

What have you seen so far?

- 1. Identify what is an **extreme value** and apply it within the engineering context
- 2. Interpret and apply the concept of return period and design life
- **3**. Apply **extreme value analysis** to datasets

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- 2. Interpret and apply the concept of return period and design life
- 3. Apply **extreme value analysis** to datasets
- 4. Apply techniques to support the threshold selection

Join the Vevox session

Go to vevox.app Enter the session ID: 178-023-242 Or scan the QFC code

Question slide

TUDelft

Join at: vevox.app .ID: 178-023-242 vviiat is an extreme in probability theory?

> value far from mean far from average is an eve maximum the maximum value pends on et a peak value abo independent very big values an very high or low highest/lowest value over threshold

Showing Results

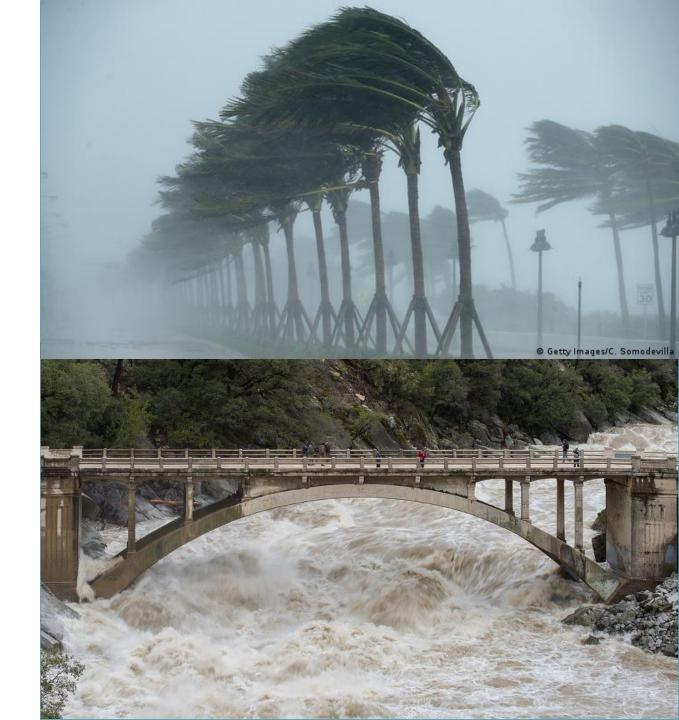
Extremes and Extreme Value Analysis

An **extreme observation** is an observation that **deviates from the average observations.**

Infrastructures and systems are designed to withstand extreme conditions (ULS).

- Breakwater \rightarrow wave storm
- Flood defences \rightarrow floods, droughts

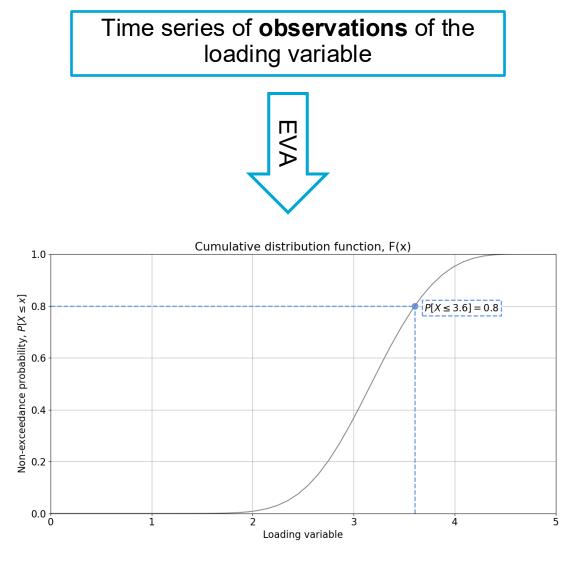
To properly design and assess infrastructures and system we need to characterize the uncertainty of the loads.

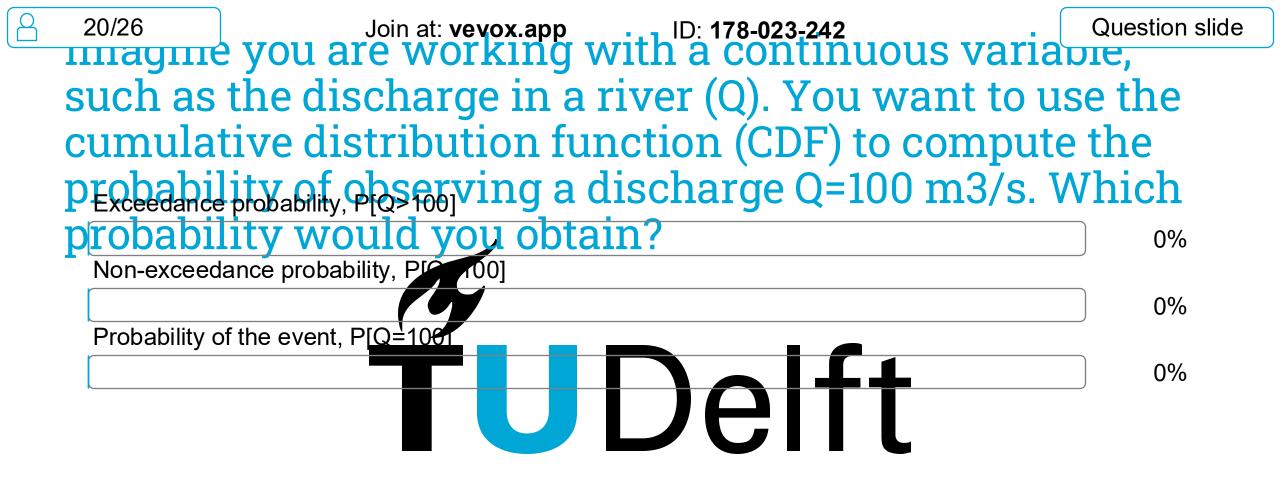


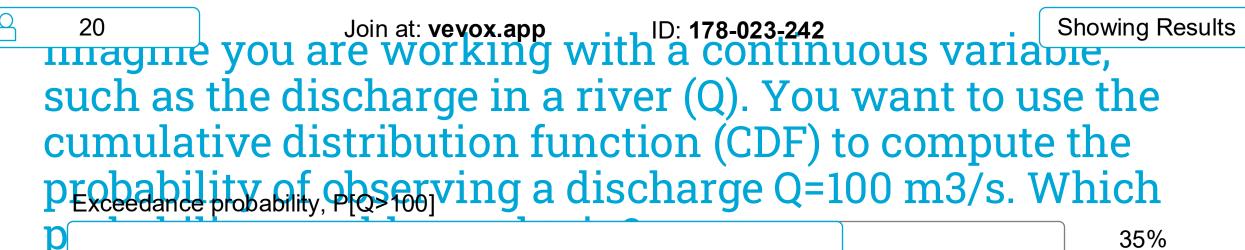
Extreme Value Analysis

Based on historical observed extremes (limited)...

