

1991-01

1994-01

1995-01

What have you seen so far?

- 1. Identify what is an **extreme value** and apply it within the engineering context
- 2. Interpret and apply the concept of **return period and design life**
- 3. Apply **extreme value analysis** to datasets

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- 2. Interpret and apply the concept of **return period and design life**
- 3. Apply **extreme value analysis** to datasets
- 4. Apply techniques to **support the threshold selection**

Join the Vevox session

Go to **vevox.app** Enter the session ID: **125-461-830** Or scan the QR code

TUDelft

SUITIS SLIDE

Extremes and Extreme Value Analysis

An **extreme observation** is an observation that **deviates from the average observations.**

Infrastructures and systems are designed to **withstand extreme conditions (ULS)** .

- Breakwater \rightarrow wave storm
- Flood defences \rightarrow floods, droughts

To properly design and assess infrastructures and system **we need to characterize the uncertainty of the loads** .

Extreme Value Analysis

Based on historical observed extremes (limited)…

- Allows us to **model** the stochastic behaviour of extreme events
- Allows us to **infer** extremes we have not observed yet (extrapolation)

RESULTS SLIDE

Percentile and Exceedance Probability

Consider x_q such that $Pr(X \le x_q) = F(x_q) = q$

 x_q is the q^{th} – percentile

• $Pr(X > x_q) = 1 - F(x_q) = 1 - q = p$ is the **exceedance probability**

80th-percentile: $x_q = 3.60$ $Pr(X \leq 3.6) = 0.8$ **Exceedance probability** $Pr(X > x_q) = 0.20$

Example case: intervention in the Mediterranean coast

- It may be a coastal structure, a water intake, the restoration of a sandy beach, between others.
- Here: **design a mound breakwater**
- Mound breakwater must resist wave storms \rightarrow H_s
- *But which one?*

13

Return Period

The Return Period (T_R) is the expected time between exceedances. "In other words, we have to make, on average, $1/p_{f,y}$ trials in order that the event happens once" (Gumbel) or **wait** *1/pf,y* **years before the next occurrence**, being $p_{f,y}$ the exceedance probability.

Assumption of stationarity: Every year the probability of the event being higher/lower than the threshold is always the same

Design requirements – Binomial distribution

$$
T_R = \frac{1}{p_{f,y}} = \frac{1}{1 - (1 - p_{f,DL})^{1/DL}}
$$

• DL = 20 years
\n•
$$
p_{f,DL} = 0.20
$$

\n
$$
T_R = \frac{1}{p_{f,y}} = \frac{1}{1 - (1 - 0.2)^{1/20}} \approx 90 \text{ years}
$$
\n
$$
p_{f,y} \approx 0.011
$$

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- 2. Interpret and apply the concept of **return period and design life**
	- 3. Apply **extreme value analysis** to datasets
	- 4. Apply techniques to **support the threshold selection**

Time series

We need to sample extreme values!

Wave height time series

Which one of the following options is a sampling technique for extremes? You may select more than one option. 19/22 **Juin 2018** Join at: **vevox.app** JD: **125-461-830 Decay 1:** 2018 Question slide

which one of the following options is a sampling technique for extremes? You may select more than one option. 19 **Join at:** *vevox.app* **ID: 125-461-830** Showing Results

Peak Over Threshold 100% Block Selection 5.26% Generalized Extreme Value (GEV) 26.32% Point Over Threshold 5.26% Block Maxima 94.74%

RESULTS SLIDE

Sampling extremes: Block Maxima

1. Block Maxima

Sampling extremes: Block Maxima

1. Block Maxima (typically block=1year)

- Maximum value within the block
- Number of selected events=number of blocks recorded (e.g.: number of years)
- Easy to implement

Sampling extremes: Peak Over Threshold (POT)

2. Peak Over Threshold (POT)

- Usually, higher number of extremes identified
- Additional parameters:
	- Threshold (*th*)
	- Declustering time (*dl*)

And what about the distributions?

Choose the right pairs of sampling technique with distribution function. 19/20 **Juin 2 and 3 Join at: vevox.app** JD: **125-461-830 Juin 2011 1201-1201** Question slide

Peak Over Threshold (POT) with Generalized Pareto Distribution (GPD)

Choose the right pairs of sampling technique with distribution function 19 **Join at: vevox.app** ID: **125-461-830** Showing Results

Peak Over Threshold (POT) with Generalized Pareto Distribution (GPD)

RESULTS SLIDE

We are interested in modelling the maximum of the sequence $X = X_1, ..., X_n$ of *iid* random variables, $M_n = \max(X_1, ..., X_n)$, where *n* is the number of observations in a given block.

We can prove that for large *n,* **those maxima tend to the Generalized Extreme Value (GEV) family of distributions, regardless the distribution of** *X***.**

 $P[M_n \leq x] \rightarrow G(x)$

Generalized Extreme Value is defined as

$$
G(x)=exp-[1+\xi\frac{x-\mu}{\sigma}]^{-1/\xi} \qquad (1+\xi\frac{x-\mu}{\sigma})>0
$$

With parameters location ($-\infty < \mu < \infty$), scale ($\sigma > 0$) and shape ($-\infty < \xi < \infty$).

