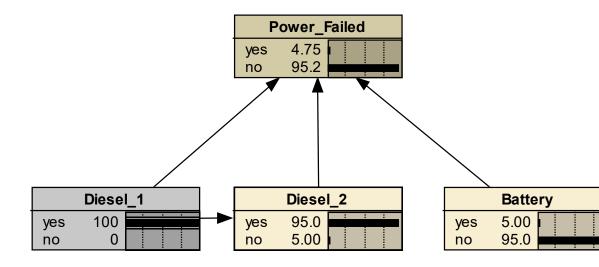
- $P(Diesel_2 = Yes) = 0.02$
- $P(Diesel_2 = Yes|Diesel_1 = No) = 0.001$ (from experts, data, or some other source)
- From total probability, we can evaluate $P(Diesel_2 = Yes | Diesel_1 = Yes)$:
- $P(Diesel_2 = Yes) = P(Diesel_2 = Yes|Diesel_1 = Yes) * P(Diesel_1 = Yes) +$
- $P(Diesel_2 = Yes|Diesel_1 = No) * P(Diesel_1 = No)$
- $\rightarrow 0.02 = P(Diesel_2 = Yes|Diesel_1 = Yes) * 0.02 + 0.001 * 0.98$
- Then, we can compute *P*(*Power_Failed*)

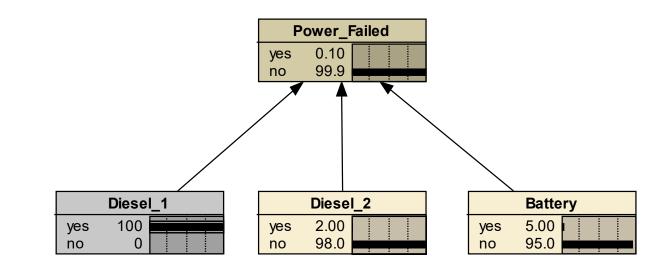


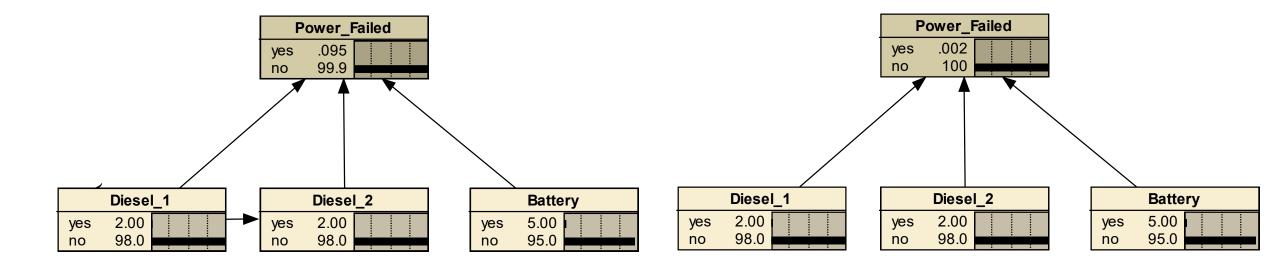


 $P(A) = P(A|B)P(B) + P(A|B_{not})P(B_{not})$ with $B \cap B_{not} = \emptyset$ and $B \cup B_{not} = \Omega$

Conditional distributions



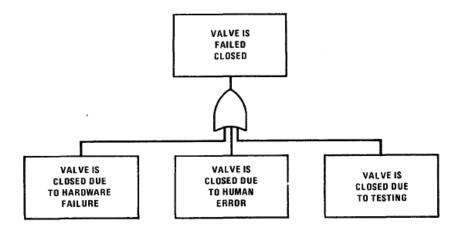


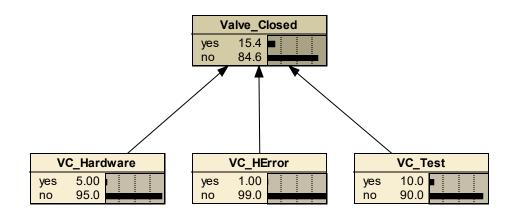


Fault Trees (OR)

- $P(VC_Hardware) = 0.05$, on demand
- $P(VC_HError) = 0.01$, on demand
- $P(VC_Test) = 0.1$, on demand
- What is *P*(*Valve_Closed*)?