- Allows us to model the stochastic behaviour of extreme events
- Allows us to infer extremes we have not observed yet (extrapolation)







Non-exceedance probability, PI2 100]

45%

20%

Probability of the event, P[Q=106]

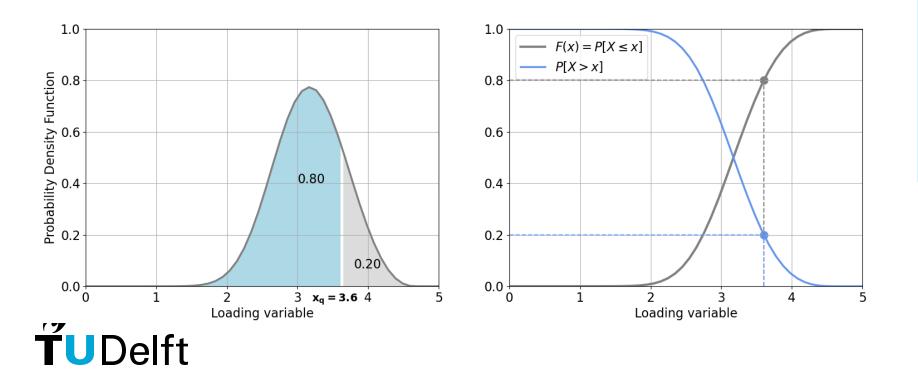
Deiff

Percentile and Exceedance Probability

Consider x_q such that $\Pr(X \le x_q) = F(x_q) = q$

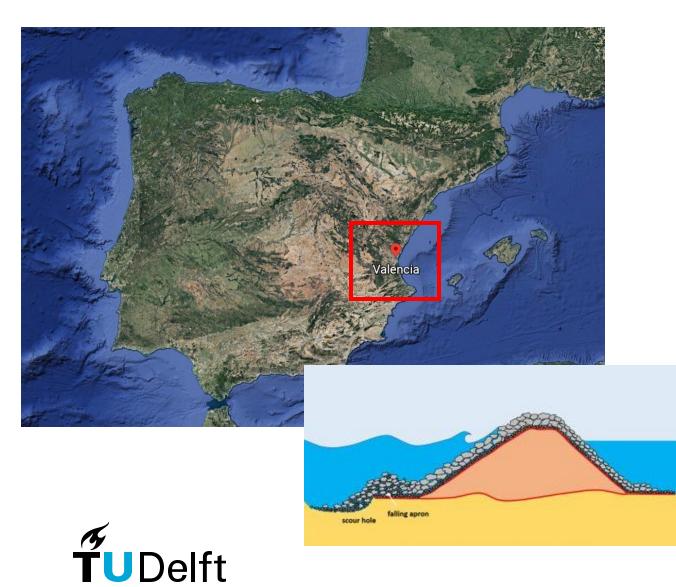
• x_q is the q^{th} – percentile

• $Pr(X > x_q) = 1 - F(x_q) = 1 - q = p$ is the exceedance probability



80th-percentile: $x_q = 3.60$ $P r(X \le 3.6) = 0.8$ **Exceedance probability** $P r(X > x_q) = 0.20$

Example case: intervention in the Mediterranean coast

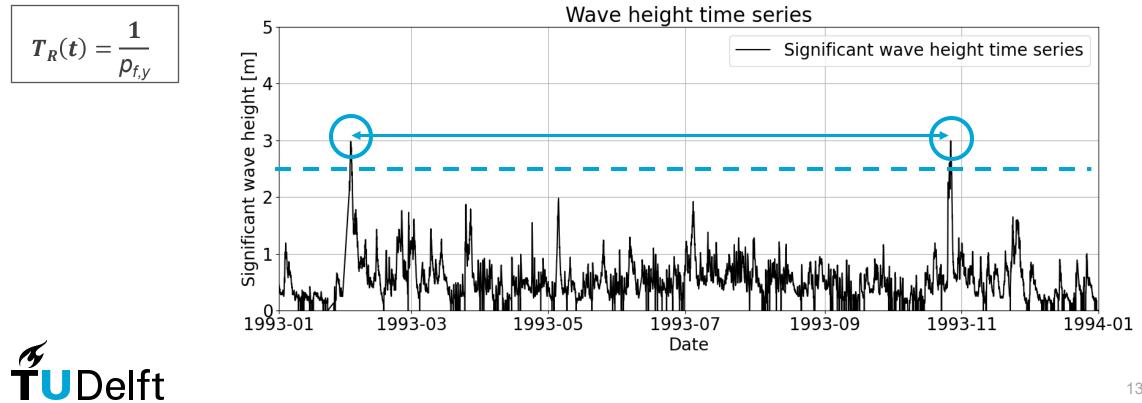


- It may be a coastal structure, a water intake, the restoration of a sandy beach, between others.
- Here: design a mound breakwater
- Mound breakwater must resist wave storms $\rightarrow H_s$
- But which one?

Return Period

The Return Period (T_R) is the expected time between exceedances. "In other words, we have to make, on average, $1/p_{f,v}$ trials in order that the event happens once" (Gumbel) or wait $1/p_{f,y}$ years before the **next occurrence**, being $p_{f,v}$ the exceedance probability.

Assumption of stationarity: Every year the probability of the event being higher/lower than the threshold is always the same



Design requirements – Binomial distribution

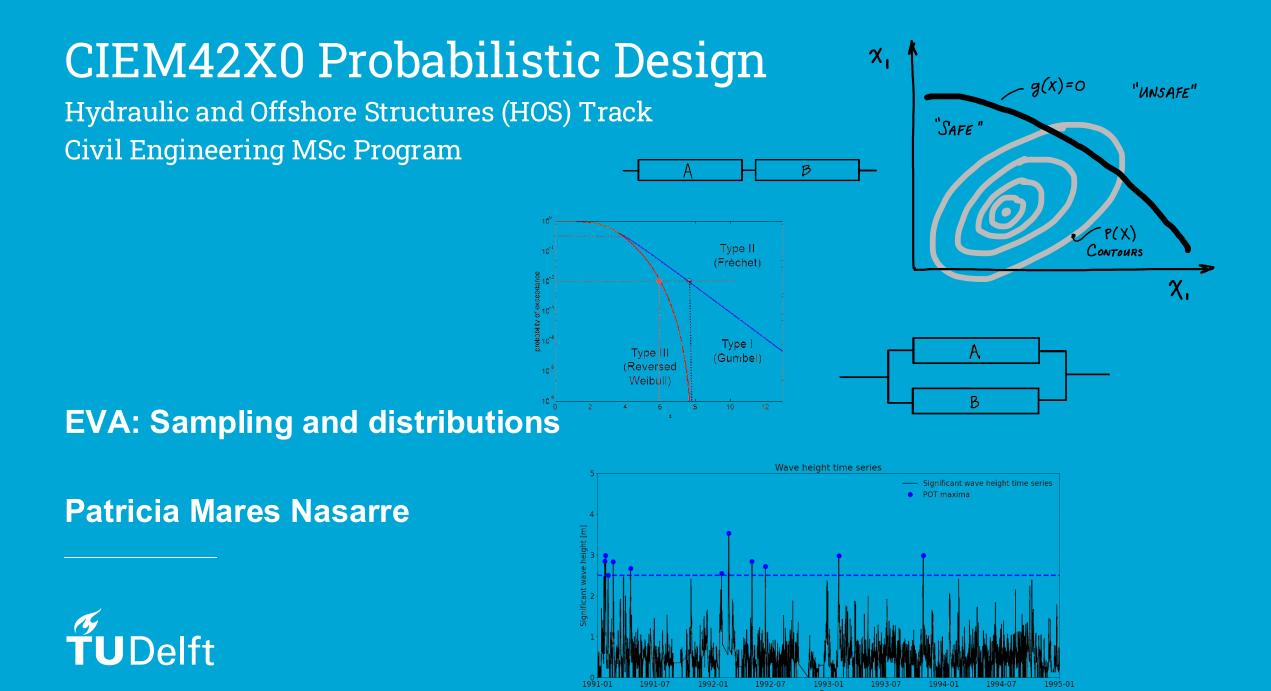
$$T_R = \frac{1}{p_{f,y}} = \frac{1}{1 - (1 - p_{f,DL})^{1/DL}}$$

