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Extreme Value Analysis: basics
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What have you seen so far?

1. ldentify what is an extreme value and
apply it within the engineering context

2. Interpret and apply the concept of
return period and design life

3. Apply extreme value analysis to
datasets
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Learning objectives

1.

3. Apply extreme value analysis to
datasets

4. Apply techniques to support the
threshold selection
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Join the Vevox session

Go to vevox.app E E
Enter the sestﬁ1 -83i
Or scan the QF¥co e fE
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Extremes and Extreme
Value Analysis

An extreme observation is an observation
that deviates from the average
observations.

Infrastructures and systems are designed to
withstand extreme conditions (ULS).

- Breakwater — wave storm
* Flood defences — floods, droughts

To properly design and assess infrastructures
and system we need to characterize the
uncertainty of the loads.
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Extreme Value Analysis

Based on historical observed extremes
(limited)...

* Allows us to model the stochastic
behaviour of extreme events

* Allows us to infer extremes we have
not observed yet (extrapolation)
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Non-exceedance probability, P[X < x]

1.0

Time series of observations of the
loading variable

< VAT

Cumulative distribution function, F(x)

Loading variable




S B g you arS WM with%aEoHiuous varigofen i
such as the discharge in a river (Q). You want to use the
cumulative distribution function (CDF) to compute the

prebahulily.of eRserving a discharge Q=100 m3/s. Which
probability would you obtain? | 0%

Non-exceedance probability, P 0]

) 0%

kProbabiIity of the event, P

] 0%
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you are working with a continuous Val‘la[me\:w s

such as the discharge in a river (Q). You want to use the
cumulative distribution function (CDF) to compute the

Probahility.qaf ohsgrving a discharge Q=100 m3/s. Which
pC - ] | 25%
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Percentile and Exceedance Probability

Consider x,such that Pr(X < x,) = F(x,) = q

= x4 isthe q'"— percentile

1.0

0.8 1

0.6 1

0.4+

Probability Density Function

0.2

0.80

0.20

0.0 ;
0 1

TUDelft

2 3 xq=3.6 4

Loading variable

1.0

0.8

0.6 1

0.4 -

0.2

0.0
0

Pr(X >x,) =1 —F(x;) =1 — q = p is the exceedance probability

— F(x) =P[X < x]
— P[X>x]

1 2 3 4
Loading variable

80"-percentile: x, = 3.60
Pr(X <3.6)=0.8
Exceedance probability

Pr(X >=x,) =020



Example case: intervention in the Mediterranean coast

It may be a coastal structure, a
water intake, the restoration of
a sandy beach, between
others.

* Here: desigh a mound
breakwater

« Mound breakwater must resist
wave storms — Hg

 But which one?

scour hole
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Return Period

"‘I'he Return Period (Tg) is the expected time between exceedances. Assumption of stationarity:
In other words, we have to make, on average, 1/ps, trials in order that Every year the probability of the event
the event happens once” (Gumbel) or wait 1/p;, years before the being higher/lower than the threshold
is always the same

next occurrence, being p;, the exceedance probability.

Wave height time series

U

TR(t) = — —— Significant wave height time series
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Design requirements — Binomial distribution

L1 1
Py 1—(1—psp) /DL
DL =20 years_ Tp = i — 1 ~ 90 years
Ppry 1—-(1- 0.2)1/20
= 0.20
ProL 3 P, ~ 0.011
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Learning objectives

g
Ve

3. Apply extreme value analysis to
datasets

4. Apply techniques to support the
threshold selection
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Time series

Can | use all the

Wave height time series values in the time

5 —— Signific series for the
| analysis?
M“nll\t L o

1991-01 1991-07 1992-01 1992-07 1993-01 1993-07 1994-01 1994-07 1995-01
Date
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We need to sample extreme values!

Wave height time series

M“nll\l L W \nmIWIthImMmmuhihl\“lm

1991-01 1991-07 1992-01 1992-07 1993-01 1993-07 1994-01 1994-07 1995-01
Date
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L n gt : D: 125-461-830 _ Showing Result
ne of the {ofléWing options’1s a samphng[ ouing Resuls |

technique for extremes? You may select more than one
option.