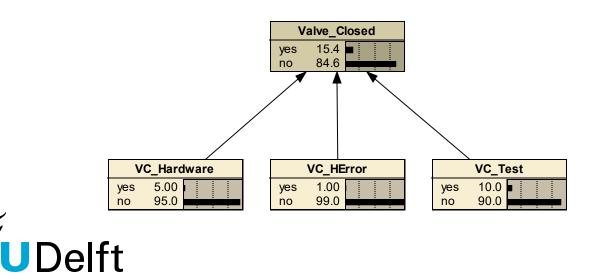
Node: Valve_Closed			Apply OK		
Deterministic 🗸	Function	•	Reset Close		
VC_Hardware	VC_HError	VC_Test	Valve_Closed		
yes	yes	yes	yes ^		
yes	yes	no	yes		
yes	no	yes	yes		
yes	no	no	yes		
no	yes	yes	yes		
no	yes	no	yes		
no	no	yes	yes		
no	no	no	no		

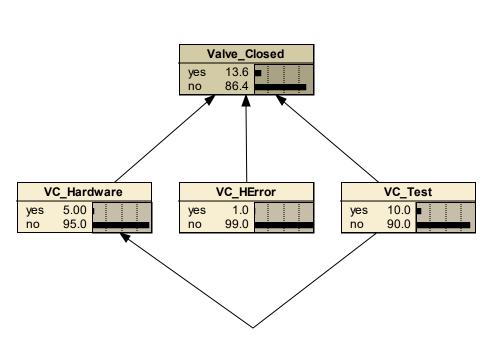




Fault Trees (OR with dependence)

- $P(VC_Hardware = No) = 0.95$
- $P(VC_Hardware = No|VC_Test = Yes) = 0.77$ (from experts, data, or some other source)
- From total probability, we can evaluate $P(VC_Hardware = No|VC_Test = No)$:
- P(VC_Hardware = No) = P(VC_Hardware = No|VC_Test = No) * P(VC_Test = No) +
- P(VC_Hardware = No|VC_Test = Yes) * P(VC_Test = Yes)
- $\rightarrow 0.95 = P(VC_Hardware = No|VC_Test = No) * 0.90 + 0.77 * 0.10$
- Then, we can compute *P*(*Valve_Closed*)