• DL = 20 years
•
$$p_{f,DL} = 0.20$$

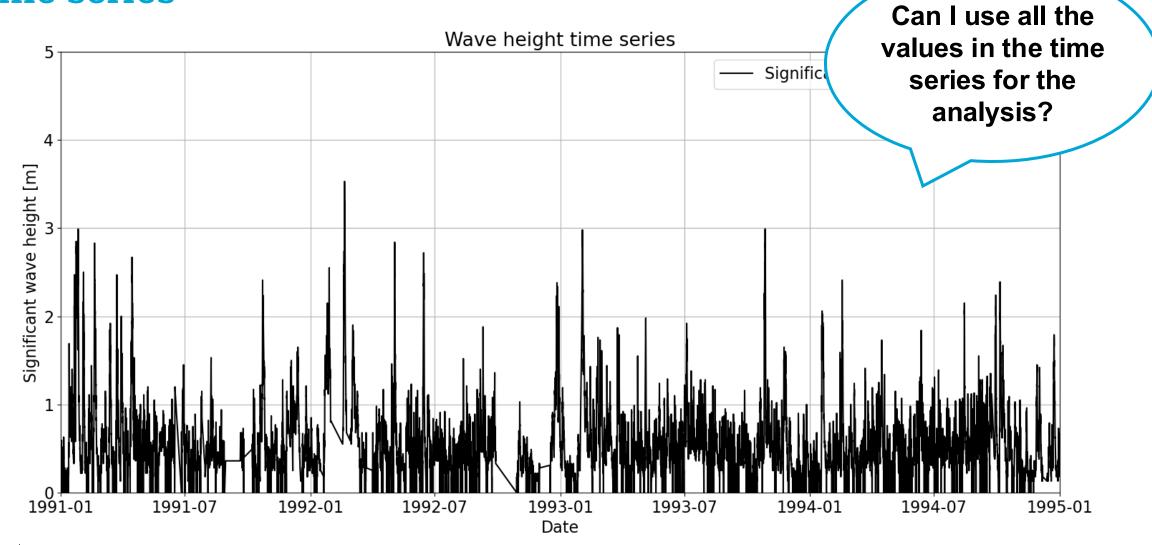
$$T_R = \frac{1}{p_{f,y}} = \frac{1}{1 - (1 - 0.2)^{1/20}} \approx 90 \text{ years}$$
• $p_{f,y} \approx 0.011$

Learning objectives

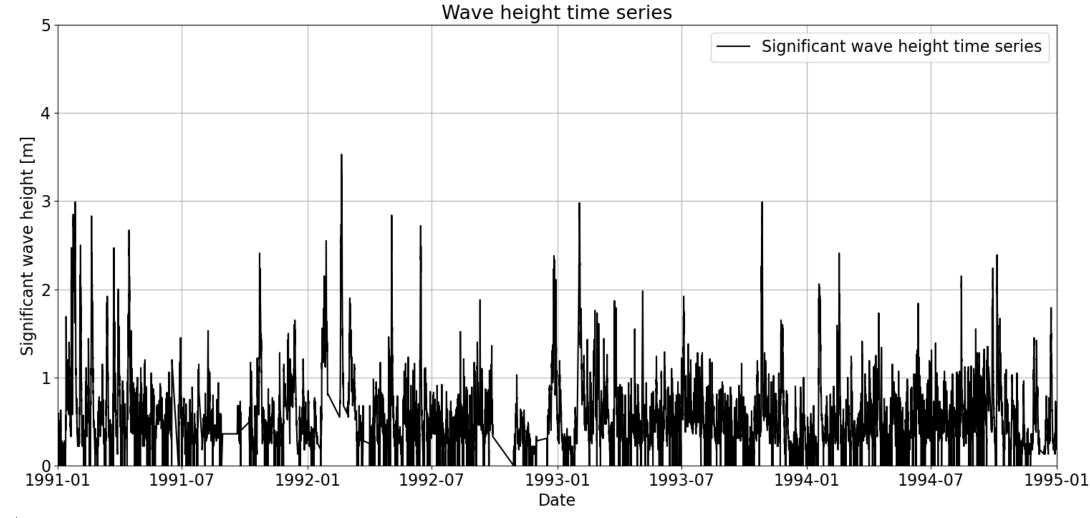
- 1. Identify what is an **extreme value** and apply it within the engineering context
- 2. Interpret and apply the concept of return period and design life
 - 3. Apply **extreme value analysis** to datasets
 - 4. Apply techniques to support the threshold selection



Time series

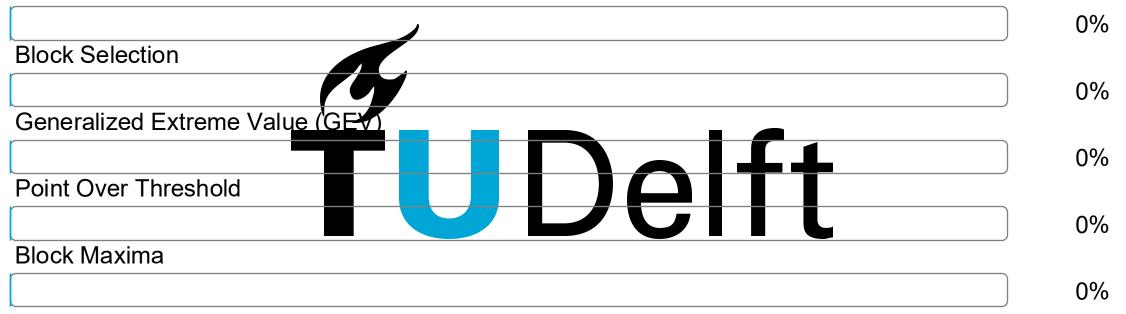


We need to sample extreme values!



^{22/25} Join at: vevox.app D: 178-023-242 Question slide vvinci one of the following options is a sampling technique for extremes? You may select more than one option.

Peak Over Threshold

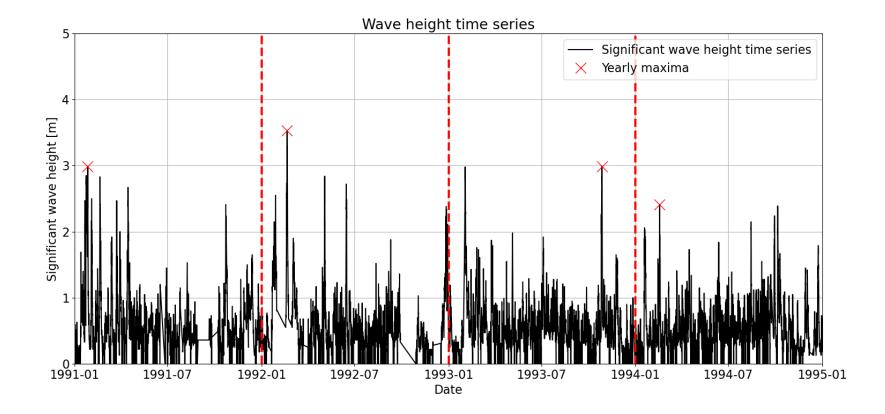


²² Join at: vevox.app ID: 178-023-242 Showing Results vvinci one of the following options is a sampling technique for extremes? You may select more than one option.