Peak Over Threshold
( | 100%

Block Selection

[ | 5.26%
Generalized Extreme Val

Point Over Threshold

) | 5.26%

Block Maxima

| 94.74%




Sampling extremes: Block Maxima

1. Block Maxima

Wave height time series
|

w

—— Signi f tw e height time
X Yearly maxima

w £

N

Significant wave height [m]

=
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Date
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Sampling extremes: Block Maxima

1. Block Maxima
(typically block=1year)

Wave height time series
|

—— Significant wave height time series

% Yearly maxima « Maximum value
within the block

I

* Number of selected
events=number of
blocks recorded (e.g.:

| number of years)

li ill\lhllll T M.nl{ MMIWIMIIM M'm“nnIHH“lm * Easy to implement

1991-01 1991-07 1992-01 1992-07 1993-01 1993-07 1994-01 1994-07 1995-01
Date

N

Significant wave height [m]

= w
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Sampling extremes: Peak Over Threshold (POT)
2. Peak Over Threshold

I (POT)
i i :Engrfnmrt{ TR Lo Usually, higher number
K 1 of extremes identified
§’3 1 i ’ . ; y ; - Additional parameters:
fz ' * Threshold (th)
ml | i | - Declustering time (d/)
0 li ull\lhmll L Mnl{ J‘i\nanHunhnMh il

1991-01 1991-07 1992-01 1992-07 1993-01 1993-07 1994-01 1994-07 1995-01
Date
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And what about the distributions?
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& 19720 ., Join at: 125-461-8 Question slid
B e sethe right pairs of samplirig technique With Suesnside

distribution function.

Peak Over Threshold (POT) with Generalized Pareto Distribution (GPD)

0%
\Block Maxima (BM) with Gene d Pareto Distribution (GPD) ]
Z | 0%
Block Maxima (BM) with
| | 0%
Peak Over Threshold (POT)
f ] 0%




8 19 . Join at: . ID: 125-461-8 : . +| Showing Result
& i usethe right pairs of samplirig technique Wit Shevins Resuts
distribution function.

Peak Over Threshold (POT) with Generalized Pareto Distribution (GPD)

( ] | 63.16%
Block Maxima (BM) with Genm Pareto Distribution (GPD)

( ] | 36.84%
Block Maxima (BM) with Gggera#ed Fxtreme Valye distribution (GEV)y

[ | 68.42%

Peak Over Threshold (POT) [Jfjh GéfraliZ&t Effrem s ib10n EV)
| | 31.58%




Block Maxima and Generalized Extreme Value Distribution

We are interested in modelling the maximum of the sequence X = X, ..., X,
of iid random variables, M,, = max(Xy, ..., X;;), where n is the number of
observations in a given block.

We can prove that for large n, those maxima tend to the Generalized
Extreme Value (GEV) family of distributions, regardless the distribution
of X.

P|M, < x] - G(x)
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Block Maxima and Generalized Extreme Value Distribution

Generalized Extreme Value is defined as

G(z) = exp—[1 4+ £=L]1/°

(1+¢

—=)>0

With parameters location (—oco <z < o0 ), scale (¢ > 0) and shape (- <{ <o),

10
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X 04}
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10

Location parameter (u)

Higher u, right
displacement of the
distribution, higher values.



Block Maxima and Generalized Extreme Value Distribution

Generalized Extreme Value is defined as

G(z) = exp—[1 4+ £=L]1/°

(1+¢

T—p
o

) >0

With parameters location ( —oco < p < 00 ), scale (¢ >0) and shape (- <¢{ <o),

15f —
c=0.5
c=15
101 || f‘ ' ‘ ‘\ "‘ \
< w .l l‘\ !M\‘ . l‘| Il
5 M q\‘} ’b \v"i- l\)" W w ‘ ‘*i V j \H’WQ 4 w"\
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Block Maxima and Generalized Extreme Value Distribution

Generalized Extreme Value is defined as

G(z) = exp—[1 4+ £=L]1/°

(1+£6=£)>0

o

With parameters location ( —oco < p < 00 ), scale (¢ >0) and shape (- <¢{ <o),

Gumbel

:Typel

pdf

X

§—=>0
Exponential decay
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pdf

X

& >0
Polynomial decay

Reverse Weibull
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pdf
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(<0

Upper bound (u —°/;)

Shape parameter (¢)

Determines the tail of the
distribution.