Node: VC_Hardware

T

yes

23

F 4

3

Chance

VC Test

yes

no

-

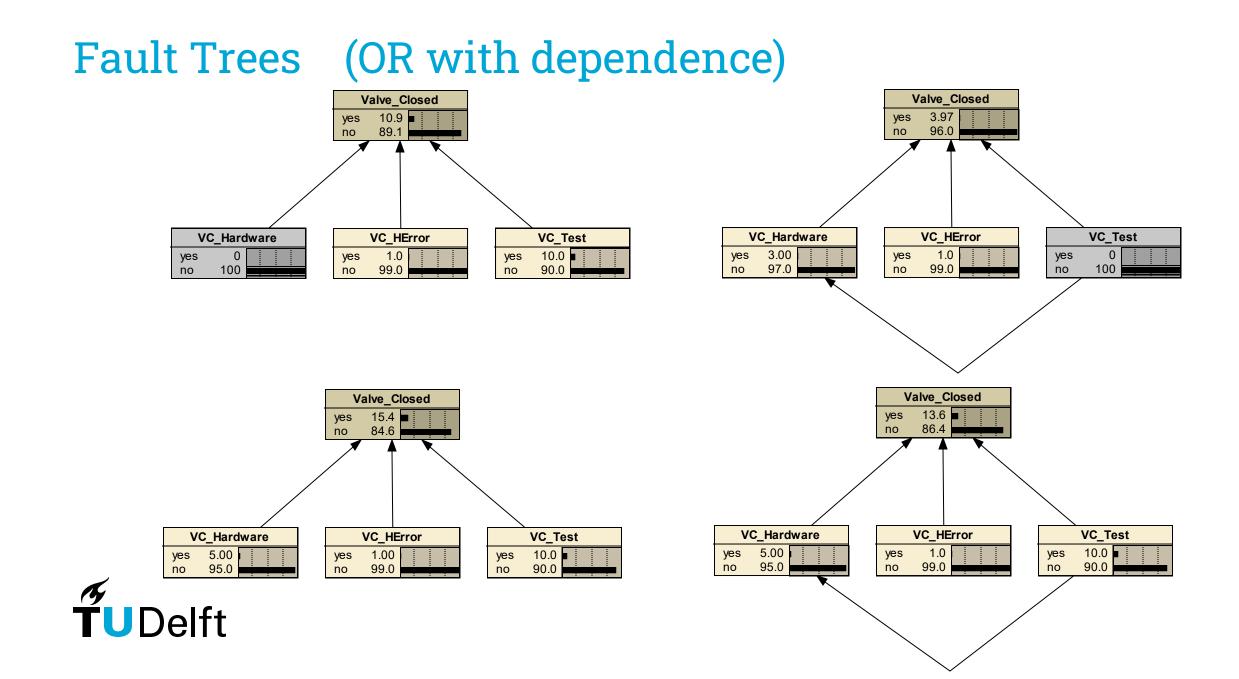
•

% Probability 💌

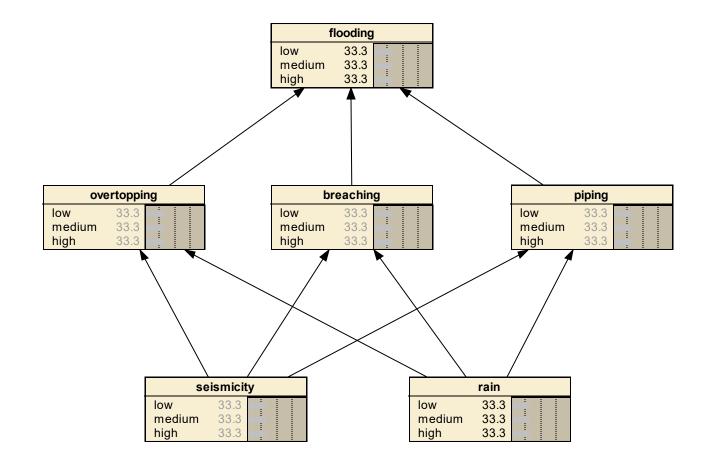
no

77

97



Simplified Flooding (during lecture)



Probabilistic Modelling of real-world phenomena through ObseRvations and Elicitation (MORE)

What is **MORE**?

Real-worldphenomena(e.g.,rainfall,earthquakes, cars crossing bridges, ocean waves)are random and unpredictable!

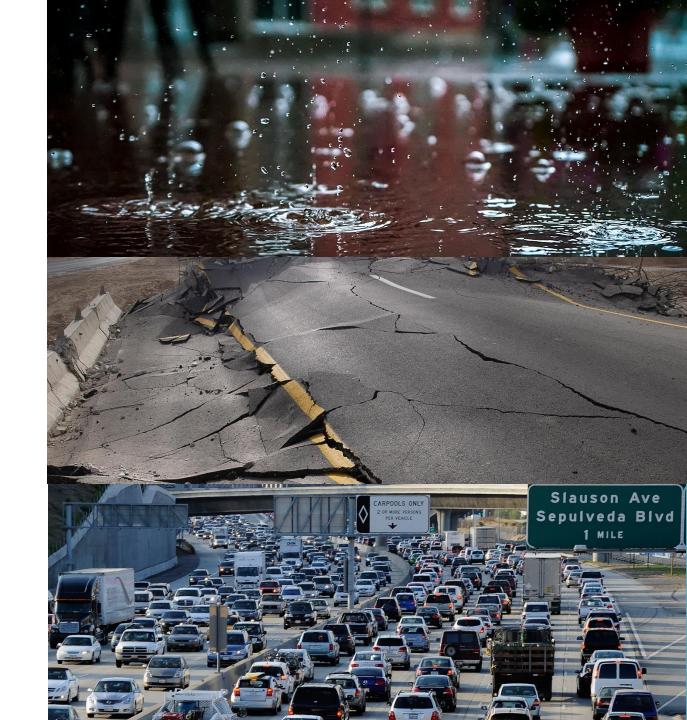
How can we take this into account in our engineering research and design?

What is **MORE**?

Real-world phenomena (e.g., rainfall, earthquakes, cars crossing bridges, ocean waves) are random and **unpredictable!**

How can we take this into account in our engineering research and design?

In this module, you will use advanced probabilistic methods that **incorporate observations and expert opinion to support decisions** that make our **lives safer and more manageable**.



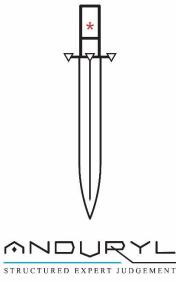
Who is **MORE**?

- You!
- Elisa Ragno (HE)
- Femke Vossepoel (Geo Eng)
- Patricia Mares Nasarre (HE)
- Anna Storiko (WM)
- Max Ramgraber (Geo Eng)
- Oswaldo Morales Napoles (HE)
- Robert Lanzafame (HE)
- Juan Pablo Aguilar-López (HE)

What will we do in **MORE**?

Week	Day	time	Торіс		Assignment	Group Project	Lecturer
							Elisa
1	BAYES THEOREM AND MCMC			A1	Form Group and	Anna	
1						Find Topic	Anna
	 						Anna
							Juan
2				A2	Form Group and	Elisa	
2	² Nonstatioanry distributions					Find Topic	Elisa
		-			A3		Elisa
						Elisa	
3					A4	Deadline Project	Patricia
						Proposal	Elisa
							Oswaldo
			A5	Refine Proposal	Oswaldo		
4						and Data	Elisa
4						collection	Oswaldo
L		10.40		(110 0(033)		Collection	-
							Max
5	DATA ASSIMILATION	A6	Data Collection	Max			
						and Processing	Max
			······				Oswaldo
6			Finalize Project	Oswaldo			
	EXPERT JUDGMENT		A7	Proposal including	Oswaldo		
	1					detailed porcessing	-
	20-12-2024	13:45	INO CLASS			of data	-

Anduryl, PyBanshee, Matlatzinca, Chimera and the modelling of risk and reliability



Oswaldo Morales Nápoles