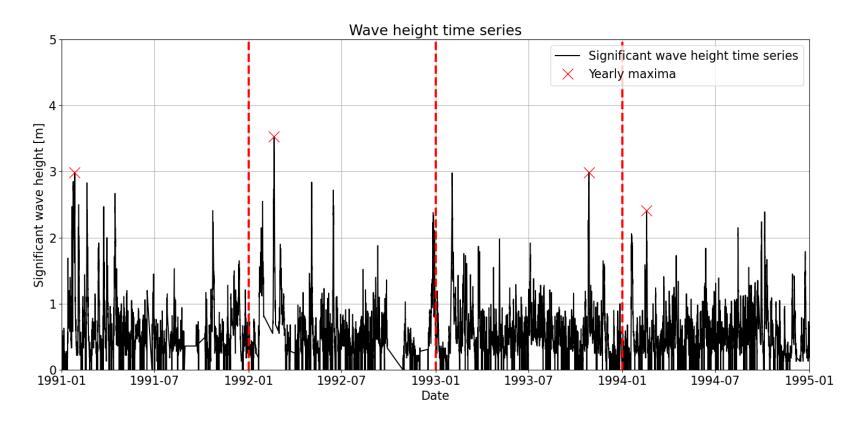
Peak Over Threshold Block Selection Generalized Extreme Value (GEV Point Over Threshold Block Maxima 95.45%

Sampling extremes: Block Maxima

1. Block Maxima



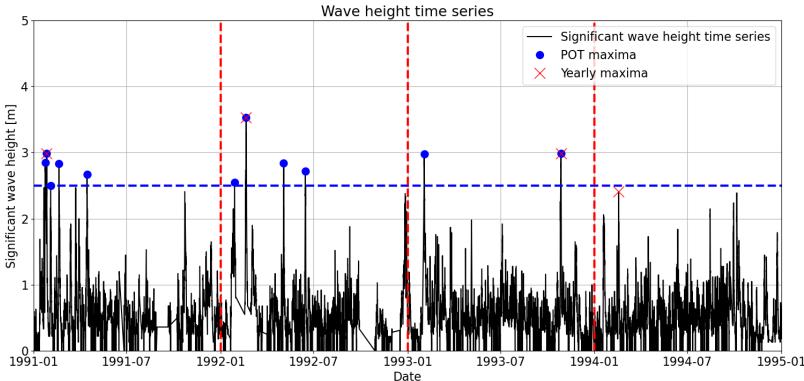
Sampling extremes: Block Maxima



1. Block Maxima (typically block=1year)

- Maximum value within the block
- Number of selected events=number of blocks recorded (e.g.: number of years)
- Easy to implement

Sampling extremes: Peak Over Threshold (POT)



2. Peak Over Threshold (POT)

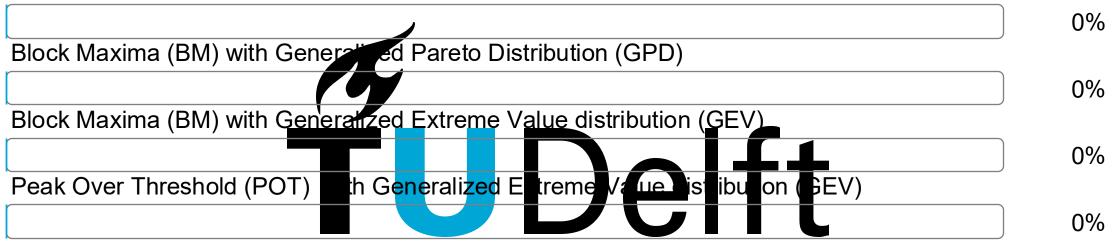
- Usually, higher number of extremes identified
- Additional parameters:
 - Threshold (*th*)
 - Declustering time (*dl*)

TUDelft

And what about the distributions?

19/23 CHOOSE the right pairs of sampling technique with distribution function.

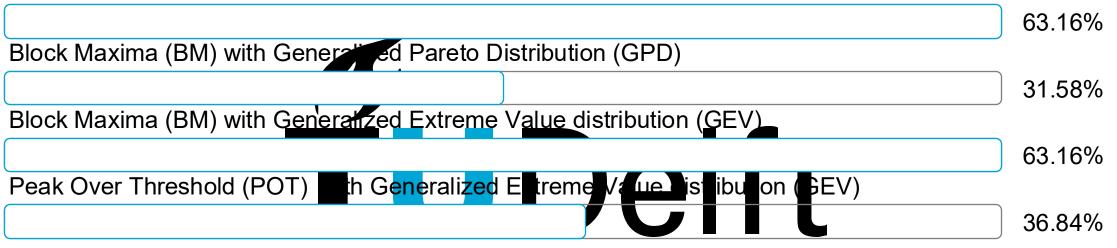
Peak Over Threshold (POT) with Generalized Pareto Distribution (GPD)



19 CHOOSE the right pairs of sampling technique with distribution function.

Peak Over Threshold (POT) with Generalized Pareto Distribution (GPD)

 \bigcirc



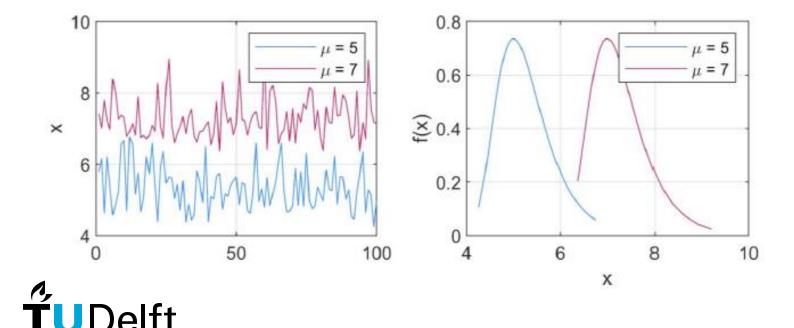
- We are interested in modelling the maximum of the sequence $X = X_1, ..., X_n$ of *iid* random variables, $M_n = \max(X_1, ..., X_n)$, where *n* is the number of observations in a given block.
- We can prove that for large n, those maxima tend to the Generalized Extreme Value (GEV) family of distributions, regardless the distribution of X.

 $P[M_n \le x] \to G(x)$

Generalized Extreme Value is defined as

$$G(x) = exp - [1 + \xi rac{x-\mu}{\sigma}]^{-1/\xi} \qquad (1 + \xi rac{x-\mu}{\sigma}) > 0$$

With parameters location ($-\infty < \mu < \infty$), scale ($\sigma > 0$) and shape ($-\infty < \xi < \infty$).



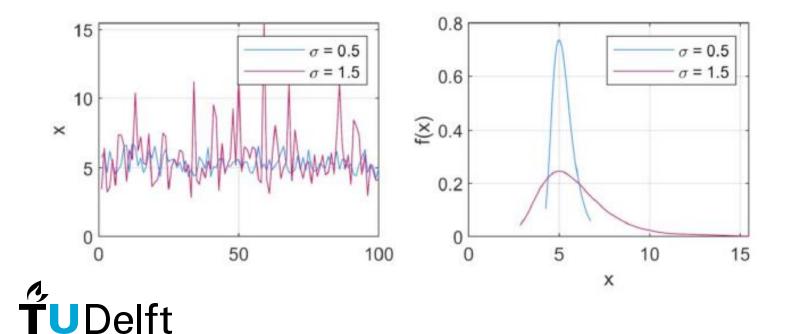
Location parameter (μ **)**

Higher μ , right displacement of the distribution, higher values.