Let's apply 1t
- Load: significant wave height (Tg=90
years)

« 20 years of hourly measurements — 20

Wave height time series

5 | i — Soan wave g e seres yearly maxima samples
[t s
0 lwl uli\\nhnll illm RN A M il M MM | nmh\“lm fit GEV(obs_max)

1991-01 1991-07 1992-01 1992-07 1993-01 1993-07 1994-01 1994-07 1995-01
Date

check fit (e.g., QQ-plot or Kolmogorov-
Smirnov test)

] inverse GEV to determine the desi
gn
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Let's apply 1t
- Load: significant wave height (Tg=90
years)

5.5

« 20 years of hourly measurements — 20
o yearly maxima samples

w
o
1

read observations

>
&)

E °
T 407 o for each year i:
g . > obs_max[i] = max(observations in year i)
[ end
L)
3.0 A
° fit GEV(obs_max)

N
w
1

check fit (e.g., QQ-plot or Kolmogorov-
2.0 2.5 3.0 3.5 4.0 45 5.0 5.5 Smirnov test)

2.0

observed Hs(m)

inverse GEV to determine the design
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Let's apply 1t
- Load: significant wave height (Tg=90

gy f{log(L=p)} ] for&#0 ears
»= G 1P {# — alog{1 — py,} foré=0 years)

« 20 years of hourly measurements — 20
yearly maxima samples

1.0

-== 90-years event

o
©

read observations

o
o

for each year i:
obs_max[i] = max(observations in year i)
end

Exceedance probability P[X > x]
o
F ey

fit GEV(obs_max)

o
N

. check fit (e.g., QQ-plot or Kolmogorov-
2.5 3.0 3.5 4.0 45 5.0 Smirnov test)

0.0

Hs(m)

inverse GEV to determine the design
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Common mistakes - Let’s talk about the units

Daily maxima of discharges Q is performed on the observations which last
for 5 years. We have then 365x5=1,825 extremes. A GEV is fitted.

We want to compute the discharge associated with a return period of 100
years.

??

p— 21— {-log(1 —|psy)} ¥]  for&#0
p — olog{1 — py,} for =0

Zp = G_l(l —pf,y) = {
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Common mistakes - Let’s talk about the units

Daily maxima: ‘units’ of the probabilities in the GEV distribution?
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Empirical CDF

Let’s do it slowly!

I el
3.2 2 1
4.5 3.2 2
3.8 3.8 3
7.5 4.5 4
2 7.5 5

]
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Lengt

Rank/length + 1

1/6 =0.17

Days!

2/6 = 0.33
3/6 =0.5
4/6 = 0.67

5/6 = 0.83

>> read observations

> x = sort observations 1n ascending
order

>> length = the number of observations
>> probability of not exceeding = (range
of integer wvalues from 1 to length) /

length + 1

>> Plot x versus ©probability of not
exceeding

02-05-2024 37



Common mistakes - Let’s talk about the units

Daily maxima: ‘units’ of the probabilities in the GEV distribution

Return period: 100 years

%
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T 1 1 1
= —_-—— = —_— =
3 Pr,y Pty Tr 100 years
1 1 1 1
Pty Y Tgp 100 years 365 days

Zp = G_l(l —pf,y) = {

p— F[1—{-log(1 -
p — olog{l —ps,}

ays

= 2.7-107° 1/days

pf,y)

}¢)

for&#0
for =0



POT and Generalized Pareto Distribution

The maximum of the sequence X = X4, ..., X,, of iid random variables, M,,
= max(Xy, ..., X,), where n is the number of observations in a given block,
follows the Generalized Extreme Value (GEV) family of distributions,
regardless the distribution of X for large n.

P|IM, < x] - G(x)

If that is true, the distribution of the excesses can be approximated by a
Generalized Pareto distribution.

