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What have you seen so far?

1. Identify what is an extreme value and 
apply it within the engineering context

2. Interpret and apply the concept of 
return period and design life

3. Apply extreme value analysis to 
datasets
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Learning objectives

1. Identify what is an extreme value and 
apply it within the engineering context

2. Interpret and apply the concept of 
return period and design life

3. Apply extreme value analysis to 
datasets

4. Apply techniques to support the 
threshold selection
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Join the Vevox session

Go to vevox.app

Enter the session ID: 178-023-242

Or scan the QR code



What is an extreme in probability theory?
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What is an extreme in probability theory?
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outlier
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a maximum
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independent
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Extremes and Extreme 
Value Analysis
An extreme observation is an observation 
that deviates from the average 
observations.

Infrastructures and systems are designed to 
withstand extreme conditions (ULS).

• Breakwater → wave storm

• Flood defences → floods, droughts

To properly design and assess infrastructures 
and system we need to characterize the 
uncertainty of the loads.
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Extreme Value Analysis
Based on historical observed extremes 
(limited)…

• Allows us to model the stochastic 
behaviour of extreme events

• Allows us to infer extremes we have 
not observed yet (extrapolation)
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Time series of observations of the 
loading variable

E
V
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Imagine you are working with a continuous variable, 
such as the discharge in a river (Q). You want to use the 
cumulative distribution function (CDF) to compute the 
probability of observing a discharge Q=100 m3/s. Which 
probability would you obtain?
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Exceedance probability, P[Q>100]

0%

Non-exceedance probability, P[Q<100]

0%

Probability of the event, P[Q=100]

0%



Imagine you are working with a continuous variable, 
such as the discharge in a river (Q). You want to use the 
cumulative distribution function (CDF) to compute the 
probability of observing a discharge Q=100 m3/s. Which 
probability would you obtain?
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Exceedance probability, P[Q>100]

35%

Non-exceedance probability, P[Q<100]

45%

Probability of the event, P[Q=100]

20%



Percentile and Exceedance Probability
Consider 𝒙𝒒such that 𝐏𝐫 𝑿 ≤ 𝒙𝒒 = 𝑭 𝒙𝒒 = 𝒒

▪ 𝒙𝒒 is the qth – percentile

▪ 𝐏𝐫 𝑿 > 𝒙𝒒 = 1 − 𝐹 𝑥𝑞 = 𝟏 − 𝒒 = 𝒑 is the exceedance probability

80th-percentile: 𝑥𝑞 = 3.60

𝑃 𝑟 𝑋 ≤ 3.6 = 0.8

Exceedance probability

𝑃 𝑟 𝑋 > 𝑥𝑞 = 0.20



Example case: intervention in the Mediterranean coast

• It may be a coastal structure, a 
water intake, the restoration of 
a sandy beach, between 
others.

• Here: design a mound 
breakwater

• Mound breakwater must resist 
wave storms → Hs

• But which one?
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Return Period

Assumption of stationarity: 

Every year the probability of the event 
being higher/lower than the threshold 

is always the same

𝑻𝑹 𝒕 =
𝟏

pf,y

The Return Period (TR) is the expected time between exceedances. 

“In other words, we have to make, on average, 1/pf,y trials in order that 

the event happens once” (Gumbel) or wait 1/pf,y years before the 

next occurrence, being pf,y the exceedance probability.
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Design requirements – Binomial distribution
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• DL = 20 years

• pf,DL =  0.20

𝑇𝑅 =
1

pf,y

=
1

1 − (1 − pf,DL)
1/𝐷𝐿

𝑇𝑅 =
1

pf,y

=
1

1 − (1 − 0.2)1/20
≈ 90 𝑦𝑒𝑎𝑟𝑠

pf,y ≈ 0.011



Learning objectives

1. Identify what is an extreme value and 
apply it within the engineering context

2. Interpret and apply the concept of 
return period and design life

3. Apply extreme value analysis to 
datasets

4. Apply techniques to support the 
threshold selection
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EVA: Sampling and distributions
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Time series
Can I use all the 

values in the time 

series for the 

analysis?
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We need to sample extreme values!



Which one of the following options is a sampling 
technique for extremes? You may select more than one 
option.
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Peak Over Threshold

0%

Block Selection

0%

Generalized Extreme Value (GEV)

0%

Point Over Threshold

0%

Block Maxima

0%



Which one of the following options is a sampling 
technique for extremes? You may select more than one 
option.
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Peak Over Threshold

100%

Block Selection

0%

Generalized Extreme Value (GEV)

0%

Point Over Threshold

0%

Block Maxima

95.45%
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Sampling extremes: Block Maxima
1. Block Maxima
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Sampling extremes: Block Maxima
1. Block Maxima 

(typically block=1year)

• Maximum value 
within the block

• Number of selected 
events=number of 
blocks recorded (e.g.: 
number of years)