Generalized Extreme Value is defined as

$$G(x) = exp - [1 + \xi rac{x-\mu}{\sigma}]^{-1/\xi} \qquad (1 + \xi rac{x-\mu}{\sigma}) > 0$$

With parameters location ($-\infty < \mu < \infty$), scale ($\sigma > 0$) and shape ($-\infty < \xi < \infty$).



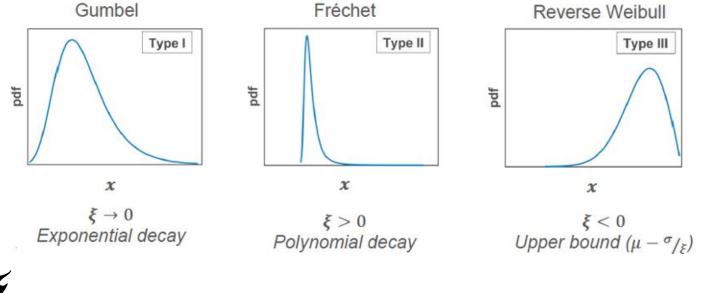
Scale parameter (σ)

Higher σ , wider distribution.

Generalized Extreme Value is defined as

 $G(x) = exp - [1 + \xi rac{x-\mu}{\sigma}]^{-1/\xi} \qquad (1 + \xi rac{x-\mu}{\sigma}) > 0$

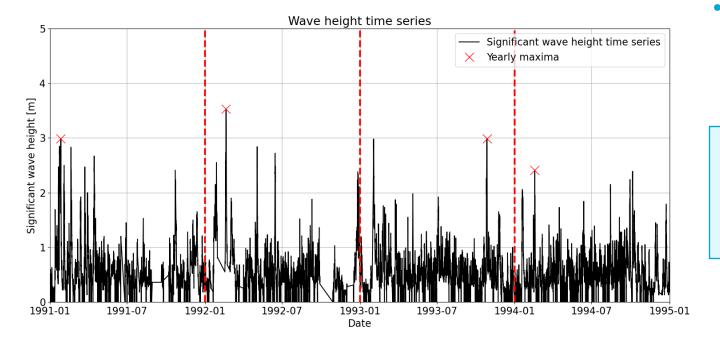
With parameters location ($-\infty < \mu < \infty$), scale ($\sigma > 0$) and shape ($-\infty < \xi < \infty$).



Shape parameter (ξ)

Determines the tail of the distribution.

Let's apply it



- Load: significant wave height (T_R=90 years)
- 20 years of hourly measurements → 20
 yearly maxima samples

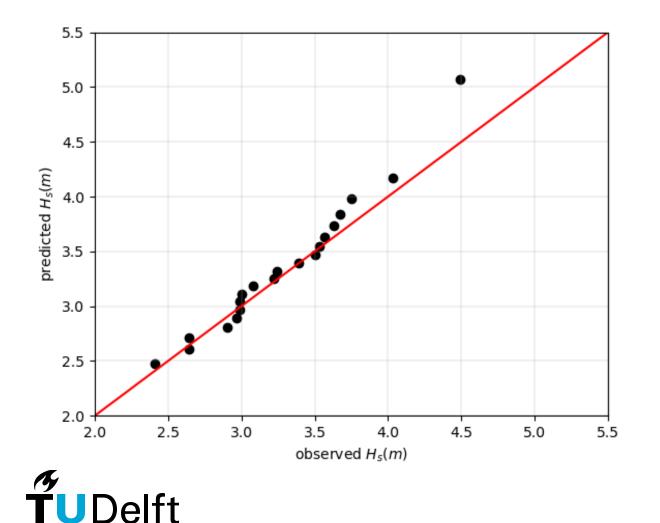
read observations
for each year i:
 obs_max[i] = max(observations in year i)
 end

fit GEV(obs_max)

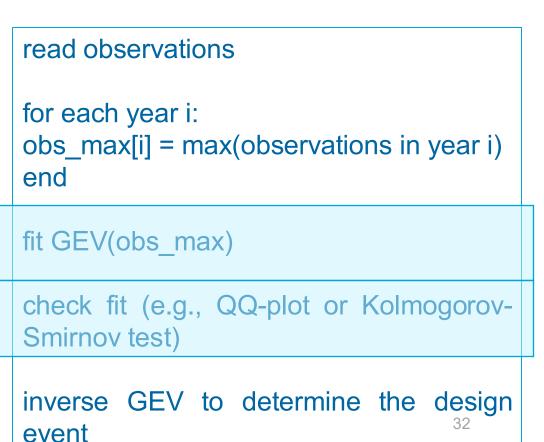
check fit (e.g., QQ-plot or Kolmogorov-Smirnov test)

inverse GEV to determine the design event

Let's apply it

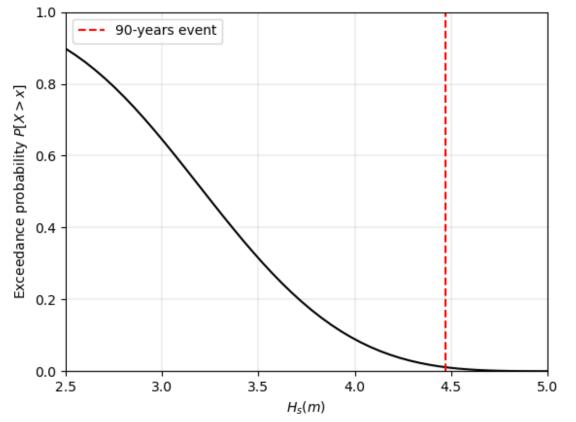


20 years of hourly measurements → 20 yearly maxima samples



Let's apply it

$$z_p = G^{-1}(1-p_{f,y}) = egin{cases} \mu - rac{\sigma}{\xi} [1-\{-log(1-p_{f,y})\}^{-\xi}] & for \ \xi
eq 0 \ \mu - \sigma log\{1-p_{f,y}\} & for \ \xi = 0 \end{cases}$$



- Load: significant wave height (T_R=90 years)
- 20 years of hourly measurements → 20 yearly maxima samples

read observations
for each year i:
 obs_max[i] = max(observations in year i)
 end
fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-Smirnov test)

inverse GEV to determine the design event

Common mistakes - Let's talk about the units

- <u>Daily maxima</u> of discharges Q is performed on the observations which last for 5 years. We have then 365x5=1,825 extremes. A GEV is fitted.
- We want to compute the discharge associated with a <u>return period of 100</u> <u>years</u>.

$$z_p = G^{-1}(1-p_{f,y}) = egin{cases} \mu - rac{\sigma}{\xi} [1-\{-log(1-p_{f,y})\}^{-\xi}] & for \ \xi
eq 0 \ \mu - \sigma log\{1-p_{f,y}\} & for \ \xi = 0 \end{cases}$$

Common mistakes - Let's talk about the units

Daily maxima: 'units' of the probabilities in the GEV distribution?

Common mistakes - Let's talk about the units

- Daily maxima: 'units' of the probabilities in the GEV distribution $\frac{1}{days}$
- Return period: 100 years

$$T_{R} = \frac{1}{p_{f,y}} \rightarrow p_{f,y} = \frac{1}{T_{R}} = \frac{1}{100 \text{ years}}$$
$$T_{R} = \frac{1}{p_{f,y}} \rightarrow p_{f,y} = \frac{1}{T_{R}} = \frac{1}{100 \text{ years}} \frac{1 \text{ year}}{365 \text{ days}} = 2.7 \cdot 10^{-5} \text{ 1/days}$$

$$z_p = G^{-1}(1-p_{f,y}) = egin{cases} \mu - rac{\sigma}{\xi} [1-\{-log(1-p_{f,y})\}^{-\xi}] & for \ \xi
eq 0 \ \mu - \sigma log\{1-p_{f,y}\} & for \ \xi = 0 \end{cases}$$

• The maximum of the sequence $X = X_1, ..., X_n$ of *iid* random variables, $M_n = \max(X_1, ..., X_n)$, where *n* is the number of observations in a given block, follows the Generalized Extreme Value (GEV) family of distributions, regardless the distribution of *X* for large *n*.