Location parameter (*µ***)**

Higher *µ,* right displacement of the distribution, higher values.

Generalized Extreme Value is defined as

$$
G(x)=exp-[1+\xi\frac{x-\mu}{\sigma}]^{-1/\xi} \qquad (1+\xi\frac{x-\mu}{\sigma})>0
$$

With parameters location ($-\infty < \mu < \infty$), scale ($\sigma > 0$) and shape ($-\infty < \xi < \infty$).

Scale parameter ()

Higher σ , wider distribution.

Generalized Extreme Value is defined as

 $G(x) = exp - [1 + \xi \frac{x-\mu}{\sigma}]^{-1/\xi}$ $(1 + \xi \frac{x-\mu}{\sigma}) > 0$

With parameters location ($-\infty < \mu < \infty$), scale ($\sigma > 0$) and shape ($-\infty < \xi < \infty$).

Shape parameter (ξ)

Determines the tail of the distribution.

- Load: significant wave height (T_R=90 **years)**
- 20 years of hourly measurements \rightarrow 20 **yearly maxima samples**

32 inverse GEV to determine the design event

- Load: significant wave height (T_R=90 **years)**
- 20 years of hourly measurements \rightarrow 20 **yearly maxima samples**

read observations for each year i: obs_max[i] = max(observations in year i) end fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-Smirnov test)

33 inverse GEV to determine the design event

$$
z_p = G^{-1}(1-p_{f,y}) = \begin{cases} \mu - \frac{\sigma}{\xi} [1 - \{-log(1-p_{f,y})\}^{-\xi}] & \textit{for $\xi \neq 0$} \\ \mu - \sigma log \{1-p_{f,y}\} & \textit{for $\xi = 0$} \end{cases}
$$

- Load: significant wave height (T_R=90 **years)**
- 20 years of hourly measurements \rightarrow 20 **yearly maxima samples**

34 inverse GEV to determine the design event

Common mistakes - Let's talk about the units

Daily maxima of discharges Q is performed on the observations which last for 5 years. We have then 365x5=1,825 extremes. A GEV is fitted.

We want to compute the discharge associated with a **return period of 100 years**. ??

$$
z_p=G^{-1}(1-p_{f,y})=\begin{cases}\mu-\frac{\sigma}{\xi}[1-\{-log(1-\boxed{p_{f,y}}]\}^{-\xi}] & \textit{for $\xi\neq 0$}\\ \mu-\sigma log\{1-p_{f,y}\} & \textit{for $\xi=0$}\end{cases}
$$

Common mistakes - Let's talk about the units

Daily maxima: 'units' of the probabilities in the GEV distribution?

Empirical CDF

Common mistakes - Let's talk about the units

Daily maxima: 'units' of the probabilities in the GEV distribution $\frac{1}{\sqrt{2}}$ days

Return period: 100 years

$$
T_R = \frac{1}{p_{f,y}} \to p_{f,y} = \frac{1}{T_R} = \frac{1}{100 \text{ years}}
$$

\n
$$
T_R = \frac{1}{p_{f,y}} \to p_{f,y} = \frac{1}{T_R} = \frac{1}{100 \text{ years}} \frac{1 \text{ year}}{365 \text{ days}} = 2.7 \cdot 10^{-5} \text{ 1/day}
$$

\n
$$
z_n = G^{-1}(1 - n_{f,x}) = \left\{ \mu - \frac{\sigma}{\xi} [1 - \{-\log(1 - p_{f,y})\}^{-\xi}] \right\} \text{ for } \xi \neq 0
$$

$$
z_p=G^{-1}(1-p_{f,y})=\left\{\begin{matrix} \mu-\frac{\sigma}{\xi}[1-\{-log(1-p_{f,y})\}^{-\xi}] & \textit{for}\ \xi\neq 0 \\ \mu-\sigma log\{1-p_{f,y}\} & \textit{for}\ \xi=0 \end{matrix}\right.
$$

The maximum of the sequence $X = X_1, ..., X_n$ of *iid* random variables, M_n $= max(X_1, ..., X_n)$, where *n* is the number of observations in a given block, follows **the Generalized Extreme Value (GEV) family of distributions, regardless the distribution of** *X* for large *n*.