• Easy to implement
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Sampling extremes: Peak Over Threshold (POT)
2. Peak Over Threshold 

(POT)

• Usually, higher number 
of extremes identified

• Additional parameters:

• Threshold (th)

• Declustering time (dl)



And what about the distributions?
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Choose the right pairs of sampling technique with 
distribution function.
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Peak Over Threshold (POT) with Generalized Pareto Distribution (GPD)

0%

Block Maxima (BM) with Generalized Pareto Distribution (GPD)

0%

Block Maxima (BM) with Generalized Extreme Value distribution (GEV)

0%

Peak Over Threshold (POT)  with Generalized Extreme Value distribution (GEV)

0%



Choose the right pairs of sampling technique with 
distribution function.
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Peak Over Threshold (POT) with Generalized Pareto Distribution (GPD)

63.16%

Block Maxima (BM) with Generalized Pareto Distribution (GPD)

31.58%

Block Maxima (BM) with Generalized Extreme Value distribution (GEV)

63.16%

Peak Over Threshold (POT)  with Generalized Extreme Value distribution (GEV)

36.84%



Block Maxima and Generalized Extreme Value Distribution

▪ We are interested in modelling the maximum of the sequence 𝑋 = 𝑋1, … , 𝑋𝑛
of iid random variables, 𝑀𝑛 = max(𝑋1, … , 𝑋𝑛), where n is the number of 
observations in a given block. 

▪ We can prove that for large n, those maxima tend to the Generalized 
Extreme Value (GEV) family of distributions, regardless the distribution 
of X.

𝑃 𝑀𝑛 ≤ 𝑥 → 𝐺(𝑥)
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Generalized Extreme Value is defined as

With parameters location (.                  ), scale ( .      ) and shape (                  ).

Block Maxima and Generalized Extreme Value Distribution
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Location parameter (µ)

Higher µ, right 
displacement of the 
distribution, higher values.



Generalized Extreme Value is defined as

With parameters location (.                  ), scale ( .      ) and shape (                  ).

Block Maxima and Generalized Extreme Value Distribution
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Scale parameter (𝝈)

Higher 𝝈, wider 
distribution.



Generalized Extreme Value is defined as

With parameters location (.                  ), scale ( .      ) and shape (                  ).

Block Maxima and Generalized Extreme Value Distribution
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Shape parameter (𝝃)

Determines the tail of the
distribution.



Let’s apply it
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• Load: significant wave height (TR=90 
years)

• 20 years of hourly measurements → 20 
yearly maxima samples

read observations

for each year i:

obs_max[i] = max(observations in year i)

end

fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-

Smirnov test)

inverse GEV to determine the design

event



Let’s apply it
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• 20 years of hourly measurements → 20 
yearly maxima samples

read observations

for each year i:

obs_max[i] = max(observations in year i)

end

fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-

Smirnov test)

inverse GEV to determine the design

event



Let’s apply it
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• Load: significant wave height (TR=90 
years)

• 20 years of hourly measurements → 20 
yearly maxima samples

read observations

for each year i:

obs_max[i] = max(observations in year i)

end

fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-

Smirnov test)

inverse GEV to determine the design

event



Common mistakes - Let’s talk about the units 
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▪ Daily maxima of discharges Q is performed on the observations which last 
for 5 years. We have then 365x5=1,825 extremes. A GEV is fitted.

▪ We want to compute the discharge associated with a return period of 100 
years.

??



Common mistakes - Let’s talk about the units 

35

▪ Daily maxima: ‘units’ of the probabilities in the GEV distribution?



Common mistakes - Let’s talk about the units 
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▪ Daily maxima: ‘units’ of the probabilities in the GEV distribution
1

𝑑𝑎𝑦𝑠

▪ Return period: 100 years

𝑇𝑅 =
1

pf,y

→ pf,y =
1

𝑇𝑅
=

1

100 𝑦𝑒𝑎𝑟𝑠

𝑇𝑅 =
1

pf,y
→ pf,y =

1

𝑇𝑅
=

1

100 𝑦𝑒𝑎𝑟𝑠

1 𝑦𝑒𝑎𝑟

365 𝑑𝑎𝑦𝑠
= 2.7 ∙ 10−5 1/days



POT and Generalized Pareto Distribution

▪ The maximum of the sequence 𝑋 = 𝑋1, … , 𝑋𝑛 of iid random variables, 𝑀𝑛 =
max(𝑋1, … , 𝑋𝑛), where n is the number of observations in a given block, 
follows the Generalized Extreme Value (GEV) family of distributions, 
regardless the distribution of X for large n.

𝑃 𝑀𝑛 ≤ 𝑥 → 𝐺(𝑥)

▪ If that is true, the distribution of the excesses can be approximated by a 
Generalized Pareto distribution.

𝐹𝑡ℎ = 𝑃 𝑋 − 𝑡ℎ ≤ 𝑥 𝑋 > 𝑡ℎ → 𝐻(𝑦)

▪ where the excesses are defined as Y=X−th for X>th

37



With parameters threshold (th>0), pareto’s scale (𝜎𝑡ℎ > 0) and shape (                    ).