 $P[M_n \le x] \to G(x)$

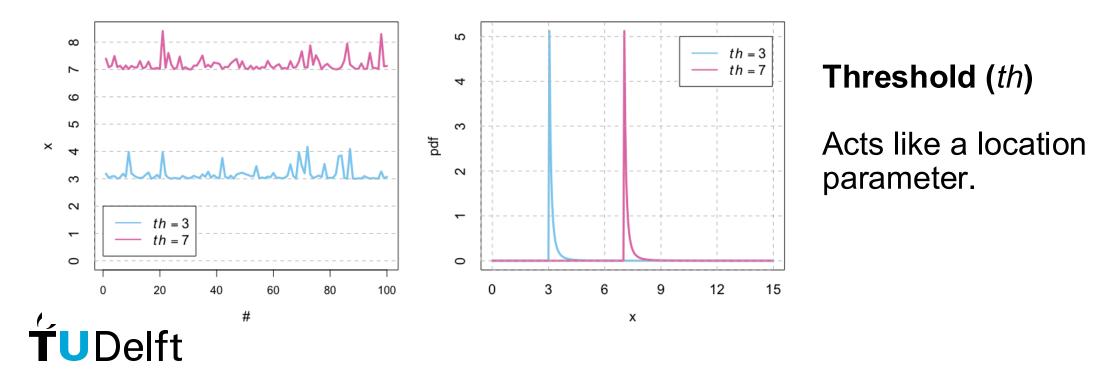
 If that is true, the distribution of the excesses can be approximated by a Generalized Pareto distribution.

$$F_{th} = P[X - th \le x | X > th] \to H(y)$$

where the excesses are defined as Y=X-th for X>th

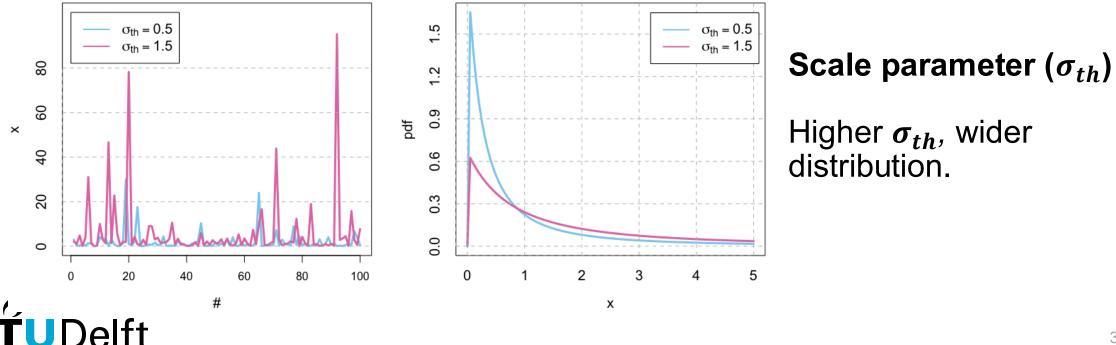
$$P[X < x | X > th] = egin{cases} 1 - \left(1 + rac{\xi(x-th)}{\sigma_{th}}
ight)^{-1/\xi} & for \ \xi
eq 0 \ 1 - exp\left(-rac{x-th}{\sigma_{th}}
ight) & for \ \xi = 0 \end{cases}$$

With parameters threshold (*th*>0), pareto's scale ($\sigma_{th} > 0$) and shape ($-\infty < \xi < \infty$).



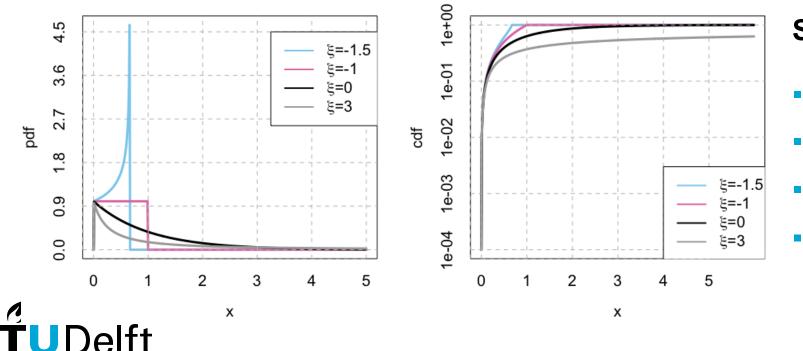
$$P[X < x | X > th] = egin{cases} 1 - \left(1 + rac{\xi(x-th)}{\sigma_{th}}
ight)^{-1/\xi} & for \ \xi
eq 0 \ 1 - exp\left(-rac{x-th}{\sigma_{th}}
ight) & for \ \xi = 0 \end{cases}$$

With parameters threshold (*th*>0), pareto's scale ($\sigma_{th} > 0$) and shape ($-\infty < \xi < \infty$).



$$P[X < x | X > th] = egin{cases} 1 - \left(1 + rac{\xi(x-th)}{\sigma_{th}}
ight)^{-1/\xi} & for \ \xi
eq 0 \ 1 - exp\left(-rac{x-th}{\sigma_{th}}
ight) & for \ \xi = 0 \end{cases}$$

With parameters threshold (*th*>0), pareto's scale ($\sigma_{th} > 0$) and shape ($-\infty < \xi < \infty$).



Shape parameter (ξ)

- *ξ*<0: upper bound
- *ξ*>0: heavy tail
- $\xi = 0 \& th = 0$: Exponential
- *ξ*=-1: Uniform

Let's talk about the units again...

- <u>POT</u> of discharges Q is performed on the observations which last for 5 years. A GPD is fitted to the observations.
- We want to compute the discharge associated with a <u>return period of</u> <u>100 years</u>.

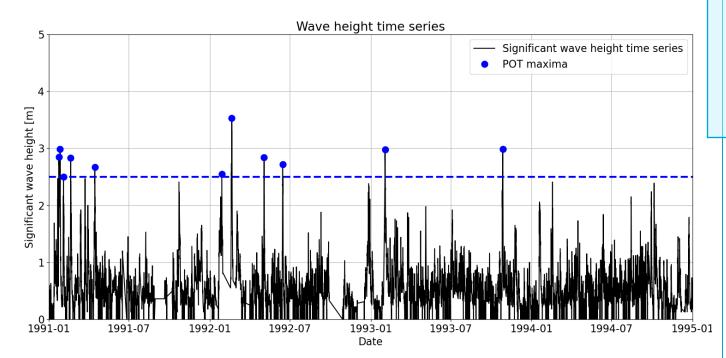
Let's talk about the units again...

• **POT:** units of the probabilities in the GPD?