 $P[M_n \leq x] \rightarrow G(x)$

If that is true, **the distribution of the excesses can be approximated by a Generalized Pareto distribution**.

$$
F_{th} = P[X - th \le x | X > th] \to H(y)
$$

where the excesses are defined as *Y=X−th* for *X>th*

$$
P[Xth]=\begin{cases}1-\left(1+\frac{\xi(x-th)}{\sigma_{th}}\right)^{-1/\xi} & \textit{for $\xi\neq 0$}\\ 1-\textit{exp}\left(-\frac{x-th}{\sigma_{th}}\right) & \textit{for $\xi=0$}\end{cases}
$$

With parameters threshold (*th*>0), pareto's scale ($\sigma_{th} > 0$) and shape ($-\infty < \xi < \infty$).

$$
P[Xth]=\begin{cases}1-\left(1+\frac{\xi(x-th)}{\sigma_{th}}\right)^{-1/\xi} & \textit{for $\xi\neq 0$}\\ 1-\textit{exp}\left(-\frac{x-th}{\sigma_{th}}\right) & \textit{for $\xi=0$}\end{cases}
$$

With parameters threshold (*th*>0), pareto's scale ($\sigma_{th} > 0$) and shape ($-\infty < \xi < \infty$).

$$
P[Xth]=\begin{cases}1-\left(1+\frac{\xi(x-th)}{\sigma_{th}}\right)^{-1/\xi} & \textit{for $\xi\neq 0$}\\ 1-\textit{exp}\left(-\frac{x-th}{\sigma_{th}}\right) & \textit{for $\xi=0$}\end{cases}
$$

With parameters threshold (*th*>0), pareto's scale ($\sigma_{th} > 0$) and shape ($-\infty < \xi < \infty$).

Let's talk about the units again…

POT of discharges Q is performed on the observations which last for 5 years. A GPD is fitted to the observations.

We want to compute the discharge associated with a **return period of 100 years**.

Let's talk about the units again…

POT: units of the probabilities in the GPD?

Event-wise probabilities: **not a fixed number in a time block**

We use the average number of exceedances per year

• Load: significant wave height (T_R=90 **years)**

check fit (e.g., QQ-plot or Kolmogorov-Smirnov test)

determine lambda

45 inverse GPD to determine the design event

• Load: significant wave height (T_R=90 **years)**

$$
x_N=\begin{cases} t h + \frac{\sigma_{th}}{\xi}[(\lambda N)^{\xi}-1] \qquad for \: \xi \neq 0 \\ t h + \sigma_{th}log(\lambda N) \qquad \quad for \: \xi = 0 \end{cases}
$$

$$
T_R
$$
=90 years
M = 20 years
 n_{th} = 54 events $\hat{\lambda} = \frac{54}{20} = 2.7$

• Load: significant wave height (T_R=90 **years)**

read observations $th = 2.5$ $dl = 48$ #in hours excesses = find_peaks(observations, threshold = th, distance = dl) – th

fit GPD(excesses)

check fit (e.g., QQ-plot or Kolmogorov-Smirnov test)

determine lambda

47 inverse GPD to determine the design event

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- 2. Interpret and apply the concept of **return period and design life**
- 3. Apply **extreme value analysis** to datasets
	- 4. Apply techniques to **support the threshold selection**

Choosing POT parameters

Basic assumption of EVA: extremes are *iid th* and *dl* should be chosen so the identified extreme events are independent.

Extremes cluster in time!

If *dl* is big enough, we ensure that extremes do not belong to the same storm.

dl → th, physical phenomena (local conditions)

POT and Poisson

- Each hour is a trial $(n \rightarrow \infty)$
- Over or below the threshold?
- *pabove* is very small (tail of the distribution)
- $Block = 1$ year
- Number of excesses over the threshold \sim Poisson

Almost all the techniques to formally select the threshold and declustering time for POT are based on the assumption that the sampled extremes should follow a Poisson distribution.

Samples: Poisson

Delft

If the number of excesses per year follows a Poisson distribution Sampled maxima are independent

- Compute the number of excesses per year
- Empirical pmf and cdf
- Fit Poisson distribution using Moments

$$
E[X] = Var[X] = \lambda
$$

- Check the fit
	- Graphically
	- Chi-squared test

Mean Residual Life (MRL) plot

MRL plot presents in the x-axis different values of *th* and, in the y-axis, the mean excess for that value of the *th*. The range of **appropriate threshold** would be that where the **mean excesses follows a linear trend**.

GPD parameter stability plot

GPD distribution is "threshold stable"

If the exceedances over a high threshold (*th0*) a GPD with parameters ξ and σ_{th0} , then for any other threshold (*th>th0*), the exceedances will also follow a GPD with the same ξ and

 $\sigma_{th} = \sigma_{th0} + \xi(th - th0) \implies \sigma^* = \sigma_{th} - \xi th \implies \sigma^* = \xi th0$

Dispersion Index (DI)

Based on Poisson process

Property of Poisson distribution: $E[X] = Var[X] = \lambda$

 σ^2

 \approx 1

Confidence interval for DI:

$$
(\tfrac{\chi^2_{\alpha/2,M-1}}{(M/1)},\tfrac{\chi^2_{1-\alpha/2,M-1}}{(M/1)})
$$

Learning objectives

- 1. Identify what is an **extreme value** and apply it within the engineering context
- 2. Interpret and apply the concept of **return period and design life**
- 3. Apply **extreme value analysis** to datasets
- 4. Apply techniques to **support the threshold selection**

Any questions?

Patricia Mares Nasarre

p.maresnasarre@tudelft.nl