Fep, = PIX —th < x|X > th] - H(y)

where the excesses are defined as Y=X-th for X>th

]
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POT and Generalized Pareto Distribution

1 (1+%)_1/£ for £ #0

P[X < z|X > th] = {

xz—th —
kl—emp(— Gth) foré=0
With parameters threshold (th>0), pareto’s scale (o4, > 0) and shape (—o0 <& < o0 ).

e k| 7|
~ i VAN Pﬁ‘m;_)"‘t,\h,.if «f\.,/'k\"'v,,_,.J\,»wf\,Nv"\c,».,,, j f\f} i - =g

| ““ : o “-7{|  Threshold (th)
= - ?, Acts like a location
. ~ parameter.
N | th=3 - \
= L] == th=T : \
o | o L ------------------ —_———

0 20 40 60 80 100 0 3 6 9 12 15

# X

\

UDelft



POT and Generalized Pareto Distribution

~1/¢
1 (1+—f(°’”‘”’)) for £ #0
P[X < z|X > th] = { Z
Ll—emp(—m;tzh) for =0
With parameters threshold (th>0), pareto’s scale (o4, > 0) and shape (—o0 <& < o0 ).
‘ om=0.5 w0 l o =0.5
—— om=1.5 = on=1.5
2 ~ | Scale parameter (o;)
E . g Higher oy, wider
¥ ﬁ ;\ g | { distribution.
o E J‘ﬁ)’l\ iﬁfj Lrﬂ“«h\_,,ﬂamﬁﬂ!\}av/\/! /A’\ﬂn.w "’ﬂv} g il - \%\—Kg_ﬁ_%ﬁ
0 2IO 4I0 6|0 8I0 1(|)0 0 1 2 3 4 5
# X
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POT and Generalized Pareto Distribution

-1/
H—(l%——ﬂw_th)) v for£#£0
PIX < z|X > th] = {
(1-eap(-5F)  foré=0
With parameters threshold (th>0), pareto’s scale (o4, > 0) and shape (—o0 <& < o0 ).
? __15] i f Shape parameter ()
| —= 5
: — o S | £<0: upper bound
g : 83 &>0: heavy tail
;_ an g | g=15 =0 & th = 0: Exponential
2 J\__m 3 - §=-1: Uniform
0 1 2 3 4 5 - 0 1 2 3 4 5
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Let's talk about the units again...
POT of discharges Q is performed on the observations which last for 5
years. A GPD is fitted to the observations.

We want to compute the discharge associated with a return period of
100 vears.
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Let's talk about the units again...

POT: units of the probabilities in the GPD?

Event-wise probabilities: not a fixed number in a time block

We use the average nhumber of exceedances per year
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Let's apply 1t

- Load: significant wave height (Tg=90

Significant wave height [m]

years)
5 Wave height time series — . . .
----------------------------------- fit GPD(excesses)
| | check fit (e.g., QQ-plot or Kolmogorov-
1 “} | UARKIRNL 1y | Smirnov test)
1 L

0 -
1991-01 1991-07 1992-01 1992-07 1993-01 1993-07 1994-01 1994-07 1995-01

Date determine lambda

] inverse GPD to determine the desi
gn
TU Delft event




Let's apply 1t

Load: significant wave height (Tg=90
years)

read observations

th=2.5
dl = 48 #in hours
excesses = find_peaks(observations,

threshold = th, distance = dl) — th

fit GPD(excesses)

check fit (e.g., QQ-plot or Kolmogorov-
Smirnov test)

QQ-plot
a .
5.0 - //
,/
7/
,l
4.5 4 ’
(73] 7
o /’
= . 7
- s
-2 4.0 - 71
5 ‘
>3 /"
C+
g 3.5 ~
3 A
= ’“4
3.0 1 /
2.5 1

2.5 3.0 3.5 4.0 4.5 5.0
Empirical quantiles
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determine lambda

inverse GPD to determine the design
event .




Let's apply 1t

th + o log(AN)

Tr=90 years
M = 20 years

—

Ny, = 54 events

1.0

A

{th+ SL[AN) —1]  for£#0
_—

for =0

% _97
20

o o o
» o ©
1

Exceedance probability P[X>Xx]

o
[N]

—=- 90-years event

He e o o o o e - - ———— . ————

0.0

-
TUDelft

3.0

3.5

4.0 4.5
Hs(m)

5.0

Load: significant wave height (Tg=90
years)

read observations

th=25
dl = 48 #in hours
excesses = find_peaks(observations,

threshold = th, distance = dl) — th
fit GPD(excesses)

check fit (e.g., QQ-plot or Kolmogorov-
Smirnov test)

determine lambda

inverse GPD to determine the design
event




Learning objectives

/o
Vo

/3. Apply extreme value analysis to
datasets

4. Apply techniques to support the
threshold selection
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EVA: Threshold and
declustering time selection.
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Choosing POT parameters

Basic assumption of EVA: extremes are iid —— th and dl should be chosen so the identified extreme
events are independent.