Event-wise probabilities: not a fixed number in a time block

We use the average number of exceedances per year

Let's apply it



Load: significant wave height (T_R=90 years)

read observations

th = 2.5 dl = 48 #in hours excesses = find_peaks(observations, threshold = th, distance = dl) – th

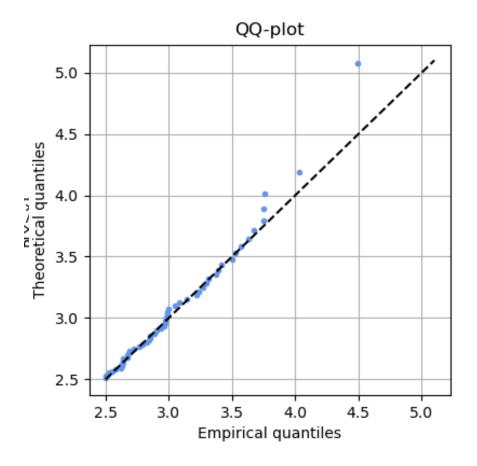
fit GPD(excesses)

check fit (e.g., QQ-plot or Kolmogorov-Smirnov test)

determine lambda

inverse GPD to determine the design event

Let's apply it



Load: significant wave height (T_R=90 years)

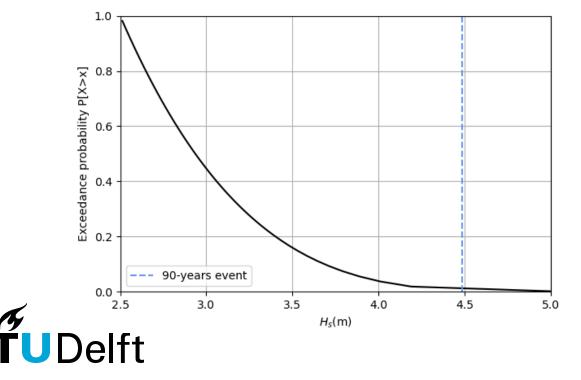
<pre>read observations th = 2.5 dl = 48 #in hours excesses = find_peaks(observations, threshold = th, distance = dl) - th</pre>
fit GPD(excesses)
check fit (e.g., QQ-plot or Kolmogorov- Smirnov test)
determine lambda
inverse GPD to determine the design event

Let's apply it

$$x_N = egin{cases} th + rac{\sigma_{th}}{\xi} [(\lambda N)^{\xi} - 1] & for \ \xi
eq 0 \ th + \sigma_{th} log(\lambda N) & for \ \xi = 0 \end{cases}$$

T_R=90 years
M = 20 years
$$\hat{\lambda} = \frac{54}{20} = 2.7$$

n_{th} = 54 events



Load: significant wave height (T_R=90 years)

read observations th = 2.5 dl = 48 #in hours excesses = find_peaks(observations, threshold = th, distance = dl) - th

fit GPD(excesses)

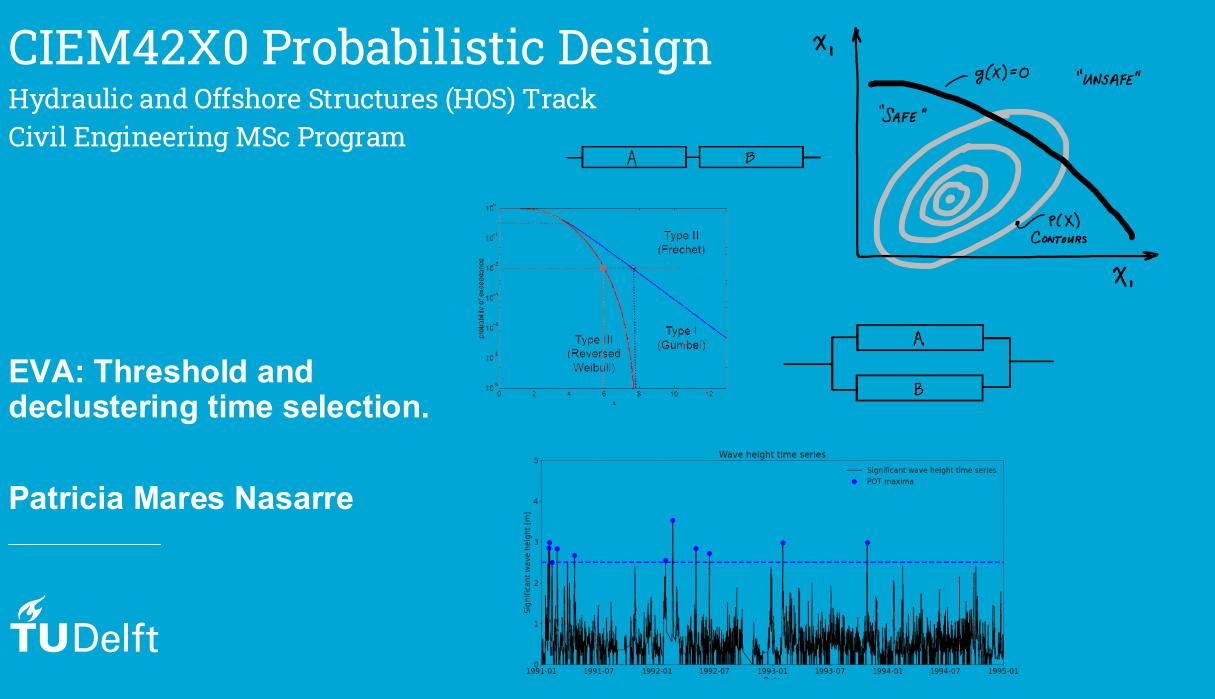
check fit (e.g., QQ-plot or Kolmogorov-Smirnov test)

determine lambda

inverse GPD to determine the design event

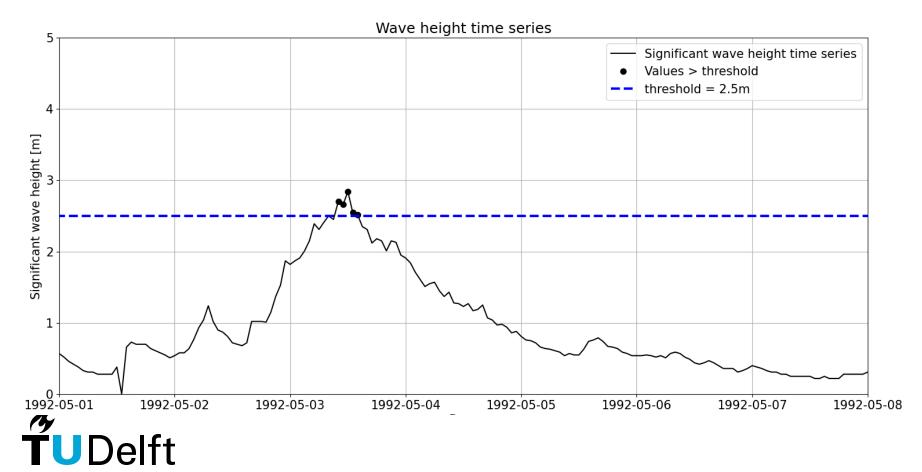
Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- Interpret and apply the concept of return period and design life
- 3. Apply extreme value analysis to datasets
 - 4. Apply techniques to support the threshold selection



Choosing POT parameters

Basic assumption of EVA: extremes are *iid th* and *dl* should be chosen so the identified extreme events are independent.

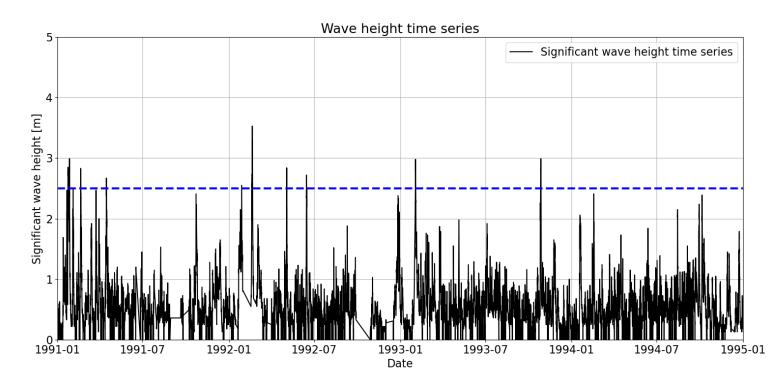


Extremes cluster in time!