POT and Generalized Pareto Distribution
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Threshold (th)

Acts like a location 
parameter.



With parameters threshold (th>0), pareto’s scale (𝜎𝑡ℎ > 0) and shape (                    ).

POT and Generalized Pareto Distribution
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Scale parameter (𝝈𝒕𝒉)

Higher 𝝈𝒕𝒉, wider 
distribution.



With parameters threshold (th>0), pareto’s scale (𝜎𝑡ℎ > 0) and shape (                    ).

POT and Generalized Pareto Distribution
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Shape parameter (𝝃)

▪ 𝝃<0: upper bound

▪ 𝝃>0: heavy tail

▪ 𝝃=0 & th = 0: Exponential

▪ 𝝃=-1: Uniform



Let’s talk about the units again…
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▪ POT of discharges Q is performed on the observations which last for 5 
years. A GPD is fitted to the observations.

▪ We want to compute the discharge associated with a return period of 
100 years.



Let’s talk about the units again…
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▪ POT: units of the probabilities in the GPD?

▪ Event-wise probabilities: not a fixed number in a time block

▪ We use the average number of exceedances per year



Let’s apply it
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• Load: significant wave height (TR=90 
years)

read observations

th = 2.5

dl = 48 #in hours

excesses = find_peaks(observations,

threshold = th, distance = dl) – th

fit GPD(excesses)

check fit (e.g., QQ-plot or Kolmogorov-

Smirnov test)

determine lambda

inverse GPD to determine the design

event



Let’s apply it
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Let’s apply it
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• Load: significant wave height (TR=90 
years)

read observations

th = 2.5

dl = 48 #in hours

excesses = find_peaks(observations,

threshold = th, distance = dl) – th

fit GPD(excesses)

check fit (e.g., QQ-plot or Kolmogorov-

Smirnov test)

determine lambda

inverse GPD to determine the design

event

TR=90 years

M = 20 years

nth = 54 events

መ𝜆 =
54

20
= 2.7



Learning objectives

1. Identify what is an extreme value and 
apply it within the engineering context

2. Interpret and apply the concept of 
return period and design life

3. Apply extreme value analysis to 
datasets

4. Apply techniques to support the 
threshold selection
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EVA: Threshold and 
declustering time selection.
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Choosing POT parameters

Basic assumption of EVA: extremes are iid th and dl should be chosen so the identified extreme

events are independent.

Extremes cluster in 
time!

If dl is big enough, we 
ensure that extremes 
do not belong to the 
same storm.

dl → th, physical 
phenomena (local 
conditions)



POT and Poisson
• Each hour is a trial (n → ∞)

• Over or below the threshold?

• pabove is very small (tail of 
the distribution)

• Block = 1 year

• Number of excesses over 
the threshold ~ Poisson

Almost all the techniques to formally select the threshold and declustering time for

POT are based on the assumption that the sampled extremes should follow a Poisson

distribution.



Samples: Poisson

If the number of excesses per year follows

a Poisson distribution
Sampled maxima are independent

• Compute the number of 
excesses per year

• Empirical pmf and cdf

• Fit Poisson distribution using 
Moments

• Check the fit

• Graphically

• Chi-squared test



Mean Residual Life (MRL) plot

MRL plot presents in the x-axis different values of th and, in the y-axis, the mean excess for that

value of the th. The range of appropriate threshold would be that where the mean excesses

follows a linear trend.



GPD parameter stability plot

GPD distribution is “threshold stable”

If the exceedances over a high threshold (th0) a GPD with parameters 𝜉 and 𝜎𝑡ℎ0, then for any

other threshold (th>th0), the exceedances will also follow a GPD with the same 𝜉 and

𝜎𝑡ℎ = 𝜎𝑡ℎ0 + 𝜉(𝑡ℎ − 𝑡ℎ0) 𝜎∗ = 𝜎𝑡ℎ − 𝜉𝑡ℎ 𝜎∗ = 𝜎𝑡ℎ0 − 𝜉 𝑡ℎ0



Dispersion Index (DI)

Based on Poisson process

Property of Poisson distribution:

Dispersion Index: 𝐷𝐼 =
𝜎2

𝜇
≈ 1

Confidence interval for DI:



Learning objectives

1. Identify what is an extreme value and 
apply it within the engineering context

2. Interpret and apply the concept of 
return period and design life

3. Apply extreme value analysis to 
datasets

4. Apply techniques to support the 
threshold selection
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Practicalities… workbook and homework
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▪ Workbook: theory with the new methods to select threshold

▪ Homework:

▪ Pick one method per person and have the code ready for Friday

▪ Hint: there is pseudo code in the book!



Any questions?
Patricia Mares Nasarre

p.maresnasarre@tudelft.nl

▪
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