Wave height time series

— Significant wave height time series EXtremeS Cl USter |n

e Values > threshold t|me|
— = threshold = 2.5m :

If dl is big enough, we
ensure that extremes
do not belong to the
same storm.

Significant wave height [m]

dl — th, physical
phenomena (local
conditions)

0 T T T T T T
1992-05-01 1992-05-02 1992-05-03 1992-05-04 1992-05-05 1992-05-06 1992-05-07 1992-05-08

y
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POT and Poisson

5 Wave height time series ° EaCh hour iS a trial (n N oo)

—— Significant wave height time series

Over or below the threshold?

I
[ ]

*  Pabove IS Very small (tail of
the distribution)

w

N

Significant wave height [m]
T
|
|
|
|
1
1
1
1
|
|
|
|
1
1
|
1
1

. |
|
|
|
|
|
|
|
|
1
T
1
1
|
|
|
|
|
|
|
|
[
1
1
1
|
|
|
|
|
|
|
I
1
1
1
|
|
|
|

- Block =1 year

| I |

=

Number of excesses over

M hllhh 110 HIINR ||Hlk. m il MIIIIIH IJHIHHHIW“”M . the threshold ~ Poisson

0
1991-01 1991-07 1992-01 1992-07 1993-01 1993-07 1994-01 1994-07 1995-01
Date

Almost all the techniques to formally select the threshold and declustering time for
POT are based on the assumption that the sampled extremes should follow a Poisson
distribution.
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Samples: Poisson

If the number of excesses per year follows ——)> Sampled maxima are independent /
a Poisson distribution

Lo - 10 «  Compute the number of
| —— Empirical cdf £ excesses per year
091 — Poisson fit — %
‘ 2 0.8 .
08 e «  Empirical pmf and cdf
Q
@)
0.71 506 »  Fit Poisson distribution using
%5 0.6 9 Moments
&) * §
0.5 1 2 0.4 E[X]=Var[X]= A
B
0.4 - b :
% 0.2 *  Check the fit
0.3 E
(7 .
0271 | | | A" 00 | | | | «  Graphically
1 2 3 4 5 0.0 02 04 06 08 10
Exceedances per year Observed non-exceedance probability

* Chi-squared test
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Mean Residual Life (MRL) plot

MRL plot presents in the x-axis different values of th and, in the y-axis, the mean excess for that
value of the th. The range of appropriate threshold would be that where the mean excesses
follows a linear trend.

Mean Residual Life Plot_ _ _
|

Mean Excesses
o
w

7 . . | |
TUDelft R



GPD parameter stability plot

GPD distribution is “threshold stable”
If the exceedances over a high threshold (th0) a GPD with parameters ¢ and g, then for any

other threshold (th>th0), the exceedances will also follow a GPD with the same ¢ and
O-thza'th0+€(th_th0):> O'*:O'th— fth :> 0'*=Eth0

Shape Parameter Stability Plot Scale Parameter Stability Plot

I
I
I
I
.

0 I
I
[
I
[
I
I
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Dispersion Index (DI)

Based on Poisson process _ _
Property of Poisson distribution: E[X]| = Var[X] = A Confidence interval for DI:

( ng/z,M—l X%—a/2,M—1 )

Dispersion Index: DI = "7 ~1 41y~ (M/1)

s — Dispersjon Index plot

10 A

DI

,; ' ' ' 1 ' T T
TU Delft e e el _2-_5&1. 3.0 3.5 4.0



Learning objectives

/o
Vo

/3. Apply extreme value analysis to
datasets

/4. Apply technique

threshold s&-:-lectiE ; : E‘
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Any questions?

Patricia Mares Nasarre

p-maresnasarre@tudelft.nl