If *dl* is big enough, we ensure that extremes do not belong to the same storm.

 $dl \rightarrow th$, physical phenomena (local conditions)

POT and Poisson

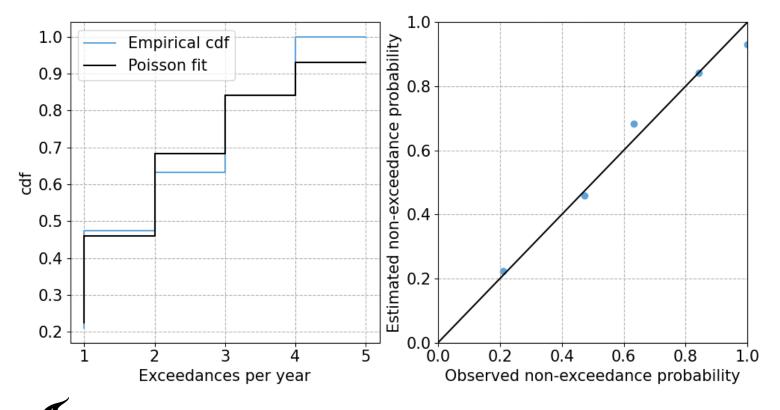


- Each hour is a trial $(n \rightarrow \infty)$
- Over or below the threshold?
- *p*_{above} is very small (tail of the distribution)
- Block = 1 year
- Number of excesses over the threshold ~ Poisson

Almost all the techniques to formally select the threshold and declustering time for POT are based on the assumption that the sampled extremes should follow a Poisson distribution.

Samples: Poisson

Delft



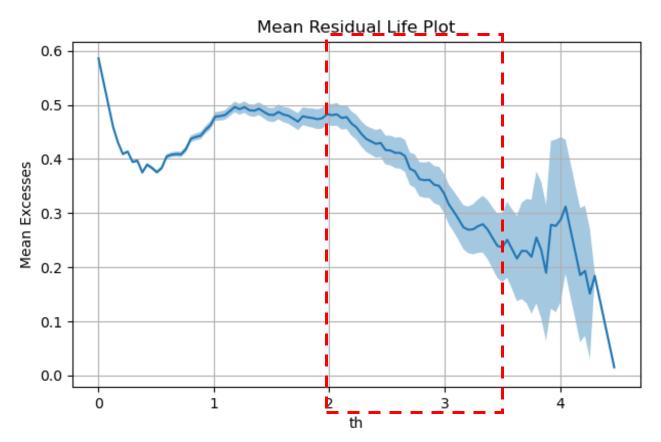
- Compute the number of excesses per year
- Empirical pmf and cdf
- Fit Poisson distribution using Moments

$$E[X] = Var[X] = \lambda$$

- Check the fit
 - Graphically
 - Chi-squared test

Mean Residual Life (MRL) plot

MRL plot presents in the x-axis different values of *th* and, in the y-axis, the mean excess for that value of the *th*. The range of **appropriate threshold** would be that where the **mean excesses follows a linear trend**.

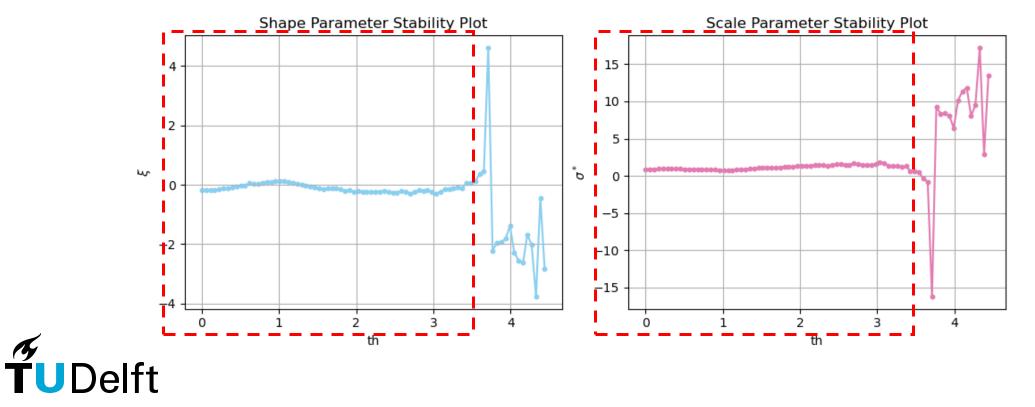


GPD parameter stability plot

GPD distribution is "threshold stable"

If the exceedances over a high threshold (*th0*) a GPD with parameters ξ and σ_{th0} , then for any other threshold (*th>th0*), the exceedances will also follow a GPD with the same ξ and

 $\sigma_{th} = \sigma_{th0} + \xi(th - th0) \implies \sigma^* = \sigma_{th} - \xi th \implies \sigma^* = \sigma_{th0} - \xi th0$



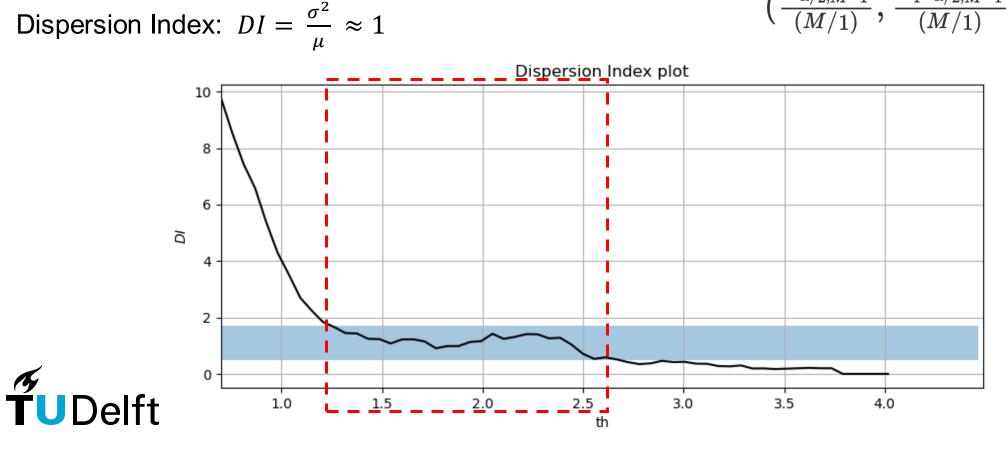
Dispersion Index (DI)

Based on Poisson process

Property of Poisson distribution: $E[X] = Var[X] = \lambda$

Confidence interval for DI:

$$(rac{\chi^2_{lpha/2,M-1}}{(M/1)},rac{\chi^2_{1-lpha/2,M-1}}{(M/1)})$$



Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- Interpret and apply the concept of return period and design life
- Apply extreme value analysis to datasets
 - 4. Apply techniques to support the threshold selection

Practicalities... workbook and homework

• Workbook: theory with the new methods to select threshold

• Homework:

- Pick one method per person and have the code ready for Friday
- Hint: there is pseudo code in the book!

Any questions?

Patricia Mares Nasarre

p.maresnasarre@tudelft.nl

